
Time-Utility Scheduling and Provably Correct Critical Computer-Based Systems

Gérard Le Lann
INRIA, Rocquencourt, France

Gerard.Le_Lann@inria.fr

Abstract

This paper investigates ways of expanding the scope of
applicability of time-utility and aggregate utility driven
scheduling. Being interested in critical applications and
systems, we explore issues raised with proving that a system
is endowed with combined safety, liveness, timeliness and
dependability properties, the province of proof-based system
engineering. We examine the nature of proof obligations, as
well as how to fulfill them, whenever timeliness and
aggregate utility properties are sought. Relationships with
classical real-time computing problems and timeliness
proofs are analyzed. Then we take time-utility scheduling a
few steps further, by showing how to maximize aggregate
utility while achieving process serializability, process
termination, as well as dependability properties, in various
computational models, considering distributed systems
prone to failures where processes share multicopied
updatable persistent data.

1. Introduction

Timeliness properties – denoted TimeP – and their proofs
are essential with real-time systems. Time-Utility Functions
(TUF’s) and Aggregate Utility (AU) optimization criteria
[1, 2, 3, 4, 5] are generalizations of classical – and more
restrictive – timeliness attributes and properties commonly
considered in real-time computing, such as strict process
termination deadlines. Throughout this paper, TimeP
achieved by resorting to TUF-driven scheduling algorithms
aimed at maximizing AU are denoted TU-TimeP.

In addition to TimeP or TU-TimeP, most computer-based
systems (CBS’s) must exhibit properties belonging to the
three classes of safety, liveness and dependability – denoted
SafeP, LiveP and DepP, respectively. A number of intricate
issues arise with the design of CBS’s that are bound to
exhibit some combination of properties belonging to these
four classes. A typical example arises (frequently) with
CBS’s where updatable persistent data/variables are shared
by (application-level, system-level) processes. A SafeP that
is mandatory with such systems is “data consistency”, more
formally defined as “process serializability” [6]. Issues
raised with achieving TU-TimeP and process serializability
altogether have not been addressed so far. Current work
concentrates on achieving TU-TimeP and resource-level
mutual exclusion altogether [5]. Resource-level mutual
exclusion does not imply process serializability.

In Sections 4 and 5, we investigate ways of expanding
the scope of applicability of TUF/AU scheduling, by
circumventing underlying restrictions, and focusing on
algorithmic issues. We show how TUF scheduling may
work in any kind of CBS, i.e. in distributed systems of
replicated or non replicated processors and data, where AU
must be maximized system-wide, in the presence of shared
updatable persistent data and partial failures, for various
models of computation (beyond synchronous models).

Furthermore, we examine the (more difficult) proof
issues. In the case of life/mission/business-critical CBS’s,
one must be able to predict the future behavior of a to-be-
deployed CBS, with very high accuracy and confidence.
Given the complexity of current and future application-
level services and properties, of current and future
computing and networking technology, it is quite clear that
existing system design approaches have reached their
limits: they do not permit predictions with high enough
accuracy or confidence. Following the historical pattern of
more mature engineering disciplines (e.g., electronics,
telecommunications), system engineering (SE) for CBS’s
has reached an inflexion point in its history. Time has
come for replacing ad hoc or empirical techniques with
more “scientific” techniques, notably proof-based
techniques, such as those at the core of a novel
methodological trend, known under the name of Proof-
Based System Engineering (PBSE), which is sketched out
in Section 2. PBSE and its relationships with TUF/UA
scheduling are explored in Section 3.

2. Proof-Based System Engineering for CBS’s

The first phase in a lifecycle is the application-centric
Requirements Capture (RC) phase. According to published
statistics (from NASA, in particular), this is the phase
where most faults are made, revealed (years) later, usually
through unitary or integration testing, a very costly way of
finding out that “something is wrong”. Under a PBSE
approach, an RC phase is conducted until the application of
interest is fully and unambiguously specified as a problem
expressed as computer-based requirements (CBR’s).

In an attempt to minimize or eliminate ambiguities and
inconsistency, the formal software engineering (FSWE)
community has advocated for formally expressed CBR’s,
e.g. in languages based upon temporal logic. Without
tangible success, apparently. For good reasons. Human

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

beings in general, CBS users and designers in particular, do
not “speak” formal languages. Furthermore, semantics that
are tractable with existing FSWE methods constitute a
limited subset of those semantics which faithfully represent
real world CBS’s technology and operational environments,
real world user/application requirements. With existing
FSWE methods and tools, formal specifications can be
considered only in the late phases of a lifecycle. Lastly,
there is more than software involved with a CBS [7], and
FSWE can only follow PBSE in a lifecycle [8, 9].

PBSE is based on a different approach. A CBR is not a
formal specification. Rather, a CBR is expressed in some
natural language (English, French, German, etc.), with
restrictions: a term (other than article, conjunction, etc.) may
appear in a CBR only if it has a formal definition in some
scientific discipline – see Figure 1 for a simplified example.
This permits mutual understanding between the various
stakeholders involved in an RC phase. Specifications that
derive from a CBR in subsequent lifecycle phases get
increasingly formal. This is how PBSE bridges the gap
between reality and what is tractable with current FSWE
methods and tools.

A CBR comprises two subsets, one denoted <p.CBR>,
which serves to specify which services and properties ought
to be delivered/guaranteed by a CBS, another one, denoted
<m.CBR>, which serves to specify the (future) operational
CBS adversary, i.e. those models and assumptions under
which one must prove that <p.CBR> is not violated.
Inevitably, <p.CBR> states some combination of SafeP,
LiveP, TimeP and DepP. Classical examples are process
atomicity or mutual exclusion for SafeP, eventual process
termination for LiveP, deadline-constrained termination for
TimeP, uniform consensus or high availability for DepP.

A CBS is a usable, implemented, solution for a given
CBR. A CBS is an implementation of a design specification,
denoted S. Under a PBSE approach, it is required to prove
that S solves CBR. The output of an SDV (System Design
& Validation) phase, which has a CBR as an entry, is
specification S, along with proofs showing that S satisfies
CBR. As a result, any CBS that faithfully implements
“blueprint” S is (provably) endowed with properties at least
as “strong” as those specified in <p.CBR>, in the presence
of an adversary at least as “aggressive” as specified in
<m.CBR>. In other words, such a CBS will always “win
against” its specified adversary.

Meeting proof obligations at CBR/CBS levels, i.e. in
early lifecycle phases, is at the core of a novel PBSE
method – the TRDF method [8, 9] – pioneered by INRIA
since 1995, and assessed with European partners in such
various domains as, e.g., Integrated Modular Avionics,
Nuclear Power Plants, Satellites, Air Traffic Control,
Complex Systems of Systems. PBSE is believed to be

extremely efficient at reducing costs, delays and risks of
projects/systems failures by significant ratios.

<m.CBR>
• distributed processors, replicated processors and data
• application process models: finite graphs, assignment
over processors is unrestricted, wcet’s and inter-process
causal dependencies are known
• processes read/write shared persistent data, no restriction
• set of processes, set of shared data items, are open-ended
• processor failure models: stop, omission.
• process activation models: sporadic, aperiodic
• processor failure occurrence model: aperiodic
• computational model: synchronous.

<p.CBR>
• SafeP: process serializability, process atomicity (other
safety properties are “encapsulated” in DepP)
• LiveP: every process whose activation has been requested
eventually terminates
• TimeP: for every process, a strict termination deadline
(from a dozen of milliseconds to one second) to be met
• DepP: failure detection within bounded latency, atomic
broadcast, atomic commit.

Figure 1. Excerpts from an IMA problem (military
avionics) addressed with the PBSE/TRDF method [10]

(French MoD, Dassault Aviation, INRIA)

Note that with a PBSE method, it is possible to make a
clear distinction between, (1) proving that “blueprint” S is
correct vis-à-vis some given CBR (an SDV activity) and,
(2) proving that S is correctly implemented (a development
activity). Making such a distinction is essential. Indeed, it
does not help much to prove that some software or
hardware component correctly implements some given
specification – possibly following some formal software or
hardware engineering method – if it has not been checked
beforehand that this specification is a correct one (for the
problem considered).

The TRDF method is the foundation of the PBSE work
to be conducted within ASSERT, a 3-year long Integrated
Project launched by the European Commission in 2004, led
by the European Space Agency, involving 32 partners
(national agencies, companies, research laboratories).

SafeP and LiveP proofs are proofs in Logic, essentially.
Most often, TimeP proofs are proofs in various kinds of
Analytical or Algebraic Calculi, in Combinatorial
Optimization.1 Note that LiveP proofs must be established
before proving TimeP. Indeed, proving TimeP involves

1

Hence, contrary to widespread belief in certain circles, TimeP proofs are
not reducible to SafeP proofs.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

conducting some worst-case schedulability analysis, so as to
establish a set of constraints known as timeliness feasibility
conditions (FC’s). These analyses and related FC’s, which
are based upon individual process worst-case execution
times (wcet’s) or exact execution times, are valid only if it is
proved that processes terminate. DepP proofs are SafeP
proofs, LiveP proofs, as well as proofs in various kinds of
Stochastic Calculi.

3. PBSE and TUF/AU Scheduling

With TU-TimeP, the nature of proof obligations does not
differ much from that of proof obligations to be fulfilled
with classical TimeP. Let Ω stand for the on-line scheduler
specified in “blueprint” S.

3.1. TU-TimeP Proof Obligations

Classical TimeP proofs derive from timeliness FC’s,
which result from conducting worst-case schedulability
analyses for pair {<m.CBR>, S}, viewing Ω as “playing
against” <m.CBR>. First, an analytical upper bound R(k) on
response times must be established for every process k.
Assuming no overloads, FC’s for “hard” real-time CBS’s
consist in writing:

∀k, R(k) < D(k), D(k) standing for process k’s
strict termination deadline (specified in <p.CBR> for
application-level processes, derived from <p.CBR> for
system-level processes).

It is the duty of system designers, with the help of an
SDV tool, to express timeliness FC’s first. When this set of
computable analytical constraints is available, it can be
entered into another PBSE tool, referred to as a Feasibility
& Dimensioning (FD) Oracle. An FD Oracle can be used as
often as needed, assigning desired numerical values to CBR
variables, in order to check whether there exists a valuation
of variables in S that meets the chosen dimensioning of
CBR variables. The output of an FD Oracle is either “yes”
(TimeP holds true for every process) or “no” (TimeP is lost
for some process(es)).

Similarly, regarding TU-TimeP proofs, one establishes
an analytical lower bound U(k) for the utility achieved by
every process k, by conducting worst-case schedulability
analyses, based upon exact processes execution times (see
Section 4.2). FC’s consist in writing:

 ∀T, ∀k ∈ K(T), ∑TU(k)/∑TU°(k) > α, 0 < α < 1,
where T stands for any time interval, K(T) is the set of
processes that may terminate within interval T, and U°(k)
stands for the highest utility associated with process k
(specified in <p.CBR> for application-level processes,
derived from <p.CBR> for system-level processes).

Observe that specifying α is equivalent to setting a
lower bound for the density of process termination
deadlines to be met. SDV tools and FD Oracles can/should
be used. An FD Oracle serves to check whether some
valuation of α (α stated in <p.CBR>) is or is not achieved.

In both cases (TimeP and TU-TimeP), NP-hard or NP-
complete combinatorial optimization problems are to be
addressed, on two grounds, namely with on-line schedulers
and with FC’s. This is clearly the case with the IMA
problem shown in Fig. 1, due to (a) the process/processor
assignment problem, (b) the serializability property, in the
presence of sporadic and aperiodic process activation laws,
i.e. arbitrarily interleaved executions of processes – in
addition to TimeP. As for TU-TimeP, a proof of NP-
hardness can be found in [11]. The R(k)’s and U(k)’s
depend on two parameters. One is the distance of scheduler
Ω from optimality. Another is the distance of FC’s from
optimality, i.e. necessary and sufficient FC’s. Theoretical
optimal bounds, denoted R⇓(k)’s and U⇑(k)’s, are obtained
only if both distances are null.

3.2. Schedulers and Feasibility Conditions

Every scheduling algorithm has some intrinsic
complexity, which translates into some execution duration,
denoted XΩ. Picking up a scheduler shown to be optimal on
theoretical grounds is not always appropriate. The closer to
(theoretical) optimality, the higher XΩ. Also, the choice of
activation laws for an on-line scheduler is driven by the
magnitude of XΩ. Activating a scheduler upon every
process activation request may not be appropriate. Optimal
bounds of relevance – denoted R*(k) and U*(k) – are the
R⇓(k)’s or the U⇑(k)’s where XΩ and the worst-case
scheduler activation latencies – denoted {LΩ}, since there
might be more than one such latency – are accounted for.
Consequently, it is often the case that a theoretically sub-
optimal scheduler should be retained. Obviously:

∀k, R⇓(k) < R*(k) < R(k) and U(k) < U*(k) < U⇑(k).

The (simplified) generic optimization problems are:
• Find scheduler Ω and {LΩ} that minimize the R*(k)’s –
for classical TimeP,
• Find scheduler Ω and {LΩ} that maximize the U*(k)’s –
for TU-TimeP.

With non “extreme” TUF’s (see Figure 2), scheduling
algorithms of weak polynomial complexity (in the order of
n2log n or n3, for n processes to be scheduled) can be close
enough to optimality, which optimality may be identified
by resorting to, e.g., dynamic programming [11].

In the case of “extreme” TUF’s, i.e. arbitrarily shaped
functions, possibly varying with time, results published so
far derive from simulation work or measurements on

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

prototypes. Analytical work has been started recently [5] for
specific CBR’s (see Section 4.2). Regarding scheduling
algorithms, analyses and proofs of global AU optimization,
it might be advisable to “import” results established in such
disciplines as Decision Theory or Game Theory. For
example, efficient TUF/UA schedulers might be derived
from strategies devised in Game Theory, companion
theorems being the proofs to be entered into an SDV tool.

Figure 2. Four example time/utility functions
(excerpted from [4])

A notion, common to Game Theory and Distributed
Algorithms, which deserves some special attention is that of
knowledge. In centralized or uni-processor systems, or when
considering strictly local (processor-wise) AU optimization
in distributed systems, there is exactly 1 “decider” involved,
the unique or local scheduler, that knows the “players” (the
processes) and their individual “moves”. Hence, in such
systems, knowledge (every decider knows) is a natural
assumption. In distributed systems where global AU
optimization is required (the α ratio), multiple “deciders”
are involved. Therefore, one has to decide which way to go:

• Make scheduling decisions out of incomplete knowledge
(every scheduler is provided with some strictly local
knowledge), a provably non-optimal choice,
• Make scheduling decisions out of knowledge, explicitly
built via appropriate algorithms, so that every scheduler
eventually knows what every other scheduler may know,
• Make scheduling decisions out of common knowledge,
explicitly built via appropriate algorithms, so that every
scheduler knows that every scheduler knows that … (how to
build common knowledge in distributed systems is sketched
out in Section 5).

As is well known, optimal, i.e. necessary and sufficient,
FC’s are of exponential complexity. For example, in the
ORECA study [10], optimal FC’s involve factorials in the
number of processes, process activation sporadicity
intervals, and scheduler activation periods. This translates
into huge execution times for an FD Oracle. An operational
requirement – not shown in Figure 1 – is an upper bound set
on the execution time of the FD Oracle, used whenever a
mission is being prepared. Given the tightness of that bound,

we had to establish (sufficient) FC’s of weak polynomial
complexity. Moreover, these FC’s were specified in (max,
+) algebra, so as to reduce further the execution time of the
FD Oracle. Of course, similar choices, analyses and proofs
are in order whenever TU-TimeP appear in <p.CBR>.

3.3. TU-TimeP made as simple as TimeP

TU-TimeP can be made equivalent to (classical) TimeP.
Consider process k which is associated TUF(k), a non-time
varying arbitrary TUF. Off-line, choose a bound U(k),
corresponding to completion time D(k), such that (1)
TUF(k) ≥ U(k) any time before D(k), (2) TUF(k) ≤ U(k)
any time after D(k). De facto, D(k) is process k’s strict
latest termination deadline for returning a utility at least
equal to U(k). Do this for every process, choosing the
U(.)’s so as to achieve some targeted α. Clearly, Ω should
be Least-Laxity-First or, preferably, Earliest-Deadline-First
(EDF), both of modest complexity. If one cares about
overloads, D-Over [12] or similar algorithms should be
considered. Timeliness proofs and FC’s established for
EDF and various CBR’s have been published – see [13] for
example. They can be entered into PBSE tools.

Similarly, with arbitrary TUF(k), a bound U(k) may
correspond to a completion time, denoted d(k), such that
(1) TUF(k) ≤ U(k) any time before d(k), (2) TUF(k) ≥ U(k)
any time after d(k). De facto, d(k) is process k’s strict
earliest termination deadline for returning a utility at least
equal to U(k). In which case Ω is a trivial algorithm, which
schedules k’s execution to start no earlier than t(k) + d(k) –
ExecTime(k), where t(k) is the arrival time of process k’s
activation request and ExecTime(k) is k’s exact execution
time (see Section 4.2).

Whenever both deadlines exist for a chosen bound U(k),
classical jitter-driven schedulers can be used. Note that
EDF or jitter-driven schedulers can be used to process the
TUF’s shown in Figure 2, since they are concave or
quasiconcave functions – any bound U(k) chosen a priori
leads to some d(k) or some D(k), or both.

Proceeding as indicated above greatly reduces the
complexity involved with proving TU-TimeP, as well as
the complexity of on-line schedulers. With many critical
applications, it is mandatory to guarantee (with proofs) that
some α is always achieved with a CBS, even if that α is
not the highest one from a theoretical standpoint, rather
than to “expect” some maximization of AU (thanks to
some “best effort” scheduling algorithm), without being
able to prove a guaranteed lower bound for α. Given that
proof issues raised with TU-TimeP and specific schedulers
have not been very much explored yet, TUF’s may hardly
be considered for critical applications bound to meet
certification obligations. The observations and results
briefly presented above help in eliminating this drawback.

t = completion time

0

now

u
t
i
l
i
t
y

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

Note that any set of U(k)’s selected a priori is only one
out of (a great) many possible sets. Simplicity has to be
traded against an efficiency “penalty”, possibly incurred
whenever the selected set is sub-optimal (reachable α is
higher than the α chosen a priori). However, even less is
known yet on optimality proofs that would be established
for CBS’s resting on specific TUF schedulers, even for the
non “extreme” TUF’s shown in Figure 2. Work sketched out
in Sections 3.1 and 3.2, as well as in Section 5, should be
conducted (so as to establish optimality proofs).

A final word is in order regarding the issue of
“stochastic” vs. “deterministic” analyses, in the presence of
uncertainty. Whenever the future – “encapsulated” in
<m.CBR>, wcet’s, process activation laws, and failure
occurrence laws in particular – cannot be known with
absolute certainty, two types of analyses can be considered:

• “stochastic” analyses (Bayesian, Markovian, event-driven
simulation, etc.), which involve computing a coverage for
every probabilistic/statistical model or technique resorted to
in the analyses, in addition to the coverage of <m.CBR>
(coverage issues arise with probabilistic assumptions – e.g.,
Poisson arrivals, independence of variables – as well),
• “deterministic” analyses (worst-cases, min-max proofs,
etc.), where the only coverage involved is that of <m.CBR>.

The important observation is that uncertainty does not
necessarily imply “stochastic” analyses. With some CBR’s
(problems), simulation – a scientific discipline which may
be resorted to for conducting an SDV phase – may suffice.
With other CBR’s, one must guarantee that a CBS will
always “win against” its specified adversary, in which case
“deterministic” analyses are mandatory. PBSE does not
preclude any of these approaches. PBSE serves to enforce
proof obligations, be they proofs of average behaviors and
standard deviations, or proofs of worst-case behaviors.

4. Brief Overview of TUF/AU Scheduling

4.1. Utility of TUF/AU Solutions

In many systems, dynamic service – and thus resource –
conflicts and dependencies arise, inevitably, hence waiting
queue phenomena. Even with such ultra-simple “design
styles” as “time-triggered” (TT) approaches, waiting queues
may build up, whenever this is doable according to the
adversary encapsulated in <m.CBR>. TT system designers
who “rule out” the existence of waiting queues, either
violate <m.CBR>, considering an adversary weaker than
specified, or simply “displace” waiting queues at the
boundaries of a CBS.2 Unfortunately, in the latter case, the

2

Except for ultra-simple systems, which do not match the definition of
distributed systems, being juxtapositions of more or less independent
processors (static functional partitioning).

essential issue supposed to be addressed by TT systems,
i.e. the meeting of “hard real-time” constraints, is simply
ignored, for the reason that “hard real-time” implies
establishing an upper bound on sojourn times in waiting
queues for every process request. That waiting queues are
“shifted” is not equivalent to “no waiting queues”.

More generally, regardless of which design “style” is
followed, <m.CBR> may be “violated” by the real (future)
adversary. Load models (arrival laws) and failure models
(failure semantics and density of failure occurrences) are of
particular relevance here. No design “style” can help in
predicting the future with absolute accuracy. Hence the
issue of predicting – along with proofs – the behavior of a
CBS when operated beyond its FC’s. Whenever the case,
some properties specified in <p.CBR> are or may be lost.
It is generally required that SafeP should never be
jeopardized. Conversely, TimeP may be lost, for some
process(es). TUF/AU scheduling serves to dynamically
determine which process(es) are immune to violations of
<m.CBR>, by dynamically instantiating those schedules
which maximize AU (ideally).

TUF/AU concepts match the complexity of many
current and future real world applications, such as, e.g.,
autonomous spacecraft formations, on-line automated
finance/stock markets, airline seat reservation (yield
management), of current and future computing and
networking technology, such as mobile ad hoc wireless
systems. Also, they are in line with the work carried out by
various communities, such as, e.g., the Distributed
Algorithms community, where NP-complete and NP-hard
combinatorial problems are examined routinely.

In order to broaden TUF/AU scheduling applicability, it
is necessary to address issues raised when combining TU-
TimeP with SafeP, LiveP and DepP requirements, the case
in particular with applications and systems listed above.

4.2. Current TUF/AU Solutions

The state of the art in TUF/AU scheduling [1, 2, 3, 4, 5]
is summarized in Figure 3.

<m.CBR>
• distributed processors
• process models: sequences and trees, process/processor
assignment is unrestricted, inter-process (thread) causal
dependencies are known
• a process (thread) can be preempted by another, any time,
except when in a critical section, or aborted (unless
declared as “non abortable”)
• a process (thread) may release resources whenever
desired, i.e. before it completes its execution
• ExecTime(k, t), the exact remaining execution time
process (thread) k at time t, is known to the scheduler

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

• every instance of a replicated resource is viewed as a
distinct resource
• processor failure model: stop
• process (thread) activation models: sporadic, aperiodic
• processor failure occurrence model: aperiodic
• computational model: synchronous.

<p.CBR>
• SafeP: mutual exclusion for non-CPU resources
• LiveP: deadlocks or livelocks are eventually resolved
• TU-TimeP: for every process (thread), a TUF and a
termination deadline to be met (if missed, process abort);
“best-effort” AU maximization
• DepP: processor failure detection within bounded latency.

Design S
• every resource access request specifies a HoldTime (after
which a requested resource is released)
• processes (threads) may be aborted to maximize AU
• schedulers Ω are specific algorithms
• schedules are recomputed upon the occurrence of (1) every
new process (thread) activation request, (2) a new resource
allocation request issued by a running process (thread)
• process deadlocks may occur, and deadlock handling is
based upon deadlock detection-and-resolution
• resources are released in the reverse order that they are
acquired in case of a process (thread) abort
• system-level algorithms (such as deadlock handling) are
separate from Ω.

Figure 3. State of the art in TUF/AU scheduling

Note that earliest termination deadlines – the d(k)’s, see
Section 3.3 – are trivially met with preemptable processes as
defined in <m.CBR>. It suffices to defer process
termination as appropriate. Note also that with TUF’s, one
must know ExecTime(k), the exact execution time for
process k, rather than wcet(k).

In order to take TUF/UA scheduling a few steps further,
it suffices to exhibit designs S that solve CBR’s more
general, hence more complex, than the CBR shown in
Figure 3. An example is presented in Section 5. Regardless
of which CBR is being considered, the major challenging
design issue is that of devising “composite algorithms”.
Whenever some combination of properties is stated in
<p.CBR>, one should avoid examining properties (and
deciding on algorithmic solutions) on a individual basis.
Algorithmic solutions that can “co-exist” and be
“factorized” are highly recommended, for the sake of
efficiency – efficiency regarding provability, as well as in
terms of run time performance. Let us give an example, with
critical updatable variables, in critical distributed CBS’s.

Variables are replicated in order to achieve availability
(a DepP) despite processor failures. This implies “mutual
consistency” – denoted MC, a well known SafeP, which
means (informally) that the values taken by any two copies
of a given data item should be identical. Therefore, an
algorithm ensuring this SafeP should be part of design S,
not the case with the S shown in Figure 3. In <m.CBR>, it
is stated that every instance of a replicated data item is
viewed as a distinct data item. This may mean that MC is
not guaranteed – which is consistent with the fact that MC
does not appear in <p.CBR>. In case MC would be
required, some specific MC algorithm could be “added to”
scheduler Ω. This is not efficient. In distributed systems, Ω
is bound to be a distributed scheduler. Such a scheduler can
be built out of any algorithm solving Consensus (see
Section 5). It turns out that MC is achievable also with
Consensus algorithms. Moreover, by definition, Consensus
algorithms are designed to work correctly in the presence
of various failure models. Hence, they serve to achieve
some DepP as well. Consequently, in many instances, it is
possible to devise a global algorithmic solution having
some specific common “skeleton” (e.g., Consensus)
capable of enforcing combined SafeP, LiveP, TU-TimeP
and DepP at every invocation.

Furthermore, admissible algorithmic solutions for
combined SafeP, LiveP and DepP depend strongly on
which type of TU-TimeP is specified. Imagine that, in
<p.CBR>, “best-effort” is replaced with lower bound α or
with some lower bound set for the density of process
deadlines to be met. Choosing deadlock-detection-and-
resolution (design S in Figure 3) implies that bounds must
be analytically established for the following parameters:

• worst-case latency (DL) and utility loss (UL) due to the
execution of the selected deadlock detection-and-resolution
algorithm, for any scheduled process,
• number of aborts (due to deadlocks) experienced before
termination, for any given process,
• number of processes aborted whenever a deadlock is
detected (deadlock resolution may lead to more than 1
abort in distributed systems).

Hence the questions: (1) Is it easy to establish such
bounds, or would proofs be easier considering another
deadlock handling strategy?, (2) DL (resp., UL) having an
impact on bounds R(k) (resp., U(k)), which is the deadlock
handling strategy that minimizes the DL’s and the UL’s?

5. TUF/AU Scheduling and Distributed Fault-
Tolerant Computing

Results (algorithms, proofs of properties, optimal
complexity bounds, etc.) established in such areas as, e.g.,
Distributed Algorithms, Concurrency Control, Dependable
Computing, can be used to address issues raised with

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

“complex” CBR’s and CBS’s. A reasonably complex and
generic CBR has been chosen for the sake of illustration
(see Figure 4). Given <m.CBR>, waiting queues may build
up, denoted W(p) for processor p, each maintained and
serviced by a local scheduler, denoted Ω(p) for processor p.
A waiting queue contains names of processes waiting to be
activated, of processes waiting to get a resource allocated, of
suspended processes (execution to be resumed).

<m.CBR>
• distributed processors, some possibly replicated
• application process models: graphs, some possibly
replicated, assignment over processors is unrestricted,
wcet’s and inter-process causal dependencies are known
• processes read/write shared persistent data, data may be
replicated
• set of processes, set of shared data items, are open-ended
• processor failure models: stop, omission, timing
• process activation models: sporadic, aperiodic
• processor failure occurrence model: aperiodic
• computational model: any model proven to meet coverage
requirement Cov.

<p.CBR>
• SafeP: for some processes (typed Z), process serializability
and exactly-once semantics (process atomicity, process
rollbacks are not allowed)
• LiveP: every process whose activation has been requested
eventually terminates
• TU-TimeP: for every process, a TUF and time bounds on
“write intervals”; α = targeted global AU ratio
• DepP: processor failure detection within bounded latency,
mutual consistency (MC) for multicopied data, uniform
consensus, uniform atomic commit
• Cov = 1 – π, π = probability that any of the properties may
be violated, π < 1.10-β/hour, β > 7 (critical application).

Figure 4. A generic CBR

Any process may write multiple shared data items (e.g.,
actuators). Having time bounds on “write intervals” means
that every time interval between two consecutive writes
(triggered by some process) must be no greater than a
specified upper bound. Hence, arbitrary process preemption
is forbidden. Note also that “best effort” TUF schedulers
and properties are ruled out, because of the α requirement.
Due to space limitation, we can only sketch out the
“composite” algorithmic solution (proofs that the resulting
design S solves the generic CBR are omitted).

Serializability means that whenever any two (arbitrarily
distributed/replicated) type Z processes A and B conflict at
two resources Ri and Rj, it must be that either A precedes B
at Ri and Rj, or B precedes A at Ri and Rj. In our case, the
only solutions that are admissible are those based upon

conflict avoidance [6]. Indeed, process rollbacks being
prohibited, deadlock prevention based upon detecting
resource conflicts or deadlock-detection-and-resolution are
ruled out. Hence, any distributed scheduler Ω capable of
dynamically enforcing a system-wide unique total ordering
of executions for A and B would achieve specified SafeP
and LiveP at once (deadlocks are avoided). This is very
similar to Atomic Broadcast or Consensus, where two
messages broadcast concurrently by any two processes are
delivered in the same order at every processor, despite
failures. In fact, Uniform Consensus (UC) is a good
“skeleton” for a provably correct overall algorithmic
solution. With UC, contrary to Consensus, processors that
are about to fail are bound to behave as correct processors
– only UC is of interest for real CBS’s.

MC holds with UC (see Section 4.2), and UC solves
uniform atomic commit also. One can build UC algorithms
atop unreliable failure detectors (FD’s) [14]. FD’s achieve
“eventual processor failure detection” only. However, it
has been shown how to build Fast FD’s in synchronous
systems [15]. With Fast FD’s, processor failure detection is
performed within optimal worst-case lower time bounds.
Hence, every DepP holds true. UC, an integral part of Ω,
builds common knowledge (see Section 3.2) as follows.
Whenever a new type Z process/request must be scheduled
at processor p, Ω(p) broadcasts the names (and attributes)
of type Z processes contained in W(p), and records the
names (and attributes) received from other processors, in
order to build an image of the system-wide waiting queue
of type Z processes. Then, Ω(p) computes a schedule for
the merged set (denoted Sched(p)), and invokes UC with
Sched(p) as a proposal. The outcome of UC is a system-
wide unique decision: only one of the proposed Sched(.)’s
is applied by the processors, despite concurrency and
failures. Which enforces TU-TimeP and type Z processes
serializability at once. As for α, see Section 3.

Cov raises the issue of which computational model
should be considered for specifying S. The coverage of a
computational model is the probability or likelihood that
none of its intrinsic timing assumptions can be violated at
run time. As is well known, for any given <m.CBR>, and
for similar “performance” or “efficiency” figures achieved
by a CBS, the coverage of computational models can only
increase when moving away from pure synchrony, getting
closer to pure asynchrony [9, 16]. Too often, this coverage
issue is ignored by proponents of synchronous or time-
triggered semantics. It does not help much to claim or to
prove such and such properties when claims or proofs rest
on extraordinary timing assumptions which have a poor
coverage vis-à-vis the real CBS adversary and technology.

Given that high values of β need be considered, pure
asynchrony “augmented” with FD semantics [14] is a safe
choice. Indeed, Strong FD’s have been shown to be the

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

weakest semantics for circumventing well known
impossibility results established for pure asynchrony.
Moreover, it has been shown how to build Perfect FD’s
(Strong FD’s a fortiori) in time-free partially synchronous
models [17]. To the best of our knowledge, the resulting
model is, among all implementable computational models,
the one closest to pure asynchrony identified so far. Hence,
this model has the highest coverage (achievable so far).
Furthermore, purely asynchronous algorithms – which,
being time-free, do not raise any coverage issue regarding
postulated timings – may be employed in this model. Hence
the choice of a purely asynchronous UC algorithmic
“skeleton”. UC algorithms built atop Fast FD’s are the
fastest. Algorithms described in [15, 18], which are Fast UC
algorithms, are recommended. How to make use of
asynchronous algorithms in real-time systems, while
proving TimeP (or TU-TimeP), is explained in [16] – see
the “design immersion” or “late binding” principle.

6. Conclusion

We have shown how to achieve combined SafeP, LiveP,
TU-TimeP and DepP in distributed systems of possibly
replicated processors and data, while maximizing AU
system-wide. The more difficult issues raised with how to
fulfill proof obligations for such combined properties have
been addressed, using a powerful and novel methodological
approach called Proof-Based System Engineering, which
has been briefly presented. Also, we have shown how TU-
TimeP reduce to TimeP, easing the proof obligations. That
TUF scheduling can be used safely in a large number of
computer-based systems should be of interest to many users
and designers of critical and non critical applications.

7. References

[1] E. D. Jensen, C. D. Locke, and H. Tokuda, “A Time-Driven
Scheduling Model for Real-Time Systems,” Proc. IEEE Real-Time
Systems Symposium, Dec. 1985, 112-122.

[2] C. D. Locke, Best-Effort Decision Making for Real-Time
Scheduling,, Ph.D. Thesis, CMU-CS-86-134, Department of
Computer Science, Carnegie Mellon University, May 1986.

[3] R. K. Clark, Scheduling Dependent Real-Time Activites, Ph.D.
Thesis, CMU-CS-90-155, Department of Computer Science,
Carnegie Mellon University, Aug. 1990.

[4] E.D. Jensen, “Application QoS-Based Time-Critical
Automated Resource Management in Battle Management
Systems”, Proc. IEEE Workshop on Object Oriented Real-Time
Dependable Systems (WORDS), Oct. 2003, 8 p.

[5] P. Li, B. Ravindran, H. Wu, and E. D. Jensen, “A Utility
Accrual Scheduling Algorithm for Real-Time Activities with
Mutual Exclusion Resource Constraints”, IEEE Transactions on
Computers, submitted Aug. 2003.

[6] P.A. Bernstein, V. Hadzilacos, N. Goodman, Concurrency
Control and Recovery in Database Systems, Addison Wesley
Pub., 1987, 370 p.

 [7] G. Le Lann, “An Analysis of the Ariane 5 Flight 501 Failure
– A System Engineering Perspective”, Proc. IEEE Conference on
the Engineering of Computer-Based Systems, March 1997, 339-
346. See also “The Failure of Satellite Launcher Ariane 4.5” at
http://www.cs.york.ac.uk/hise/hise4/frames9.html
Safety Critical Mailing List, Archived Contributions,
Contribution on the Failure of Ariane 5 Flight 501.

[8] G. Le Lann, “Proof-Based System Engineering and Embedded
Systems”, invited paper, Proc. European School on Embedded
Systems, Nov. 1996, Springer-Verlag LNCS n° 1494, Oct. 1998,
208-248.

[9] G. Le Lann, “Predictability in Critical Systems”, invited
paper, Proc. 5th Intl. Symposium on Formal Techniques in Real-
Time and Fault-Tolerant Systems, Springer-Verlag LNCS n°
1486, Sept. 1998, 315-338.

[10] P. Carrère, J.-F. Hermant, G. Le Lann, “In pursuit of Correct
Paradigms for Object-Oriented Real-Time Distributed Systems”,
Proc. IEEE Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC), May 1999, 271-279.
Declassified reports on the French MoD ORECA project (1995-
1997) are available from INRIA (in French).

[11] K. Chen, P. Mühlethaler, “A Scheduling Algorithm for
Tasks Described by Time Value Function”, Journal of Real-Time
Systems, vol. 10, Kluwer Academic Pub., 1996, 293-312.

[12] G. Koren, D. Shasha, “D-Over: An Optimal On-Line
Scheduling Algorithm for Overloaded Real-Time Systems”, Proc.
IEEE Real-Time Systems Symposium, Dec. 1992, 290-299.

[13] J.A. Stankovic, M. Spuri, K. Ramamritham, G.C. Buttazzo,
Deadline Scheduling for Real-Time Systems, Kluwer Academic
Pub., 1998, 273 p.

[14] T.D. Chandra, S. Toueg, “Unreliable Failure Detectors for
Reliable Distributed Systems”, Journal of the ACM, 43(2), March
1996, 225-267.

[15] J.-F. Hermant, G. Le Lann, “Fast Asynchronous Uniform
Consensus in Real-Time Distributed Systems”, IEEE
Transactions on Computers, 51(8), Aug. 2002, 931-944.

[16] G. Le Lann, “Asynchrony and Real-Time Dependable
Computing”, Proc. IEEE Workshop on Object Oriented Real-
Time Dependable Systems (WORDS), Jan. 2003, 18-25.

[17] G. Le Lann, U. Schmid, How to Implement a Time-Free
Perfect Failure Detector in Partially Synchronous Systems,
Technical Report 183/1-127, Department of Automation, Vienna
University of Technology, Jan. 2003, 19 p.

[18] M.K. Aguilera, G. Le Lann, S. Toueg, “On the Impact of
Fast Failure Detectors on Real-Time Fault-Tolerant Systems”,
Proc. Intl. Conference on Distributed Computing (DISC),
Springer-Verlag LNCS n° 2508, Oct. 2002, 354-369.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47

