
IS
S

N
 0

24
9-

63
99

appor t
de r echerche

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

On the Formal Specification of Group
Membership Services

Emmanuelle Anceaume emmanuelle.anceaume@inria.fr

Bernadette Charron-Bost charron@lix.polytechnique.fr

Pascale Minet pascale.minet@inria.fr

Sam Toueg sam@cs.cornell.edu

N˚ 2695
Novembre 1995

PROGRAMME 1

On the Formal Speci�cation of Group Membership

Services

Emmanuelle Anceaume � emmanuelle.anceaume@inria.fr
Bernadette Charron-Bost �� charron@lix.polytechnique.fr

Pascale Minet ��� pascale.minet@inria.fr
Sam Toueg ���� sam@cs.cornell.edu

Programme 1 | Architectures parall�eles, bases de donn�ees, r�eseaux et syst�emes distribu�es
Projet REFLECS

Rapport de recherche n�2695 | Novembre 1995 | 12 pages

Abstract: The problem of group membership has been the focus of much theoretical and
experimental work on fault-tolerant distributed systems. This has resulted in a voluminous
literature and several formal speci�cations of this problem have been given. In this paper, we
examine the two most referenced formal speci�cations of group membership and show that
they are unsatisfactory: One has
aws in the formalism and allows undesirable executions,
and the other can be satis�ed by useless protocols.

Key-words: group membership, asynchronous systems, primary partition, single group
view, partitionable group, multiple group views, safety, liveness.

(R�esum�e : tsvp)

Research partially supported by NSF grant CCR-9402894 and DARPA/NASA Ames grant NAG-2-593

�INRIA, B.P. 105, 78153 Le Chesnay Cedex, FRANCE.
��Laboratoire d'Informatique LIX, Ecole Polytechnique, 91128 Palaiseau Cedex, FRANCE.
���INRIA, B.P. 105, 78153 Le Chesnay Cedex, FRANCE.

����Department of Computer Science, Upson Hall, Cornell University, Ithaca NY 14853, USA. This work
was done while visiting the Re
ecs Project at INRIA - Rocquencourt.

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau Rocquencourt BP 10578153 LE CHESNAY Cedex (France)

A propos des Sp�eci�cations Formelles d'Appartenance

�a un Groupe

R�esum�e : Le probl�eme d'appartenance �a un groupe est au c�ur de nombreux travaux
th�eoriques, et exp�erimentaux dans le domaine des syst�emes distribu�es tol�erants aux fautes.
De nombreuses publications ont paru sur le sujet, et plusieurs sp�eci�cations formelles de ce
probl�eme ont �et�e donn�ees. Dans ce rapport, nous examinons les deux sp�eci�cations formelles
d'appartenance �a un groupe les plus r�ef�erenc�ees et montrons qu'elles ne sont pas satisfaisantes
: l'une pr�esente des lacunes dans le formalisme et autorise des ex�ecutions ind�esirables, l'autre
peut être satisfaite par des protocoles sans int�erêt pour l'utilisateur.

Mots-cl�e : appartenance �a un groupe, syst�emes asynchrones, partition primaire, vue unique
du groupe, partitions multiples, vues multiples du groupe, sûret�e, vivacit�e.

On the Formal Speci�cation of Group Membership Services 3

1 Introduction

Group membership is an important component of several experimental or commercial fault-
tolerant distributed systems such as the Highly Available System [Cri87], Isis [Bir93], Horus
[vRBC+93], Transis [ADKM92a], Amoeba [KT91], Newtop [EMS95], and Relacs [BDGB94].
Roughly speaking, a group membership protocol manages the formation and maintenance
of a set of processes called a group. For example, a group may be a set of processes that are
cooperating towards a common task (e.g., the primary and backup servers of a database),
a set of processes that share a common interest (e.g., clients that subscribe to a particular
newsgroup), or the set of all processes in the system that are currently deemed to be ope-
rational. Since new processes may want to join an existing group, and others may want to
leave or have to be removed after they fail, the membership of a group changes dynamically.
A group membership protocol must manage these changes in a coherent way: each process
has a local view of the current membership of the group, and processes maintain some form
of agreement on these local views.

The group membership problem was �rst de�ned for synchronous systems by [Cri91].
Since then, this problem has also been the subject of intense investigation for asynchronous
systems. In particular, two types of group membership services have emerged: primary-
partition, e.g. [RB91, KT91, MPS91, MSMA94, HS95], and partitionable, e.g. [ADKM92b,
ADKM92a, JFR93, vRBC+93, BDGB94, EMS95].

Roughly speaking, a primary-partition group membership service maintains a single
agreed view of the group (i.e., processes agree on their local views of the group). Such
services are intended for systems with no network partitions, or for systems that allow the
group membership to change in at most one network partition, the primary partition.

In contrast, a partitionable group membership service allows multiple views of the group
to co-exist and evolve concurrently: There may be several disjoint subsets of processes such
that processes in each subset agree that they are the current members of the group. In
other words, such group membership services allow group splitting (e.g., when the network
partitions) and group merging (e.g., when communication between partitions is restored).

Two papers are widely referenced as the �rst to give rigorous de�nitions of group member-
ship for asynchronous systems: [RB91] for the primary-partition type, and [DMS94] for the
partitionable one. Indeed, giving a formal speci�cation of group membership is the principal
goal of [RB91, DMS94] and their updated versions [Ric93, RB94, DMS95].1 In this paper
we show that these formal speci�cations are unsatisfactory: The primary-partition one has

aws in the formalism and allows undesirable executions, and the partitionable one can be
satis�ed by useless protocols. Thus, contrary to a widely-held belief, these speci�cations do
not provide a rigorous foundation for the study of group membership.

2 Primary-Partition Group Membership Service

The �rst and most referenced work on primary-partition group membership service for asyn-
chronous systems is the one in [RB91]. Its goal is to formally de�ne this service (called
Strong Group Membership Problem and denoted S-GMP) and to give a matching protocol.

1The abstract of [RB91] states that \We present a rigorous, formal speci�cation for group member-
ship...then a solution for this problem...", and the introduction of [DMS94] says that \The contribution
of this paper is in giving a formal speci�cation of the membership problem allowing partitions." [DMS94]
also refers to [RB91] as the \the �rst formal de�nition of the requirements of membership in asynchronous
environments."

RR n�2695

4

This work was continued in [Ric93], and later in [RB94]. We focus on [RB94], as it is the
most up-to-date version of S-GMP at the time of writing.

In our study of this work, we found several de�ciencies with the formal speci�cation
of S-GMP: there are
aws in the formalism, the formal speci�cation allows undesirable
executions (violation of safety), and the liveness requirement of the speci�cation of S-GMP
is not satis�ed by the protocol given as a solution to S-GMP. In the following sections, we
discuss each one of these problems in turn.

2.1 Flaws in the Formalism

Some formal de�nitions are incomplete, do not match the informal English description that
precedes these de�nitions, or impose unreasonable requirements. We illustrate some of these
problems below.

The speci�cation of S-GMP is given in terms of �ve formal properties, GMP-0 to GMP-4,
that must hold at all consistent cuts [CL85, Mat88]. These formal properties are expressed in
terms of temporal logic formulas that contain predicates on consistent cuts (branching time
logic is adopted). Unfortunately, the de�nition of some of these predicates is not complete: For
some consistent cuts their values are not speci�ed. This prevents a precise and unambiguous
interpretation of the formal speci�cation.

One example of a predicate whose de�nition is incomplete is in-localxp(q); this predicate
is used in property GMP-3 of the formal speci�cation. Roughly speaking, in-localxp(q)

should indicate whether process p's xth local view of the group, denoted LocalView
x
p , contains

process q. A problem arises when one needs to evaluate this predicate at a consistent cut c
where p has not yet formed its xth local view of the group: The paper does not say what the
value of in-localxp(q) should be at such a cut c.

Unfortunately, this incomplete de�nition is not easy to rectify. At cut c, p has not yet
formed LocalView

x
p , and one cannot predict whether q will be contained in LocalView

x
p \in

the future" (when this view will be formed) because this future is not uniquely determined.
In fact, at this point in the computation there are three types of possible extensions of c:
Those in which p forms an xth local view that contains q, those in which p forms an xth

local view that does not contain q, and those in which p never forms an xth local view (for
example, p crashes before doing so).

Since it is impossible to determine the future value of in-localxp(q), the alternative
is to select an arbitrary value, and assign it by convention to in-local

x
p(q) at all cuts

c where LocalView
x
p is not yet de�ned. But doing so also raises major problems. In the

Appendix we show why one cannot arbitrarily set in-localxp(q) to true or false at a cut
c where LocalView

x
p is not yet de�ned. The other possibility is to assign the value unde�ned

to in-local
x
p(q) at c. But how do we interpret a temporal logic formula such as GMP-3

where some terms like in-localxp(q) can now take the value unde�ned? This interpretation
requires a precise three-valued temporal logic framework, where every temporal and boolean
operator has been rede�ned to account for the possibility of unde�ned terms. To the best of
our knowledge, no such temporal logic exists in the literature.

Predicate in-local
x
p(q) is not the only predicate whose de�nition is incomplete: The

same problem exists with predicates in-gpp and out-gpp which are used to formally express
GMP-4, the liveness property of the speci�cation. In fact, [RB94] states \The formula in-gpp
holds on c exactly when p is a member of the group view at c (provided it exists), while
out-gpp holds when p is not a member (also provided the group view exists at c)". This
de�nition does not specify the value of these predicates at cuts c such that the group view
at c does not exist (it is clear that such cuts are possible).

INRIA

On the Formal Speci�cation of Group Membership Services 5

We now give two examples of unreasonable requirements that are enforced by the formal
speci�cation of S-GMP. The �rst one concerns GMP-3, and the second one GMP-4. To
explain the problem with GMP-3, we need to introduce some notation from [RB94]. Predicate
downp holds at a cut c \exactly when p has crashed in c". The local membership view of
process q on cut c is denoted LocalViewq(c), and LocalViewq is used \when the cut is clear
from the context." GMP-3 requires that at all consistent cuts c the following holds:

c j=
^
0�x

^
p

3

^
q

�
in-local

x
p(q)) downq _ (LocalViewq = LocalView

x
p)
�^

((:in-localxp(q) ^
_
y<x

in-local
y
p(q))) 2notdef'd(LocalViewx

q)) :

Since 3(� ^) implies 3�^3 :

c j=
^
0�x

^
p

^
q

3
�
in-local

x
p(q)) downq _ (LocalViewq = LocalView

x
p)
�
:

Pick a process p, and focus on the predicate corresponding to x = 0 and q = p in the above
conjunction:

c j= 3
�
in-local

0
p(p)) downp _ (LocalViewp = LocalView

0
p)
�
:

Consider p's initial local view LocalView
0
p. The paper states that p is always in its local view,

thus p 2 LocalView
0
p and in-local

0
p(p) holds. This implies:

c j= 3
�
downp _ (LocalViewp = LocalView

0
p)
�
:

Consider a cut c such that p has already done several changes to its local view of the group.
The above requires that in all extensions of c, either p crashes or p is forced to re-install its
initial view of the group | a requirement that does not make sense.

The formal requirement GMP-4 is also unreasonable. Suppose that at some point a
process p (that is in the group view) suspects that q is faulty. The English explanation of
GMP-4 says that in this case \eventually either p is removed from the group view, or q
is removed from it..." This should be translated by 3(out-gpq _ out-gpp), rather than
by 3out-gpq _3out-gpp as written in the paper. These two formulas are not equivalent:
The branching-time logic interpretation of 3(out-gpq _ out-gpp) at a cut c is that in
every extension of c, either p or q is removed | a credible requirement. In contrast, the
interpretation of 3out-gpq _3out-gpp is that in every extension of c process q is removed,
or in every extension of c process p is removed. In other words, this requirement enforces
a \uniform future" independent of the future behavior of the system. This is unreasonable
because, as [RB91] noted, \The outcome [of whether it is p or q that is actually removed]
will depend on the pattern of communication that ensues." This outcome also depends on
the behavior of p and q after the cut c.

2.2 Violation of Safety

A primary-partition group membership service requires that the group views form a unique
sequence such that there is no disagreement on the membership of the xth view of the group
(for every x). Indeed, the informal description of GMP-3 (one of the two \safety" properties
in the formal speci�cation of S-GMP) explains that \All processes, while they are member

RR n�2695

6

t

t t

tt

t

-

-

-

-

r

p

q

s

crashp

crashqfaultyq(s)

removep(r)

removeq(s)

faultyp(r)

Figure 1: Processes p and q disagree on view V (1)

of core and provided they are not crashed, exhibit the same sequence of local views". The
formal speci�cation of S-GMP given in [RB91, Ric93, RB94], however, does not enforce this
crucial requirement. In fact, we found that the formal speci�cation allows an undesirable
execution where two processes disagree on the second view of the group.

The scenario which is illustrated in Figure 2.2 depicts a system of four processes r, p,
q, and s. Initially, all processes have the same local view V (0) = fr; p; q; sg of the group.
Processes r and s \do nothing". Process p �rst suspects that r is faulty (i.e., p executes
event faultyp(r) in the formalism of [RB94]), and then it removes r from its local view
of the group (i.e., p executes event removep(r)). So p's local view of the group becomes

V
(1)
p = fp; q; sg. An arbitrarily long time later, p crashes. The execution of process q is

symmetric with regard to process s, and q's local view of the group becomes V
(1)
q = fr; p; qg.

An arbitrarily long time later, q crashes.
In this scenario, for an arbitrarily long time (i.e., from the time p and q change their local

views, to the time they crash) p and q disagree on what view V (1) is. In other words, they
disagree on the membership of the second view of the group | two versions of V (1) exist
concurrently.

It turns out that this scenario satis�es all the properties of the formal speci�cation of S-
GMP given in [RB94] (including the two properties called \Uniqueness" and \Sequence" that
were intended to prevent such undesirable executions), but it clearly violates the semantics
of a primary-partition group membership that this formal speci�cation tries to capture.

2.3 Violation of Liveness

As we already mentioned in Section 2.1, the temporal logic de�nition of GMP-4 (the \live-
ness" property of S-GMP) is problematic because it is expressed in terms of predicates some
of which are not de�ned in all cases. Thus, we must rely on the English de�nition of GMP-4:
if a process p suspects that a process q is faulty (and p is in the group view) then eventually
either p is removed from the group view, or q is removed from it.

INRIA

On the Formal Speci�cation of Group Membership Services 7

As we explain below, the protocol given as a solution to S-GMP in asynchronous systems
violates GMP-4, and so it does not satisfy the formal speci�cation of S-GMP. In other words,
the so-called \S-GMP protocol" does not quite solve the S-GMP problem. This contradicts
several statements in [RB91, Ric93, RB94]. For example, [Ric93, RB94] state that the S-
GMP protocol \correctly solves Strong GMP", and [Ric93] proves a theorem stating that
the \S-GMP [protocol] satis�es GMP-4" (Theorem 5.2.5).2

We now describe an execution of the S-GMP protocol that violates the liveness property
GMP-4. In this protocol, a process denoted mgr is in charge of coordinating updates of the
group view. Suppose mgr believes that a process q in the group view is faulty. Property
GMP-4 requires that either mgr or q is eventually removed from the group view. We now
describe a protocol execution in which this does not occur. According to the S-GMP protocol,
mgr submits a view change to the members of its current group view. Now suppose that
while waiting for acknowledgements,mgr comes to believe that a majority of processes in its
current group view are faulty. The protocol then forces mgr to crash. The following can now
happen: every other process successively takes over the task of coordinating the installation
of the new group view, but then believes that a majority of processes are faulty, and thus
crashes itself. In this execution of the S-GMP protocol, there is a collective suicide and no
view change occurs. Thus neither q nor mgr are removed from the existing group view | a
violation of GMP-4. Note that this collective suicide can occur even if there are no process
or communication failures.

3 Partitionable Group Membership Service

Recall that a primary-partition group membership service is supposed to maintain a single
agreed view of the current membership of a group. In contrast to primary-partition group
membership services, partitionable ones allow processes to disagree on the current mem-
bership of the group, i.e., several di�erent views of the membership of the group may
evolve concurrently and independently from each other [DMS94, DMS95, JFR93, vRBC+93,
BDGB94, EMS95]. In particular, there may be several disjoint subsets of processes such that
processes in di�erent subsets disagree on who are the current members of the group (but
agreement is guaranteed within each subset).

According to a result in [CHT95], primary-partition group membership cannot be solved
in asynchronous systems with failures, and this is because processes must agree on the
content of the xth view of a group. By allowing disagreement on the content of the xth view,
partitionable group membership services escape from this impossibility result, but they run
into another problem: On one hand, their speci�cation should be strong enough to preclude
useless protocols, e.g., protocols that capriciously split processes into several concurrent views
of the same group (and in particular into singleton sets); on the other hand, their speci�cation
should be weak enough to be implementable in asynchronous systems with failures. In the
next two sections we show that the speci�cations of partitionable group membership service
given in [DMS94, DMS95, EMS94, EMS95] do not satisfy the �rst requirement.

2On the other hand, the authors seem to be aware of the fact that the S-GMP protocol does not satisfy the
liveness requirement of the S-GMP speci�cation. In fact, \Guaranteeing progress in all possible executions"
is listed as one of the \Non-Goals" in Figure 1 of [RB94]. But this \non-goal" is in apparent contradiction
with the liveness property GMP-4.

RR n�2695

8

3.1 Capricious Splitting

The speci�cation of the Newtop group membership service, given in [EMS94] and updated in
[EMS95], is unsatisfactory because it can be satis�ed by the following trivial protocol: Every
process p initially installs fpg as its �rst view of the group, and it never installs another
view after this. This protocol simply splits all processes into singleton (one-member) views
forever. Note that this total splitting occurs in all executions of this protocol, even those in
which there are no process or communication failures (actual or suspected).

To preclude such trivial protocols, the formal speci�cation of the partitionable group
membership service given in Section 3 of [DMS94] includes the following \non-triviality"
requirement (denoted M.3 in [DMS94]): For every subset of processes T and every process p,
there is at least one execution in which p installs T as its view of the group. This requirement
indeed prevents the trivial protocol above, but it allows group membership protocols that are
equally useless, because all their executions, including those without any actual or suspected
failures, result in a permanent total split. We sketch an example of such a protocol. Processes
a priori agree on a total ordering T1; T2; � � � ; T2n of all the subsets of processes. In the
protocol, each process p �rst successively installs T1, T2, etc. as its group view, and then p
immediately installs fpg as its �nal view. Even though all the executions of this protocol
result in a total and permanent split into singleton sets, the protocol satis�es the speci�cation
of partitionable group membership given in [DMS94].3

In response to this criticism, the non-triviality requirement of this speci�cation was
strengthened in [DMS95]. Roughly speaking, the revised requirement says that for every
subset of processes T , every process p 2 T , and every �nite partial execution �, there is an
extension of � in which p installs T as its group view. This stronger speci�cation precludes
the permanent split of processes into singleton sets but it still allows useless protocols. For
example, it can be satis�ed by the following protocol which capriciously splits processes into
singleton views for most of the time in all executions. As before, processes a priori agree on a
total ordering T1; T2; � � � ; T2n of all the subsets of processes. Each process p successively ins-
talls T1, T2, etc. as its group view, skipping those subsets T such that p =2 T ([DMS95] added
the requirement that each process must be a member of every group view that it installs),
and then p immediately installs fpg as its view. After waiting for an arbitrarily long time,
p repeats the above steps.4 This protocol satis�es the stronger non-triviality requirement
of [DMS95] but it is still useless: All its executions, including failure-free and suspicion-free
ones, have an in�nite number of intervals of arbitrary length each, during which processes
are capriciously split into singleton sets.

3.2 Capricious View Changes

In general, the speci�cation of a group membership protocol must regulate the installation
of new views of a group. Firstly, it should require that if certain events occur (such as
real or suspected failures, or requests to join or leave the group) then a new view of the
group must be eventually installed to re
ect these events. Secondly, it should also require
that a new view of the group is installed only if certain events previously occurred: these

3In [DMS94, DMS95] the group membership protocol executes on top of a causal communication module
which is responsible for multicasting messages, and there are some requirements on how these multicasts
interact with view changes. To satisfy these requirements we assume that the group membership protocol
above passes each multicast request (denotedM-multicast) down to a causal communication module that
satis�es the communication requirements given in Section 2.1 of [DMS94].

4We assume eachM-multicast is passed to the underlying causal communication module that satis�es
the communication requirements given in Section 4 of [DMS95].

INRIA

On the Formal Speci�cation of Group Membership Services 9

are the events that justi�ed the view change. This second type of requirement prevents the
capricious installation of new views. Both types of requirements exist in the speci�cation of
the primary-partition group membership given in [RB91, Ric93, RB94]: They correspond to
GMP-4 (the liveness requirement), and GMP-1 (the validity requirement), respectively.

In contrast, the speci�cation of partitionable group membership given in [DMS94, DMS95]
does not include the second type of requirement: It does not prevent the capricious installa-
tion of new group views. More precisely, the speci�cation allows an arbitrary set of (opera-
tional) processes T to install T as a new group view, and to do so at any time and without
any reason. This allows the arbitrary removal of processes that have not failed and, worse,
that are not even suspected of having failed! This problem is recognized in [DMS95]: \Our
membership framework allows capricious installations of views.... it does not restrict the
removal of correct (and unsuspected) processes from the view."

The above behavior is clearly undesirable. This
aw in the speci�cation is partly due
to the following shortcoming of the formal model: Failure suspicions are generated but then
completely ignored, as we now explain. In [DMS94, DMS95] the group membership module
executes on top of a causal communication module which is responsible for di�using mes-
sages. When this communication module encounters some di�culty in delivering a message
to some process q, it suspects that q is \disconnected" (i.e., it generates event C-suspect(q))
and noti�es the group membership module of this suspicion. Such noti�cations, however, are
ignored in the speci�cation of the group membership: None of the group membership requi-
rements (denoted M.1 to M.6 in [DMS95]) refers to C-suspect events. So, failure suspicion
events have no speci�ed e�ect on group membership. In order to integrate failure suspicions
into the speci�cation of group membership, the authors of [DMS95] state their intention
to \analyze the framework in environments extended with failure detectors (e.g. the failure
detectors discussed in [CT91])."

4 Discussion

The speci�cation of any group membership service (and indeed of any service) should meet
two requirements: It should be strong enough to guarantee that any protocol that satis�es
it is indeed useful, and it should be weak enough to be solvable in a system with failures.
The speci�cations given in [RB91, Ric93, RB94, DMS94, DMS95, EMS95] fail to meet one
of the two requirements.

The speci�cation of primary-partition group membership given in [RB91, Ric93, RB94]
requires processes (1) to agree on the sequence of group views, and (2) to eventually install
a new group view whenever a failure suspicion occurs. This is strong enough to be useful,
but it is doubtful that it can be implemented in asynchronous systems [CHT95]: This is
probably why there is a gap between what this speci�cation requires and what is actually
achieved by the \matching" group membership protocol given in [RB91, Ric93, RB94], a pro-
tocol that can cause collective suicide. On the other hand, the speci�cations of partitionable
group membership given in [DMS94, DMS95] and in [EMS95] may be weak enough to be
implementable, but they are not strong enough to prevent useless protocols that capriciously
install views.

As a �nal remark, we would like to point out a disturbing trend. In our study of the
group membership problem we noticed the following recurring theme: A group membership
protocol would remain stable, while the speci�cation of that protocol undergoes signi�cant
changes in content across successive versions. This is prima facie evidence that many of these
group membership protocols (and sometimes their proofs of correctness) were written before

RR n�2695

10

their precise speci�cation was actually determined and �xed. We believe that this practice
is contrary to the principles of good system development.

Acknowledgement

We are grateful to Paul Ezhilchelvan, Dalia Malki, and Aleta Ricciardi for many useful
discussions on [EMS94], [DMS94], and [RB94]. We also thank Vassos Hadzilacos for his
helpful comments on an earlier draft of this paper.

Appendix

We explain why one cannot assign an arbitrary boolean value, true or false, to in-localxp(q)
at cuts c where LocalView

x
p is not de�ned. To do so, we �rst recall some de�nitions given in

[RB94].
A process p can execute events that add or remove processes to the set of processes that

p considers to be currently in the group. Each such event changes p's local view of the group,
and LocalView

x
p is de�ned to be the xth distinct version of p's local view. More precisely,

LocalView
x
p is the set of processes in the group according to p after p executed a sequence

of exactly x add or remove events. The paper states that, for any process q, in-localxp(q)
holds when q 2 LocalView

x
p , and that notdef'd(LocalViewx

p) holds if p has not yet de�ned

its xth local view.
Now take a consistent cut c such that p has done exactly x � 1 view changes and then

crashes. Since p never de�nes its xth local view, notdef'd(LocalViewx
p) always holds. Take a

process q 2 LocalView
x�1
p . By de�nition, in-localx�1p (q) is true at c and at all the extensions

of c. But what is the value of in-localxp(q)? The de�nition of in-localxp(q) in [RB94] does
not say. Moreover, assigning a �xed boolean value to in-localxp(q) is problematic as we now
show. Property GMP-3 implies the following two requirements:

c j= 3
�
in-local

x
p(q)) downq _ (LocalViewq = LocalView

x
p)
�

(1)

c j= 3
��
:in-localxp(q) ^

W
y<x in-local

y
p(q)

�
) 2notdef'd(LocalViewx

q)
�

(2)

Suppose we set in-localxp(q) to true. In this case, the �rst formula reduces to:

c j= 3
�
downq _ (LocalViewq = LocalView

x
p)
�

This means that inevitably either q crashes or q installs a local view equal to LocalView
x
p , a

set which is not de�ned. This requirement is nonsensical.
Now suppose we set in-localxp(q) to false. Since :in-local

x
p(q) and in-local

x�1
p (q)

are true at c and at all the extensions of c, formula (2) implies 2notdef'd(LocalViewx
q).

This means that q can never install its xth group view. This is also nonsensical.

References

[ADKM92a] Yair Amir, Danny Dolev, Shlomo Kramer, and Dalia Malki. Membership algo-
rithms for multicast communication groups. In Proceedings of the 6th Interna-
tional Workshop on Distributed Algorithms (WDAG - 6), (LCNS, 647), pages
292{312, November 1992.

INRIA

On the Formal Speci�cation of Group Membership Services 11

[ADKM92b] Yair Amir, Danny Dolev, Shlomo Kramer, and Dalia Malki. Transis: a com-
munication sub-system for high availability. In Proceedings of the 22nd Annual
International Symposium on Fault-Tolerant Computing, pages 76{84, Boston,
July 1992.

[BDGB94] �Ozalp Babao�glu, Renzo Davoli, Luigi-Alberto Giachini, and Mary Gray Ba-
ker. RELACS: a communications infrastructure for constructing reliable ap-
plications in large-scale distributed systems. BROADCAST Project deliverable
report, 1994. Department of Computing Science, University of Newcastle upon
Tyne, UK.

[Bir93] Kenneth P. Birman. The process group approach to reliable distributed com-
puting. Communication of the ACM, 9(12):36{53, December 1993.

[CHT95] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. Impossibility of
group membership in asynchronous systems. Technical Report 95-1533, Com-
puter Science Department, Cornell University, Ithaca, New York 14853, August
1995.

[CL85] K. Mani Chandy and Leslie Lamport. Distributed snapshots: Determining
global states of distributed systems. ACM Transactions on Computer Systems,
3(1):63{75, February 1985.

[Cri87] Flaviu Cristian. Issues in the design of highly available computing services.
In Annual Symposium of the Canadian Information Processing Society, pages
9{16, July 1987. Also IBM Research Report RJ5856, July 1987.

[Cri91] Flaviu Cristian. Reaching agreement on processor group membership in syn-
chronous distributed systems. Distributed Computing, 4(4):175{187,April 1991.

[CT91] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detec-
tors for asynchronous distributed systems. In Proceedings of the 10th
ACM Symposium on Principles of Distributed Computing, pages 325{340,
August 1991. Available by anonymous ftp from ftp.cs.cornell.edu

in pub/chandra/failure.detectors.algorithms.dvi.Z. To appear in the
Journal of the ACM.

[DMS94] Danny Dolev, Dalia Malki, and Ray Strong. An asynchronous membership pro-
tocol that tolerates partitions. Technical Report CS94-6, Institute of Computer
Science, The Hebrew University of Jerusalem, 1994.

[DMS95] Danny Dolev, Dalia Malki, and Ray Strong. A framework for partitionable
membership service. Technical Report CS95-4, Institute of Computer Science,
The Hebrew University of Jerusalem, 1995.

[EMS94] Paul D. Ezhilchelvan, Raimundo A. Macêdo, and Santosh K. Shrivastava. New-
top: a fault-tolerant group communication protocol. Technical report, Depart-
ment of Computing Science, University of Newcastle upon Tyne,UK, July 1994.

[EMS95] Paul D. Ezhilchelvan, Raimundo A. Macêdo, and Santosh K. Shrivastava. New-
top: a fault-tolerant group communication protocol. In Proceedings of the 15th
International Conference on Distributed Computing Systems, Vancouver, BC,
Canada, June 1995.

RR n�2695

12

[HS95] Matti A. Hiltunen and Richard D. Schlichting. Properties of membership ser-
vices. In Proceedings of the 2nd International Symposium on Autonomous De-
centralized Systems, Phoenix, AZ, April 1995.

[JFR93] Farnam Jahanian, Sameh Fakhouri, and Ragunathan Rajkumar. Processor
group membership protocols: speci�cation, design and implementation. In Pro-
ceeding of the 12th IEEE Symposium on Reliable Distributed Systems, pages
2{11, Princeton, October 1993.

[KT91] M. Frans Kaashoek and Andrew S. Tanenbaum. Group communication in the
amoeba distributed operating system. In Proceedings of the 11th International
Conference on Distributed Computer Systems, pages 222{230, Arlington, TX,
May 1991.

[Mat88] Friedemann Mattern. Virtual time and global states of distributed systems.
In Michel Cosnard, Patrice Quinton, Yves Robert, and Michel Raynal, editors,
Proceedings of the International Workshop on Parallel and Distributed Algo-
rithms, pages 215{226. North-Holland, October 1988.

[MPS91] Shivakant Mishra, Larry L. Peterson, and Richard D. Schlichting. A member-
ship protocol based on partial order. In Proceedings of the IEEE International
Working Conference on Dependable Computing For Critical Applications, pages
137{145, Tucson, AZ, February 1991.

[MSMA94] P.M. Melliar-Smith, Louise Moser, and Vivek Agrawala. Processor member-
ship in asynchronous distributed systems. IEEE Transactions on Parallel and
Distributed Systems, 5(5):459{473, May 1994.

[RB91] Aleta Ricciardi and Kenneth P. Birman. Using process groups to implement
failure detection in asynchronous environments. In Proceedings of the 10th
Annual ACM Symposium on Principles of Distributed Computing, pages 341{
352, 1991. Also available as technical report 93-1328, Department of Computer
Science, Cornell University.

[RB94] Aleta Ricciardi and Kenneth P. Birman. Process membership in asynchro-
nous environments. Available by anonymous ftp from ftp.cs.cornell.edu in
pub/aleta/AsyncMembService.ps, April 1994.

[Ric93] Aleta Ricciardi. The group membership problem in asynchronous systems. PhD
thesis, Department of Computer Science, Cornell University, USA, January
1993.

[vRBC+93] Robbert van Renesse, Kenneth P. Birman, Robert Cooper, Bradford Glade, and
Patrick Stephenson. The horus system. In Kenneth P. Birman and Robbert
van Renesse, editors, Reliable Distributed Computing with the Isis Toolkit, pages
133{147. IEEE Computer Society Press, Los Alamitos, CA, 1993.

INRIA

Unité de recherche INRIA Lorraine, Technopôle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LÈS NANCY

Unité de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unité de recherche INRIA Rhône-Alpes, 46 avenue Félix Viallet, 38031 GRENOBLE Cedex 1

Unité de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unité de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Éditeur
INRIA, Domaine de Voluceau, Rocquencourt, BP105, 78153 LE CHESNAY Cedex (France)

ISSN 0249-6399

