Faster pairing computation in Edwards coordinates

Sorina Ionica

PRISM, Université de Versailles
(joint work with Antoine Joux)

Journées de Codage et Cryptographie 2008

Edwards coordinates

- Thm: (Bernstein and Lange, 2007) Let E be an elliptic curve on F_{q}. If $E\left(F_{q}\right)$ has a unique element of order 2 then there is a nonsquare $d \in F_{q}$ such that E is birationally equivalent over F_{q} to the Edwards curve

$$
x^{2}+y^{2}=1+d x^{2} y^{2}
$$

- On the Edwards curve the addition law is

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \rightarrow\left(\frac{x_{1} y_{2}+y_{1} x_{2}}{1+d x_{1} x_{2} y_{1} y_{2}}, \frac{y_{1} y_{2}-x_{1} x_{2}}{1-d x_{1} x_{2} y_{1} y_{2}}\right)
$$

Homogeneous Edwards coordinates

- In cryptographic applications one should use homogeneous Edwards coordinates, i.e. (X, Y, Z) corresponding to $(X / Z, Y / Z)$ on the Edwards curve.
- Addition becomes:

$$
\begin{aligned}
X_{3} & =Z_{1} Z_{2}\left(X_{0} Y_{1}+Y_{0} X_{1}\right)\left(Z_{1}^{2} Z_{2}^{2}+d X_{0} X_{1} Y_{0} Y_{1}\right) \\
Y_{3} & =Z_{1} Z_{2}\left(Y_{0} Y_{1}-X_{0} X_{1}\right)\left(Z_{1}^{2} Z_{2}^{2}-d X_{0} X_{1} Y_{0} Y_{1}\right) \\
Z_{3} & =\left(Z_{1}^{2} Z_{2}^{2}+d X_{0} X_{1} Y_{0} Y_{1}\right)\left(Z_{1}^{2} Z_{2}^{2}-d X_{0} X_{1} Y_{0} Y_{1}\right)
\end{aligned}
$$

Edwards versus Jacobian

Let E be an elliptic curve over F_{q}, i.e.

$$
E: y^{2}=x^{3}+a x+b
$$

- Jacobian coordinates : (X, Y, Z) such that $\left(\frac{X}{Z^{2}}, \frac{Y}{Z^{3}}\right)$ is a point on the elliptic curve E.
- Computations in Edwards coordinates are significantly faster than in Jacobian coordinates!

Edwards versus Jacobian

Table: Performance evaluation: Edwards versus Jacobian

	Edwards coordinates	Jacobian coordinates
addition	$10 \mathbf{M}+1 \mathbf{S}$	$11 \mathbf{M}+5 \mathbf{S}$ (plus $\mathbf{S}-\mathbf{M}$ tradeoff)
doubling	$3 \mathbf{M}+4 \mathbf{S}$	$1 \mathbf{M}+8 \mathbf{S}$ or $4 \mathbf{M}+4 \mathbf{S}$ for $a=-3$
mixed addition $\left(Z_{2}=1\right)$	$9 \mathbf{M}+1 \mathbf{S}$	$8 \mathbf{M}+3 \mathbf{S}$ (plus $2 \mathbf{M}-\mathbf{S}$ tradeoffs)

What is a pairing?

A pairing is a map

$$
e: G_{1} \times G_{1}^{\prime} \rightarrow G_{2}
$$

where $G_{1}, G_{1}^{\prime}, G_{2}$ are groups of order r such that the following hold:

- bilinear: $e(a P, Q)=e(P, a Q)=e(P, Q)^{a}$
- non-degenerate: for every $P \in G_{1}$ different from 0 there is $Q \in G_{1}^{\prime}$ such that $e(P, Q) \neq 1$.

The Tate pairing. Notations.

Let E be an elliptic curve over F_{q}, i.e.

$$
E: y^{2}=x^{3}+a x+b
$$

- Let $r \mid \# E\left(F_{q}\right)$ and $E[r]$ the subgroup of points of order r, i.e.

$$
E[r]=\left\{P \in E\left(\overline{F_{q}}\right) \mid r P=O\right\}
$$

- Embedding degree: k minimal with $r \mid\left(q^{k}-1\right)$.
- Note r-roots of unity $\mu_{r} \in F_{q^{k}}^{\times}$.
- If $k>1$ then $E\left(F_{q^{k}}\right)[r]=E[r]$.

The Tate pairing

- Choose $P \in E[r]$ and $Q \in E\left(F_{q^{k}}\right)$.
- Take $f_{r, P}=r(P)-r(O)$ and $D=(Q+T)-(T)$, with T such as the support of D is different from the support of $f_{r, P}$.
- The Tate pairing is given by

$$
T_{r}(P, Q)=f_{r, P}(D)^{\left(q^{k}-1\right) / r}
$$

- Domain and image are

$$
T_{r}(\cdot, \cdot): E[r] \times E\left(F_{q^{k}}\right) / r E\left(F_{q^{k}}\right) \rightarrow \mu_{r}
$$

Miller's algorithm

- Introduce for $i \geq 1$ functions $f_{i, P}$ such as $\operatorname{div}\left(f_{i, P}\right)=i(P)-(i P)-(i-1)(O)$
- Note div $f_{r, P}=r(P)-r(O)$.
- Establish the Miller equation

$$
f_{i+j, P}=f_{i, P} f_{j, P} \frac{l}{v}
$$

where I and v are such that

$$
\begin{aligned}
& \operatorname{div}(I)=(i P)+(j P)+(-(i+j) P)-3(O) \\
& \text { and } \operatorname{div}(v)=(-(i+j) P)+((i+j) P)-2(O)
\end{aligned}
$$

Miller's algorithm

- Use the double and add method to compute $f_{r, P}(D)$.
- Exploit the Miller equation

$$
f_{i+j, P}=f_{i, P} f_{j, P} \frac{l}{v}
$$

- I: the line through iP and $j P$
- v : the vertical line through $(i+j) P$.
- Evaluate at D^{\prime} at every step.

Miller's algorithm

- Count number of operations in the doubling step in the double and add method to evaluate performance of the algorithm independently from
- any faster exponentiation techniques
- the Hamming weight of r.
- Up to now best performance in Jacobian coordinates.

Back to Edwards curves

- Note a 4-torsion subgroup defined over F_{q} :

$$
\left\{O=(0,1), T_{4}=(1,0), T_{2}=(0,-1),-T_{4}=(-1,0)\right\}
$$

- Take at look at the action of this subgroup on a fixed point $P=(x, y)$:
$P \rightarrow\left\{P, P+T_{4}=(y,-x), P+T_{2}=(-x,-y), P-T_{4}=(-y, x)\right\}$

Back to Edwards curves

- If $x y \neq 0$ note $p=(x y)^{2}$ and $s=x / y-y / x$ to characterize the point P up to the action of the 4-torsion subgroup.
- Take $E_{s, p}: s^{2} p=(1+d p)^{2}-4 p$ and define

$$
\begin{aligned}
\phi: E & \rightarrow E_{s, p} \\
\phi(x, y) & =\left((x y)^{2}, \frac{x}{y}-\frac{y}{x}\right) .
\end{aligned}
$$

- ϕ is separable of degree 4.

And back to an elliptic curve...

- $E_{s, p}$ is elliptic as:

$$
\begin{aligned}
s^{2} p & =(1+d p)^{2}-4 p \\
& \downarrow(P, S, Z) \\
S^{2} P & =(Z+d P)^{2} Z-4 P Z^{2} \\
& \downarrow(P=1) \\
s^{2} & =z^{3}+(2 d-4) z^{2}+d z
\end{aligned}
$$

- Consider the standard addition law: $O_{s, p}=(0,1,0)$ neutral element and $T_{2, s, p}=(1,0,0)$ point of order 2.

Arithmetic of $E_{s, p}$

- Take P_{1} and P_{2} two points on $E_{s, p}$
- Take $I_{s, p}$ the line passing through P_{1} and P_{2}. Take R its third point of intersection with the curve $E_{s, p}$.
- Take $v_{s, p}$ the vertical line through R.
- Define $P_{1}+P_{2}$ as the second point of intersection of $v_{s, p}$ with $E_{s, p}$.
- Note that
$\operatorname{div}\left(I_{s, p}\right)=\left(P_{1}\right)+\left(P_{2}\right)+\left(-\left(P_{1}+P_{2}\right)\right)-2\left(T_{2, s, p}\right)-\left(O_{s, p}\right)$ and $\operatorname{div}\left(v_{s, p}\right)=\left(P_{1}+P_{2}\right)+\left(-\left(P_{1}+P_{2}\right)\right)-2\left(T_{2, s, p}\right)$.

Miller's algorithm on Edwards curves

- Consider slightly modified functions $f_{i, P}^{(4)}$:

$$
\begin{aligned}
f_{i, P}^{(4)} & =i\left((P)+\left(P+T_{4}\right)+\left(P+T_{2}\right)+\left(P-T_{4}\right)\right) \\
& -\left((i P)+\left(i P+T_{4}\right)+\left(i P+T_{2}\right)+\left(i P-T_{4}\right)\right) \\
& -(i-1)\left((O)+\left(T_{4}\right)+\left(T_{2}\right)+\left(-T_{4}\right)\right)
\end{aligned}
$$

- Then $f_{r, P}^{(4)}=r\left((P)+\left(P+T_{4}\right)+\left(P+T_{2}\right)+\left(P-T_{4}\right)\right)-$ $r\left((O)+\left(T_{4}\right)+\left(T_{2}\right)+\left(-T_{4}\right)\right)$.
- Compute the 4-th power of the Tate pairing:

$$
T_{r}(P, Q)^{4}=f_{r, P}^{(4)}(D)^{\frac{q^{k}-1}{r}}
$$

Miller's algorithm on the Edwards curve

Establish the Miller equation:

$$
f_{i+j, P}^{(4)}=f_{i, P}^{(4)} f_{j, P}^{(4)} \frac{l}{V},
$$

where I / v is the function of divisor

$$
\begin{aligned}
\operatorname{div}\left(\frac{l}{v}\right) & =\left((i P)+\left(i P+T_{4}\right)+\left(i P+T_{2}\right)+\left(i P-T_{4}\right)\right) \\
& +\left((j P)+\left(j P+T_{4}\right)+\left(j P+T_{2}\right)+\left(j P-T_{4}\right)\right) \\
& -\left(((i+j) P)+\left((i+j) P+T_{4}\right)+\left((i+j) P+T_{2}\right)+((i+j) P\right. \\
& -\left((0)+\left(T_{4}\right)+\left(T_{2}\right)+\left(-T_{4}\right)\right) .
\end{aligned}
$$

Miller's algorithm on the Edwards curve

- Let $P^{\prime}=\phi(P)$ and $I_{s, p}$ and $v_{s, p}$ such as $\operatorname{div}\left(I_{s, p}\right)=\left(i P^{\prime}\right)+\left(j P^{\prime}\right)+\left((i+j) P^{\prime}\right)-2\left(T_{2, s, p}\right)-\left(O_{s, p}\right)$ and div $\left(v_{s, p}\right)=\left((i+j) P^{\prime}\right)+\left(-(i+j) P^{\prime}\right)-2\left(T_{2, s, p}\right)$.
- Get $I / v=\phi^{*}\left(I_{s, p} / v_{s, p}\right)$.

Computations

- doubling for $K=\left(X_{1}, Y_{1}, Z_{1}\right)$:

$$
\begin{aligned}
X_{3} & =2 X_{1} Y_{1}\left(2 Z_{1}^{2}-\left(X_{1}^{2}+Y_{1}^{2}\right)\right) \\
Y_{3} & =\left(X_{1}^{2}+Y_{1}^{2}\right)\left(Y_{1}^{2}-X_{1}^{2}\right) \\
Z_{3} & =\left(X_{1}^{2}+Y_{1}^{2}\right)\left(2 Z_{1}^{2}-\left(X_{1}^{2}+Y_{1}^{2}\right)\right)
\end{aligned}
$$

- computing / and v :

$$
\begin{aligned}
I(x, y) & =I_{1}(x, y) / I_{2}=\left(\left(X_{1}^{2}+Y_{1}^{2}-Z_{1}^{2}\right)\left(X_{1}^{2}-Y_{1}^{2}\right)\right. \\
& \cdot\left(\left(2 X_{1} Y_{1}(x / y-y / x)-2\left(X_{1}^{2}-Y_{1}^{2}\right)\right)\right. \\
& \left.-Z_{3}\left(d Z_{1}^{2}(x y)^{2}-\left(X_{1}^{2}+Y_{1}^{2}-Z_{1}^{2}\right)\right)\right) / Z_{1}^{6} \\
v(x, y) & =v_{1}(x, y) / v_{2}=\left(d Z_{3}^{2}(x y)^{2}-\left(X_{3}^{2}+Y_{3}^{2}-Z_{3}^{2}\right)\right) / Z_{3}^{2}
\end{aligned}
$$

Operation count and conclusions

Table: Comparison of costs

	$k=1$
Jacobian coordinates	$8 \mathbf{s}+12 \mathbf{m}$
Edwards coordinates	$6 \mathbf{s}+12 \mathbf{m}$

- similar analysis for k odd (although such curves are less used in practice)

Even embedding degree k

- Choose P such that $<P>\subset E\left(F_{q}\right)$
- Choose Q such as elements of $\langle Q\rangle$ have one coordinate defined over $F_{q^{k / 2}}$
- Compute $T_{r}(P, Q)=f_{r, P}(Q)^{\left(q^{k}-1\right) / r}$.

Operation count and conclusions

Table: Comparison of costs in the case of $k=2$

	$k=2$
Jacobian coordinates	$6 \mathbf{s}+7 \mathbf{m}+\mathbf{S}+\mathbf{M}$
Jacobian coordinates for $a=-3$	$4 \mathbf{s}+8 \mathbf{m}+\mathbf{S}+\mathbf{M}$
Edwards coordinates	$3 \mathbf{s}+10 \mathbf{m}+\mathbf{S}+\mathbf{M}$

- s, m costs of operations in F_{q} and \mathbf{S}, \mathbf{M} costs of operations in $F_{q^{k}}$

Operation count and conclusions

Table: Comparison of costs in the case of $k \geq 4$ even

	$k \geq 4$ even
Jacobian coordinates	$6 \mathbf{s}+(k+6) \mathbf{m}+\mathbf{S}+\mathbf{M}$
Jacobian coordinates for $a=-3$	$4 \mathbf{s}+(k+7) \mathbf{m}+\mathbf{S}+\mathbf{M}$
Edwards coordinates	$3 \mathbf{s}+(k+9) \mathbf{m}+\mathbf{S}+\mathbf{M}$

- \mathbf{s}, \mathbf{m} costs of operations in F_{q} and \mathbf{S}, \mathbf{M} costs of operations in $F_{q^{k}}$

Questions...?

