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Abstract 

This paper investigates ways of expanding the scope of 
applicability of time-utility and aggregate utility driven 
scheduling. Being interested in critical applications and 
systems, we explore issues raised with proving that a system 
is endowed with combined safety, liveness, timeliness and 
dependability properties, the province of proof-based system 
engineering. We examine the nature of proof obligations, as 
well as how to fulfill them, whenever timeliness and 
aggregate utility properties are sought. Relationships with 
classical real-time computing problems and timeliness 
proofs are analyzed. Then we take time-utility scheduling a 
few steps further, by showing how to maximize aggregate 
utility while achieving process serializability, process 
termination, as well as dependability properties, in various 
computational models, considering distributed systems 
prone to failures where processes share multicopied 
updatable persistent data.

1. Introduction 

Timeliness properties – denoted TimeP – and their proofs 
are essential with real-time systems. Time-Utility Functions 
(TUF’s) and Aggregate Utility (AU) optimization criteria 
[1, 2, 3, 4, 5] are generalizations of classical – and  more 
restrictive – timeliness attributes and properties commonly 
considered in real-time computing, such as strict process 
termination deadlines. Throughout this paper, TimeP 
achieved by resorting to TUF-driven scheduling algorithms 
aimed at maximizing AU are denoted TU-TimeP. 

In addition to TimeP or TU-TimeP, most computer-based 
systems (CBS’s) must exhibit properties belonging to the 
three classes of safety, liveness and dependability – denoted 
SafeP, LiveP and DepP, respectively. A number of intricate 
issues arise with the design of CBS’s that are bound to 
exhibit some combination of properties belonging to these 
four classes. A typical example arises (frequently) with 
CBS’s where updatable persistent data/variables are shared 
by (application-level, system-level) processes. A SafeP that 
is mandatory with such systems is “data consistency”, more 
formally defined as “process serializability” [6]. Issues 
raised with achieving TU-TimeP and process serializability 
altogether have not been addressed so far. Current work 
concentrates on achieving TU-TimeP and resource-level 
mutual exclusion altogether [5]. Resource-level mutual 
exclusion does not imply process serializability.  

In Sections 4 and 5, we investigate ways of expanding 
the scope of applicability of TUF/AU scheduling, by 
circumventing underlying restrictions, and focusing on 
algorithmic issues. We show how TUF scheduling may 
work in any kind of CBS, i.e. in distributed systems of 
replicated or non replicated processors and data, where AU 
must be maximized system-wide, in the presence of shared 
updatable persistent data and partial failures, for various 
models of computation (beyond synchronous models).  

Furthermore, we examine the (more difficult) proof 
issues. In the case of life/mission/business-critical CBS’s, 
one must be able to predict the future behavior of a to-be-
deployed CBS, with very high accuracy and confidence. 
Given the complexity of current and future application-
level services and properties, of current and future 
computing and networking technology, it is quite clear that 
existing system design approaches have reached their 
limits: they do not permit predictions with high enough 
accuracy or confidence. Following the historical pattern of 
more mature engineering disciplines (e.g., electronics, 
telecommunications), system engineering (SE) for CBS’s 
has reached an inflexion point in its history. Time has 
come for replacing ad hoc or empirical techniques with 
more “scientific” techniques, notably proof-based 
techniques, such as those at the core of a novel 
methodological trend, known under the name of Proof-
Based System Engineering (PBSE), which is sketched out 
in Section 2. PBSE and its relationships with TUF/UA 
scheduling are explored in Section 3. 

2. Proof-Based System Engineering for CBS’s

The first phase in a lifecycle is the application-centric 
Requirements Capture (RC) phase. According to published 
statistics (from NASA, in particular), this is the phase 
where most faults are made, revealed (years) later, usually 
through unitary or integration testing, a very costly way of 
finding out that “something is wrong”. Under a PBSE 
approach, an RC phase is conducted until the application of 
interest is fully and unambiguously specified as a problem 
expressed as computer-based requirements (CBR’s). 

In an attempt to minimize or eliminate ambiguities and 
inconsistency, the formal software engineering (FSWE) 
community has advocated for formally expressed CBR’s, 
e.g. in languages based upon temporal logic. Without 
tangible success, apparently. For good reasons. Human 
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beings in general, CBS users and designers in particular, do 
not “speak” formal languages. Furthermore, semantics that 
are tractable with existing FSWE methods constitute a 
limited subset of  those semantics which faithfully represent 
real world CBS’s technology and operational environments, 
real world user/application requirements. With existing 
FSWE methods and tools, formal specifications can be 
considered only in the late phases of a lifecycle. Lastly, 
there is more than software involved with a CBS [7], and 
FSWE can only follow PBSE in a lifecycle [8, 9]. 

PBSE is based on a different approach. A CBR is not a 
formal specification. Rather, a CBR is expressed in some 
natural language (English, French, German, etc.), with 
restrictions: a term (other than article, conjunction, etc.) may 
appear in a CBR only if it has a formal definition in some 
scientific discipline – see Figure 1 for a simplified example. 
This permits mutual understanding between the various 
stakeholders involved in an RC phase. Specifications that 
derive from a CBR in subsequent lifecycle phases get 
increasingly formal. This is how PBSE bridges the gap 
between reality and what is tractable with current FSWE 
methods and tools. 

A CBR comprises two subsets, one denoted <p.CBR>, 
which serves to specify which services and properties ought 
to be delivered/guaranteed by a CBS, another one, denoted 
<m.CBR>, which serves to specify the (future) operational 
CBS adversary, i.e. those models and assumptions under 
which one must prove that <p.CBR> is not violated. 
Inevitably, <p.CBR> states some combination of SafeP, 
LiveP, TimeP and DepP. Classical examples are process 
atomicity or mutual exclusion for SafeP, eventual process 
termination for LiveP, deadline-constrained termination for 
TimeP, uniform consensus or high availability for DepP. 

A CBS is a usable, implemented, solution for a given 
CBR. A CBS is an implementation of a design specification, 
denoted S. Under a PBSE approach, it is required to prove 
that S solves CBR. The output of an SDV (System Design 
& Validation) phase, which has a CBR as an entry, is 
specification S, along with proofs showing that S satisfies 
CBR. As a result, any CBS that faithfully implements 
“blueprint” S is (provably) endowed with properties at least 
as “strong” as those specified in <p.CBR>, in the presence 
of an adversary at least as “aggressive” as specified in 
<m.CBR>. In other words, such a CBS will always “win 
against” its specified adversary. 

Meeting proof obligations at CBR/CBS levels, i.e. in 
early lifecycle phases, is at the core of a novel PBSE 
method – the TRDF method [8, 9] – pioneered by INRIA 
since 1995, and assessed with European partners in such 
various domains as, e.g., Integrated Modular Avionics, 
Nuclear Power Plants, Satellites, Air Traffic Control, 
Complex Systems of Systems. PBSE is believed to be 

extremely efficient at reducing costs, delays and risks of 
projects/systems failures by significant ratios.  

<m.CBR> 
• distributed processors, replicated processors and data 
• application process models: finite graphs, assignment 
over processors is unrestricted, wcet’s and inter-process 
causal dependencies are known 
• processes read/write shared persistent data, no restriction 
• set of processes, set of shared data items, are open-ended 
• processor failure models: stop, omission. 
• process activation models: sporadic, aperiodic 
• processor failure occurrence model: aperiodic 
• computational model: synchronous. 

<p.CBR> 
• SafeP: process serializability, process atomicity (other 
safety properties are “encapsulated” in DepP)  
• LiveP: every process whose activation has been requested 
eventually terminates 
• TimeP: for every process, a strict termination deadline 
(from a dozen of milliseconds to one second) to be met 
• DepP: failure detection within bounded latency, atomic 
broadcast, atomic commit. 

Figure 1. Excerpts from an IMA problem (military 
avionics) addressed with the PBSE/TRDF method [10]

(French MoD, Dassault Aviation, INRIA)

Note that with a PBSE method, it is possible to make a 
clear distinction between, (1) proving that “blueprint” S is 
correct vis-à-vis some given CBR (an SDV activity) and, 
(2) proving that S is correctly implemented (a development 
activity). Making such a distinction is essential. Indeed, it 
does not help much to prove that some software or 
hardware component correctly implements some given 
specification – possibly following some formal software or 
hardware engineering method – if it has not been checked 
beforehand that this specification is a correct one (for the 
problem considered).  

The TRDF method is the foundation of the PBSE work 
to be conducted within ASSERT, a 3-year long Integrated 
Project launched by the European Commission in 2004, led 
by the European Space Agency, involving 32 partners 
(national agencies, companies, research laboratories). 

SafeP and LiveP proofs are proofs in Logic, essentially. 
Most often, TimeP proofs are proofs in various kinds of 
Analytical or Algebraic Calculi, in Combinatorial 
Optimization.1 Note that LiveP proofs must be established 
before proving TimeP. Indeed, proving TimeP involves 

                                                
1

Hence, contrary to widespread belief in certain circles, TimeP proofs are 
not reducible to SafeP proofs. 
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conducting some worst-case schedulability analysis, so as to 
establish a set of constraints known as timeliness feasibility 
conditions (FC’s). These analyses and related FC’s, which 
are based upon individual process worst-case execution 
times (wcet’s) or exact execution times, are valid only if it is 
proved that processes terminate. DepP proofs are SafeP 
proofs, LiveP proofs, as well as proofs in various kinds of 
Stochastic Calculi. 

3. PBSE and TUF/AU Scheduling 

With TU-TimeP, the nature of proof obligations does not 
differ much from that of proof obligations to be fulfilled 
with classical TimeP. Let Ω stand for the on-line scheduler 
specified in “blueprint” S. 

3.1. TU-TimeP Proof Obligations

Classical TimeP proofs derive from timeliness FC’s, 
which result from conducting worst-case schedulability 
analyses for pair {<m.CBR>, S}, viewing Ω as “playing 
against” <m.CBR>. First, an analytical upper bound R(k) on 
response times must be established for every process k. 
Assuming no overloads, FC’s for “hard” real-time CBS’s 
consist in writing: 

∀k,  R(k) < D(k),  D(k) standing for process k’s 
strict termination deadline (specified in <p.CBR> for 
application-level processes, derived from <p.CBR> for 
system-level processes). 

It is the duty of system designers, with the help of an 
SDV tool, to express timeliness FC’s first. When this set of 
computable analytical constraints is available, it can be 
entered into another PBSE tool, referred to as a Feasibility 
& Dimensioning (FD) Oracle. An FD Oracle can be used as 
often as needed, assigning desired numerical values to CBR 
variables, in order to check whether there exists a valuation 
of variables in S that meets the chosen dimensioning of 
CBR variables. The output of an FD Oracle is either “yes” 
(TimeP holds true for every process) or “no” (TimeP is lost 
for some process(es)).  

Similarly, regarding TU-TimeP proofs, one establishes 
an analytical lower bound U(k) for the utility achieved by 
every process k, by conducting worst-case schedulability 
analyses, based upon exact processes execution times (see 
Section 4.2). FC’s consist in writing: 

       ∀T,  ∀k ∈ K(T),  ∑TU(k)/∑TU°(k) > α,  0 < α < 1,  
where T stands for any time interval, K(T) is the set of 
processes that may terminate within interval T, and U°(k) 
stands for the highest utility associated with process k 
(specified in <p.CBR> for application-level processes, 
derived from <p.CBR> for system-level processes).  

Observe that specifying α is equivalent to setting a 
lower bound for the density of process termination 
deadlines to be met. SDV tools and FD Oracles can/should 
be used. An FD Oracle serves to check whether some 
valuation of α (α stated in <p.CBR>) is or is not achieved. 

In both cases (TimeP and TU-TimeP), NP-hard or NP-
complete combinatorial optimization problems are to be 
addressed, on two grounds, namely with on-line schedulers 
and with FC’s. This is clearly the case with the IMA 
problem shown in Fig. 1, due to (a) the process/processor 
assignment problem, (b) the serializability property, in the 
presence of sporadic and aperiodic process activation laws, 
i.e. arbitrarily interleaved executions of processes – in 
addition to TimeP. As for TU-TimeP, a proof of NP-
hardness can be found in [11]. The R(k)’s and U(k)’s 
depend on two parameters. One is the distance of scheduler 
Ω from optimality. Another is the distance of FC’s from 
optimality, i.e. necessary and sufficient FC’s. Theoretical 
optimal bounds, denoted R⇓(k)’s and U⇑(k)’s, are obtained 
only if both distances are null. 

3.2. Schedulers and Feasibility Conditions

Every scheduling algorithm has some intrinsic 
complexity, which translates into some execution duration, 
denoted XΩ. Picking up a scheduler shown to be optimal on 
theoretical grounds is not always appropriate. The closer to 
(theoretical) optimality, the higher XΩ. Also, the choice of 
activation laws for an on-line scheduler is driven by the 
magnitude of XΩ. Activating a scheduler upon every 
process activation request may not be appropriate. Optimal 
bounds of relevance – denoted R*(k) and U*(k) – are the 
R⇓(k)’s or the U⇑(k)’s where XΩ and the worst-case 
scheduler activation latencies – denoted {LΩ}, since there 
might be more than one such latency – are accounted for. 
Consequently, it is often the case that a theoretically sub-
optimal scheduler should be retained. Obviously: 

∀k,   R⇓(k) < R*(k) < R(k)   and    U(k) < U*(k) < U⇑(k). 

The (simplified) generic optimization problems are: 
• Find scheduler Ω and {LΩ} that minimize the R*(k)’s – 
for classical TimeP, 
• Find scheduler Ω and {LΩ} that maximize the U*(k)’s – 
for TU-TimeP. 

With non “extreme” TUF’s (see Figure 2), scheduling 
algorithms of weak polynomial complexity (in the order of 
n2log n or n3, for n processes to be scheduled) can be close 
enough to optimality, which optimality may be identified 
by resorting to, e.g., dynamic programming [11]. 

In the case of “extreme” TUF’s, i.e. arbitrarily shaped 
functions, possibly varying with time, results published so 
far derive from simulation work or measurements on 
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prototypes. Analytical work has been started recently [5] for 
specific CBR’s (see Section 4.2). Regarding scheduling 
algorithms, analyses and proofs of global AU optimization, 
it might be advisable to “import” results established in such 
disciplines as Decision Theory or Game Theory. For 
example, efficient TUF/UA schedulers might be derived 
from strategies devised in Game Theory, companion 
theorems being the proofs to be entered into an SDV tool.  

Figure 2. Four example time/utility functions 
(excerpted from [4])

A notion, common to Game Theory and Distributed 
Algorithms, which deserves some special attention is that of 
knowledge. In centralized or uni-processor systems, or when 
considering strictly local (processor-wise) AU optimization 
in distributed systems, there is exactly 1 “decider” involved, 
the unique or local scheduler, that knows the “players” (the 
processes) and their individual “moves”. Hence, in such 
systems, knowledge (every decider knows) is a natural 
assumption. In distributed systems where global AU 
optimization is required (the α ratio), multiple “deciders” 
are involved. Therefore, one has to decide which way to go: 

• Make scheduling decisions out of incomplete knowledge 
(every scheduler is provided with some strictly local 
knowledge), a provably non-optimal choice, 
• Make scheduling decisions out of knowledge, explicitly 
built via appropriate algorithms, so that every scheduler 
eventually knows what every other scheduler may know, 
• Make scheduling decisions out of common knowledge, 
explicitly built via appropriate algorithms, so that every 
scheduler knows that every scheduler knows that … (how to 
build common knowledge in distributed systems is sketched 
out in Section 5). 

As is well known, optimal, i.e. necessary and sufficient, 
FC’s are of exponential complexity. For example, in the 
ORECA study [10], optimal FC’s involve factorials in the 
number of processes, process activation sporadicity 
intervals, and scheduler activation periods. This translates 
into huge execution times for an FD Oracle. An operational 
requirement – not shown in Figure 1 – is an upper bound set 
on the execution time of the FD Oracle, used whenever a 
mission is being prepared. Given the tightness of that bound, 

we had to establish (sufficient) FC’s of weak polynomial 
complexity. Moreover, these FC’s were specified in (max, 
+) algebra, so as to reduce further the execution time of the 
FD Oracle. Of course, similar choices, analyses and proofs 
are in order whenever TU-TimeP appear in <p.CBR>.  

3.3. TU-TimeP made as simple as TimeP 

TU-TimeP can be made equivalent to (classical) TimeP. 
Consider process k which is associated TUF(k), a non-time 
varying arbitrary TUF. Off-line, choose a bound U(k), 
corresponding to completion time D(k), such that (1) 
TUF(k) ≥ U(k) any time before D(k), (2) TUF(k) ≤ U(k) 
any time after D(k). De facto, D(k) is process k’s strict 
latest termination deadline for returning a utility at least 
equal to U(k). Do this for every process, choosing the 
U(.)’s so as to achieve some targeted α. Clearly, Ω should 
be Least-Laxity-First or, preferably, Earliest-Deadline-First 
(EDF), both of modest complexity. If one cares about 
overloads, D-Over [12] or similar algorithms should be 
considered. Timeliness proofs and FC’s established for 
EDF and various CBR’s have been published – see [13] for 
example. They can be entered into PBSE tools.  

Similarly, with arbitrary TUF(k), a bound U(k) may 
correspond to a completion time, denoted d(k), such that 
(1) TUF(k) ≤ U(k) any time before d(k), (2) TUF(k) ≥ U(k) 
any time after d(k). De facto, d(k) is process k’s strict 
earliest termination deadline for returning a utility at least 
equal to U(k). In which case Ω is a trivial algorithm, which 
schedules k’s execution to start no earlier than t(k) + d(k) – 
ExecTime(k), where t(k) is the arrival time of process k’s 
activation request and ExecTime(k) is k’s exact execution 
time (see Section 4.2).  

Whenever both deadlines exist for a chosen bound U(k), 
classical jitter-driven schedulers can be used. Note that 
EDF or jitter-driven schedulers can be used to process the 
TUF’s shown in Figure 2, since they are concave or 
quasiconcave functions – any bound U(k) chosen a priori 
leads to some d(k) or some D(k), or both. 

Proceeding as indicated above greatly reduces the 
complexity involved with proving TU-TimeP, as well as 
the complexity of on-line schedulers. With many critical 
applications, it is mandatory to guarantee (with proofs) that 
some α is always achieved with a CBS, even if that α is 
not the highest one from a theoretical standpoint, rather 
than to “expect” some maximization of AU (thanks to 
some “best effort” scheduling algorithm), without being 
able to prove a guaranteed lower bound for α. Given that 
proof issues raised with TU-TimeP and specific schedulers 
have not been very much explored yet, TUF’s may hardly 
be considered for critical applications bound to meet 
certification obligations. The observations and results 
briefly presented above help in eliminating this drawback.  

t = completion time

0

now 

u
t
i
l
i
t
y
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Note that any set of U(k)’s selected a priori is only one 
out of (a great) many possible sets. Simplicity has to be 
traded against an efficiency “penalty”, possibly incurred 
whenever the selected set is sub-optimal (reachable α is 
higher than the α chosen a priori). However, even less is 
known yet on optimality proofs that would be established 
for CBS’s resting on specific TUF schedulers, even for the 
non “extreme” TUF’s shown in Figure 2. Work sketched out 
in Sections 3.1 and 3.2, as well as in Section 5, should be 
conducted (so as to establish optimality proofs). 

A final word is in order regarding the issue of 
“stochastic” vs. “deterministic” analyses, in the presence of 
uncertainty. Whenever the future – “encapsulated” in 
<m.CBR>, wcet’s, process activation laws, and failure 
occurrence laws in particular – cannot be known with 
absolute certainty, two types of analyses can be considered: 

• “stochastic” analyses (Bayesian, Markovian, event-driven 
simulation, etc.), which involve computing a coverage for 
every probabilistic/statistical model or technique resorted to 
in the analyses, in addition to the coverage of <m.CBR> 
(coverage issues arise with probabilistic assumptions – e.g., 
Poisson arrivals, independence of variables – as well), 
• “deterministic” analyses (worst-cases, min-max proofs, 
etc.), where the only coverage involved is that of <m.CBR>. 

The important observation is that uncertainty does not 
necessarily imply “stochastic” analyses. With some CBR’s 
(problems), simulation – a scientific discipline which may 
be resorted to for conducting an SDV phase – may suffice. 
With other CBR’s, one must guarantee that a CBS will 
always “win against” its specified adversary, in which case 
“deterministic” analyses are mandatory. PBSE does not 
preclude any of these approaches. PBSE serves to enforce 
proof obligations, be they proofs of average behaviors and 
standard deviations, or proofs of worst-case behaviors. 

4. Brief Overview of TUF/AU Scheduling 

4.1. Utility of TUF/AU Solutions

In many systems, dynamic service – and thus resource – 
conflicts and dependencies arise, inevitably, hence waiting 
queue phenomena. Even with such ultra-simple “design 
styles” as “time-triggered” (TT) approaches, waiting queues 
may build up, whenever this is doable according to the 
adversary encapsulated in <m.CBR>. TT system designers 
who “rule out” the existence of waiting queues, either 
violate <m.CBR>, considering an adversary weaker than 
specified, or simply “displace” waiting queues at the 
boundaries of a CBS.2 Unfortunately, in the latter case, the 

                                                
2

Except for ultra-simple systems, which do not match the definition of 
distributed systems, being  juxtapositions of more or less independent 
processors (static functional partitioning). 

essential issue supposed to be addressed by TT systems, 
i.e. the meeting of “hard real-time” constraints, is simply 
ignored, for the reason that “hard real-time” implies 
establishing an upper bound on sojourn times in waiting 
queues for every process request. That waiting queues are 
“shifted” is not equivalent to  “no waiting queues”.  

More generally, regardless of which design “style” is 
followed, <m.CBR> may be “violated” by the real (future) 
adversary. Load models (arrival laws) and failure models 
(failure semantics and density of failure occurrences) are of 
particular relevance here. No design “style” can help in 
predicting the future with absolute accuracy. Hence the 
issue of predicting – along with proofs – the behavior of a 
CBS when operated beyond its FC’s. Whenever the case, 
some properties specified in <p.CBR> are or may be lost. 
It is generally required that SafeP should never be 
jeopardized. Conversely, TimeP may be lost, for some 
process(es). TUF/AU scheduling serves to dynamically 
determine which process(es) are immune to violations of 
<m.CBR>, by dynamically instantiating those schedules  
which maximize AU (ideally). 

TUF/AU concepts match the complexity of many 
current and future real world applications, such as, e.g., 
autonomous spacecraft formations, on-line automated 
finance/stock markets, airline seat reservation (yield 
management), of current and future computing and 
networking technology, such as mobile ad hoc wireless 
systems. Also, they are in line with the work carried out by 
various communities, such as, e.g., the Distributed 
Algorithms community, where NP-complete and NP-hard 
combinatorial problems are examined routinely. 

In order to broaden TUF/AU scheduling applicability, it 
is necessary to address issues raised when combining TU-
TimeP with SafeP, LiveP and DepP requirements, the case  
in particular with applications and systems listed above. 

4.2. Current TUF/AU Solutions

The state of the art in TUF/AU scheduling [1, 2, 3, 4, 5] 
is summarized in Figure 3. 

<m.CBR> 
• distributed processors 
• process models: sequences and trees, process/processor 
assignment is unrestricted, inter-process (thread) causal 
dependencies are known 
• a process (thread) can be preempted by another, any time, 
except when in a critical section, or aborted (unless 
declared as “non abortable”) 
• a process (thread) may release resources whenever 
desired, i.e. before it completes its execution 
• ExecTime(k, t), the exact remaining execution time 
process (thread) k at time t, is known to the scheduler 
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• every instance of a replicated resource is viewed as a 
distinct resource 
• processor failure model: stop 
• process (thread) activation models: sporadic, aperiodic 
• processor failure occurrence model: aperiodic 
• computational model: synchronous. 

<p.CBR> 
• SafeP: mutual exclusion for non-CPU resources 
• LiveP: deadlocks or livelocks are eventually resolved 
• TU-TimeP: for every process (thread), a TUF and a 
termination deadline to be met (if missed, process abort); 
“best-effort” AU maximization 
• DepP: processor failure detection within bounded latency. 

Design S 
• every resource access request specifies a HoldTime (after 
which a requested resource is released) 
• processes (threads) may be aborted to maximize AU 
• schedulers Ω are specific algorithms 
• schedules are recomputed upon the occurrence of (1) every 
new process (thread) activation request, (2) a new resource 
allocation request issued by a running process (thread) 
• process deadlocks may occur, and deadlock handling is 
based upon deadlock detection-and-resolution 
• resources are released in the reverse order that they are 
acquired in case of a process (thread) abort
• system-level algorithms (such as deadlock handling) are 
separate from Ω.

Figure 3.  State of the art in TUF/AU scheduling

Note that earliest termination deadlines – the d(k)’s, see 
Section 3.3 – are trivially met with preemptable processes as 
defined in <m.CBR>. It suffices to defer process 
termination as appropriate. Note also that with TUF’s, one 
must know ExecTime(k), the exact execution time for 
process k, rather than wcet(k). 

In order to take TUF/UA scheduling a few steps further, 
it suffices to exhibit designs S that solve CBR’s more 
general, hence more complex, than the CBR shown in 
Figure 3. An example is presented in Section 5. Regardless 
of which CBR is being considered, the major  challenging 
design issue is that of devising “composite algorithms”. 
Whenever some combination of properties is stated in 
<p.CBR>, one should avoid examining properties (and 
deciding on algorithmic solutions) on a individual basis. 
Algorithmic solutions that can “co-exist” and be 
“factorized” are highly recommended, for the sake of 
efficiency – efficiency regarding provability, as well as in 
terms of run time performance. Let us give an example, with 
critical updatable variables, in critical distributed CBS’s. 

Variables are replicated in order to achieve availability 
(a DepP) despite processor failures. This implies “mutual 
consistency” – denoted MC, a well known SafeP, which 
means (informally) that the values taken by any two copies 
of a given data item should be identical. Therefore, an 
algorithm ensuring this SafeP should be part of design S, 
not the case with the S shown in Figure 3. In <m.CBR>, it 
is stated that every instance of a replicated data item is 
viewed as a distinct data item. This may mean that MC is 
not guaranteed – which is consistent with the fact that MC 
does not appear in <p.CBR>. In case MC would be 
required, some specific MC algorithm could be “added to” 
scheduler Ω. This is not efficient. In distributed systems, Ω
is bound to be a distributed scheduler. Such a scheduler can 
be built out of any algorithm solving Consensus (see 
Section 5). It turns out that MC is achievable also with 
Consensus algorithms. Moreover, by definition, Consensus 
algorithms are designed to work correctly in the presence 
of various failure models. Hence, they serve to achieve 
some DepP as well. Consequently, in many instances, it is 
possible to devise a global algorithmic solution having 
some specific common “skeleton” (e.g., Consensus) 
capable of enforcing combined SafeP, LiveP, TU-TimeP 
and DepP at every invocation.  

Furthermore, admissible algorithmic solutions for 
combined SafeP, LiveP and DepP depend strongly on 
which type of TU-TimeP is specified. Imagine that, in 
<p.CBR>, “best-effort” is replaced with lower bound α or 
with some lower bound set for the density of process 
deadlines to be met. Choosing deadlock-detection-and-
resolution (design S in Figure 3) implies that bounds must 
be analytically established for the following parameters: 

• worst-case latency (DL) and utility loss (UL) due to the 
execution of the selected deadlock detection-and-resolution 
algorithm, for any scheduled process, 
• number of aborts (due to deadlocks) experienced before 
termination, for any given process, 
• number of processes aborted whenever a deadlock is 
detected (deadlock resolution may lead to more than 1 
abort in distributed systems).  

Hence the questions: (1) Is it easy to establish such 
bounds, or would proofs be easier considering another 
deadlock handling strategy?, (2) DL (resp., UL) having an 
impact on bounds R(k) (resp., U(k)), which is the deadlock 
handling strategy that minimizes the DL’s and the UL’s? 

5. TUF/AU Scheduling and Distributed Fault-
Tolerant Computing

Results (algorithms, proofs of properties, optimal 
complexity bounds, etc.) established in such areas as, e.g., 
Distributed Algorithms, Concurrency Control, Dependable 
Computing, can be used to address issues raised with 
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“complex” CBR’s and CBS’s. A reasonably complex and 
generic CBR has been chosen for the sake of illustration 
(see Figure 4). Given <m.CBR>, waiting queues may build 
up, denoted W(p) for processor p, each maintained and 
serviced by a local scheduler, denoted Ω(p) for processor p. 
A waiting queue contains names of processes waiting to be 
activated, of processes waiting to get a resource allocated, of 
suspended processes (execution to be resumed).  

<m.CBR> 
• distributed processors, some possibly replicated 
• application process models: graphs, some possibly 
replicated, assignment over processors is unrestricted, 
wcet’s and inter-process causal dependencies are known 
• processes read/write shared persistent data, data may be 
replicated 
• set of processes, set of shared data items, are open-ended 
• processor failure models: stop, omission, timing 
• process activation models: sporadic, aperiodic 
• processor failure occurrence model: aperiodic 
• computational model: any model proven to meet coverage 
requirement Cov. 

<p.CBR> 
• SafeP: for some processes (typed Z), process serializability 
and exactly-once semantics (process atomicity, process 
rollbacks are not allowed) 
• LiveP: every process whose activation has been requested 
eventually terminates 
• TU-TimeP: for every process, a TUF and time bounds on 
“write intervals”; α = targeted global AU ratio 
• DepP: processor failure detection within bounded latency, 
mutual consistency (MC) for multicopied data, uniform 
consensus, uniform atomic commit 
• Cov = 1 – π, π = probability that any of the properties may 
be violated,  π < 1.10-β/hour, β > 7 (critical application). 

Figure 4. A generic CBR

Any process may write multiple shared data items (e.g., 
actuators). Having time bounds on “write intervals” means 
that every time interval between two consecutive writes 
(triggered by some process) must be no greater than a 
specified upper bound. Hence, arbitrary process preemption 
is forbidden. Note also that “best effort” TUF schedulers 
and properties are ruled out, because of the α requirement. 
Due to space limitation, we can only sketch out the 
“composite” algorithmic solution (proofs that the resulting 
design S solves the generic CBR are omitted). 

Serializability means that whenever any two (arbitrarily 
distributed/replicated) type Z processes A and B conflict at 
two resources Ri and Rj, it must be that either A precedes B 
at Ri and Rj, or B precedes A at Ri and Rj. In our case, the  
only solutions that are admissible are those based upon 

conflict avoidance [6]. Indeed, process rollbacks being 
prohibited, deadlock prevention based upon detecting 
resource conflicts or deadlock-detection-and-resolution are 
ruled out. Hence, any distributed scheduler Ω capable of 
dynamically enforcing a system-wide unique total ordering 
of executions for A and B would achieve specified SafeP 
and LiveP at once (deadlocks are avoided). This is very 
similar to Atomic Broadcast or Consensus, where two 
messages broadcast concurrently by any two processes are 
delivered in the same order at every processor, despite 
failures. In fact, Uniform Consensus (UC) is a good 
“skeleton” for a provably correct overall algorithmic 
solution. With UC, contrary to Consensus, processors that 
are about to fail are bound to behave as correct processors 
– only UC is of interest for real CBS’s. 

MC holds with UC (see Section 4.2), and UC solves 
uniform atomic commit also. One can build UC algorithms 
atop unreliable failure detectors (FD’s) [14]. FD’s achieve 
“eventual processor failure detection” only. However, it 
has been shown how to build Fast FD’s in synchronous 
systems [15]. With Fast FD’s, processor failure detection is 
performed within optimal worst-case lower time bounds. 
Hence, every DepP holds true. UC, an integral part of Ω,
builds common knowledge (see Section 3.2) as follows. 
Whenever a new type Z process/request must be scheduled 
at processor p, Ω(p) broadcasts the names (and attributes) 
of type Z processes contained in W(p), and records the 
names (and attributes) received from other processors, in 
order to build an image of the system-wide waiting queue 
of type Z processes. Then, Ω(p) computes a schedule for 
the merged set (denoted Sched(p)), and invokes UC with 
Sched(p) as a proposal. The outcome of UC is a system-
wide unique decision: only one of the proposed Sched(.)’s 
is applied by the processors, despite concurrency and 
failures. Which enforces TU-TimeP and type Z processes 
serializability at once. As for α, see Section 3. 

Cov raises the issue of which computational model 
should be considered for specifying S. The coverage of a 
computational model is the probability or likelihood that 
none of its intrinsic timing assumptions can be violated at 
run time. As is well known, for any given <m.CBR>, and 
for similar “performance” or “efficiency” figures achieved 
by a CBS, the coverage of computational models can only 
increase when moving away from pure synchrony, getting 
closer to pure asynchrony [9, 16]. Too often, this coverage 
issue is ignored by proponents of synchronous or time-
triggered semantics. It does not help much to claim or to 
prove such and such properties when claims or proofs rest 
on extraordinary timing assumptions which have a poor 
coverage vis-à-vis the real CBS adversary and technology. 

Given that high values of β need be considered, pure 
asynchrony “augmented” with FD semantics [14] is a safe 
choice. Indeed, Strong FD’s have been shown to be the 
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weakest semantics for circumventing well known 
impossibility results established for pure asynchrony. 
Moreover, it has been shown how to build Perfect FD’s 
(Strong FD’s a fortiori) in time-free partially synchronous 
models [17]. To the best of our knowledge, the resulting 
model is, among all implementable computational models, 
the one closest to pure asynchrony identified so far. Hence, 
this model has the highest coverage (achievable so far). 
Furthermore, purely asynchronous algorithms – which, 
being time-free, do not raise any coverage issue regarding 
postulated timings – may be employed in this model. Hence 
the choice of a purely asynchronous UC algorithmic 
“skeleton”. UC algorithms built atop Fast FD’s are the 
fastest. Algorithms described in [15, 18], which are Fast UC 
algorithms, are recommended. How to make use of 
asynchronous algorithms in real-time systems, while 
proving TimeP (or TU-TimeP), is explained in [16] – see 
the “design immersion” or “late binding” principle. 

6. Conclusion 

We have shown how to achieve combined SafeP, LiveP, 
TU-TimeP and DepP in distributed systems of possibly 
replicated processors and data, while maximizing AU 
system-wide. The more difficult issues raised with how to 
fulfill proof obligations for such combined properties have 
been addressed, using a powerful and novel methodological 
approach called Proof-Based System Engineering, which 
has been briefly presented. Also, we have shown how TU-
TimeP reduce to TimeP, easing the proof obligations. That 
TUF scheduling can be used safely in a large number of 
computer-based systems should be of interest to many users 
and designers of critical and non critical applications. 
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