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Geological disposal of nuclear waste

Deep repository
( Long lived & High-level radioactive waste)

Different materials→ strong
heterogeneity, different time scales.

Large differences in spatial scales.

Long-term computations.

Use space-time (global in time)
domain decomposition methods

Z Take into account different
capillary pressure curves

Z Extend optimized Schwarz method
to nonlinear diffusion
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Space–time domain decomposition

Domain decomposition in space

x

y

Discretize in time and apply DD
algorithm at each time step:

I Solve stationary problems in
the subdomains

I Exchange information
through the interface

Use the same time step on the
whole domain.

Space-time domain decomposi-
tion

Solve time-dependent
problems in the subdomains

Exchange information through
the space-time interface

Enable local discretizations
both in space and in time

−→ local time stepping
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Model problem: nonlinear (degenerate) diffusion equation

Two–phase immiscible flow, global pressure + Kirchhoff transformation, neglect
advection (Enchery et al. (06), Cances (08))
S: water saturation. π(S) capillary pressure, increasing function on [0,1] (extend
continuously to R). λ (S) mobility, ω porosity

φ(S) =
∫ S

0
K λ (u)π

′(u)du.

Simplified equation

ω∂t S−∆φ(S) = 0 in Ω× [0,T ]

Two subdomains (rock types)
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Multi-domain formulation

2 subdomains Ω1, Ω2, interface Γ = Ω1∩Ω2. Solve (for i = 1,2):

ω∂t Si −∆φi (S) = 0 in Ωi × [0,T ],

∂φi (Si )

∂ni
= 0 on (∂ Ωi\Γ)× (0,T )

Si (.,0) = S0(.)|Ωi
in Ωi

together with natural transmission conditions on the space-time interface

Continuity of capillary pressure π1(S1) = π2(S2) on Γ× (0,T )

Continuity of the flux ∇φ1(S1).n1 + ∇φ2(S2).n2 = 0 on Γ× (0,T )

Replace by equivalent Robin transmission conditions

∇φ1(S1).n1 + β1π1(S1) =−∇φ2(S2).n2 + β1π2(S2) on Γ× (0,T )

∇φ2(S2).n2 + β2π2(S2) =−∇φ1(S1).n1 + β2π1(S1) on Γ× (0,T )

β1,β2 > 0 given parameters
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Global in time domain decomposition algorithm

Non-linear Optimized Schwarz waveform relaxation algorithm

Given S0
i , iterate for k = 0, . . .

Solve for Sk+1
i , i = 1,2, j = 3− i

ω∂t S
k+1
i −∆φi (Sk+1

i ) = 0 in Ωi × [0,T ]

∂φi (Sk+1
i )

∂ni
= 0 on (∂ Ωi\Γ)× (0,T )

Sk+1
i (.,0) = S0(.)|Ωi

in Ωi

∇φi (Sk+1
i ).ni + βiπ i (Sk+1

i ) =−∇φj (Sk
j ).nj + βiπ j (Sk

j ) on Γ× [0,T ],

β1,β2 can be chosen to optimize convergence rate (Bennequin-Gander-Halpern
(09),Hoang-Jaffré,Japhet,Kern,Roberts (13))

Basic ingredient: subdomain solver with Robin bc. Existence: adapt proof from
Enchery et al. (06), Cances (08), via convergence of finite volume scheme.
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Cell centered finite volume scheme (Enchery et al, 06)

Triangulation T , cells K ∈T , boundary faces σ ⊂ Γ.
Unknowns : cell values (SK )K∈T , boundary face values
(Sσ )σ∈EΓ

Notations: K |L = edge between K and L, τK |L : transmissivity

Interior equation

m(K )
Sn+1

K −Sn
K

δ t
+ ∑

L∈N (K )

τK |L
(

φ(Sn+1
K )−φ(Sn+1

L )
)

+ ∑
σ∈EΓ∩EK

τK ,σ

(
φ(Sn+1

K )−φ(Sn+1
σ )

)
= 0, K ∈T .

Robin BC for boundary faces

−τK ,σ

(
φ(Sn+1

K )−φ(Sn+1
σ )

)
+ βm(σ)π(Sn+1

σ ) = gσ , σ ∈ EΓ

Implemented with Matlab Reservoir Simulation Toolbox (K. A. Lie et al. (14))
Solver with automatic differentiation : no explicit programming of Jacobian
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Nonconforming discretization in time

Use different time steps in the subdomains

16

5. Nonconforming time discretizations and projections in time. We con-
sider semi-discrete problems in time with nonconforming time grids. Let T1 and T2
be two different partitions of the time interval (0, T ) into sub-intervals (see Figure
5.1). We denote by J i

m the time interval (tim−1, t
i
m] and by ∆tim := (tim − tim−1) for

m = 1, . . . ,Mi and i = 1, 2. We use the lowest order discontinuous Galerkin method
[3, 18, 35], which is a modified backward Euler method. The same idea can be gener-
alized to the higher order in time case. We denote by P0(Ti,W ) the space of piecewise

0

T

Ω1 Ω2

∆t1m
∆t2m

x

t

Figure 5.1: Nonconforming time grids in the subdomains.

constant functions in time on grid Ti with values in W , where W = H
1
2 (Γ) for Method

1 and W = L2(Γ) for Method 2:
P0(Ti,W ) =

{
φ : (0, T ) → W,φ|Ji

m
∈ W, for m = 1, . . . ,Mi

}
.

In order to exchange data on the space-time interface between different time grids, we
define the following L2 projection Πji from P0(Ti,W ) onto P0(Tj ,W ) (see [13, 18]) :
for φ ∈ P0(Ti,W ), Πjiφ|Jj

m
is the average value of φ on Jj

m, for m = 1, . . . ,Mj :

Πji (φ) |Jj
m
=

1

| Jj
m |

Mi∑

l=1

∫

Jj
m∩Ji

l

φ, for m = 1, · · · ,Mj .

We use the algorithm described in [14] for effectively performing this projection. With
these tools, we are now able to weakly enforce the transmission conditions over the
time intervals.
We still denote by (ci, ri), for i = 1, 2, the solution of the corresponding semi-discrete
(in time) problem of (4.1).

5.1. For Method 1. As there is only one unknown λ on the interface, we need
to choose λ piecewise constant in time on one grid, either T1 or T2. For instance, let
λ ∈ P0(T2, H

1
2 (Γ)) and take c2 = Π22(λ) = Id(λ). The equality of the concentration

in time across the interface is fulfilled by letting

c1 = Π12(λ) ∈ P0(T1, H
1
2 (Γ)).

The semi-discrete (nonconforming in time) counterpart of the flux continuity in equa-
tion (??) is weakly enforced by integrating it over each time interval J2

m of grid T2 :
∀m = 1, ...,M2,∫

Γ

∫

J2
m

(Π21 (r1(Π12(λ), f, c0) · n1) + Π22 (r2(Π22(λ), f, c0) · n2)) dt = 0. (5.1)

Remark. λ can be chosen to be constant in time on another grid (neither T1 nor T2)
in some applications (e.g. flow in porous media with fractures).

Information on one time grid at the interface is passed to the other time grid at the
interface using L2-projections
→ use an optimal projection algorithm, Gander-Japhet-Maday-Nataf (2005)
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Validation example, 2 rock types

Homogenenous medium Ω = (0,1)3. Mobility λ0(S) = S, S ∈ [0,1],
Capillary pressure π1(S) = 5S2, π2(S) = 5S2 + 1 S ∈ [0,1]

Evolution of the saturation (t = 0.019, t = 0.6, t = 3)

evolution of the saturation, capillary pressure, and error at final time
along a line orthogonal to the interface.
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DNAPL infiltration: medium with a low capillarity lens

Mobilities λo,i (S) = S2, and λg,i (S) = 3(1−S)2, i ∈ {1,2},
Capilary pressure π1(S) = ln(1−S), and π2(S) = 0.5− ln(1−S).

Evolution of saturation (t = 100,200,350,480)

Convergence curve

Influence of parameters β1,β2

on convergence
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Example wth 3 rock types

Capillary pressure curves : π1(u) = 3u2, π2(u) = 5u2, and π3(u) = 3u2 + 0.5.
Use of time windows reduces number of DD iterations (after the first one)

Mesh and velocity streamlines

Evolution of the saturation (t = 500,2000,4000)
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