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Edwards coordinatesI Thm: (Bernstein and Lange, 2007) Let E be an elliptic
curve on Fq. If E(Fq) has a unique element of order 2 then
there is a nonsquare d 2 Fq such that E is birationally
equivalent over Fq to the Edwards curve

x2 + y2 = 1 + dx2y2:I On the Edwards curve the addition law is(x1; y1); (x2; y2) ! ( x1y2 + y1x2

1 + dx1x2y1y2
; y1y2 � x1x2

1 � dx1x2y1y2
)
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Homogeneous Edwards coordinatesI In cryptographic applications one should use
homogeneous Edwards coordinates, i.e. (X ;Y ;Z )
corresponding to (X=Z ;Y=Z ) on the Edwards curve.I Addition becomes:

X3 = Z1Z2(X0Y1 + Y0X1)(Z 2
1 Z 2

2 + dX0X1Y0Y1)
Y3 = Z1Z2(Y0Y1 � X0X1)(Z 2

1 Z 2
2 � dX0X1Y0Y1)

Z3 = (Z 2
1 Z 2

2 + dX0X1Y0Y1)(Z 2
1 Z 2

2 � dX0X1Y0Y1)
Sorina Ionica Faster pairing computation in Edwards coordinates



Edwards versus Jacobian

Let E be an elliptic curve over Fq, i.e.

E : y2 = x3 + ax + b:I Jacobian coordinates :(X ;Y ;Z ) such that ( X
Z 2 ; Y

Z 3 ) is a
point on the elliptic curve E .I Computations in Edwards coordinates are significantly
faster than in Jacobian coordinates!
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Edwards versus Jacobian

Table: Performance evaluation: Edwards versus Jacobian

Edwards coordinates Jacobian coordinates
addition 10M+1S 11M+5S

(plus S-M tradeoff)
doubling 3M+4S 1M+8S

or 4M+4S for a = �3
mixed addition 9M+1S 8M+3S

(Z2 = 1) (plus 2 M-S tradeoffs)
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What is a pairing?

A pairing is a map
e : G1 �G

0
1 ! G2

where G1;G0
1;G2 are groups of order r such that the following

hold:I bilinear: e(aP;Q) = e(P;aQ) = e(P;Q)aI non-degenerate: for every P 2 G1 different from 0 there is
Q 2 G

0
1 such that e(P;Q) 6= 1.
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The Tate pairing. Notations.

Let E be an elliptic curve over Fq, i.e.

E : y2 = x3 + ax + b:I Let r j #E(Fq) and E [r ℄ the subgroup of points of order r ,
i.e.

E [r ℄ = fP 2 E(Fq)jrP = OgI Embedding degree: k minimal with r j(qk � 1).I Note r -roots of unity �r 2 F�
qk .I If k > 1 then E(Fqk )[r ℄ = E [r ℄.
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The Tate pairingI Choose P 2 E [r ℄ and Q 2 E(Fqk ):I Take fr ;P = r(P) � r(O) and D = (Q + T )� (T ), with T
such as the support of D is different from the support of
fr ;P .I The Tate pairing is given by

Tr (P;Q) = fr ;P(D)(qk�1)=rI Domain and image are

Tr (�; �) : E [r ℄� E(Fqk )=rE(Fqk ) ! �r
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Miller’s algorithmI Introduce for i � 1 functions fi ;P such as
div (fi ;P) = i(P)� (iP)� (i � 1)(O)I Note div fr ;P = r(P) � r(O).I Establish the Miller equation

fi+j ;P = fi ;P fj ;P l
v

where l and v are such that

div (l) = (iP) + (jP) + (�(i + j)P)� 3(O)
and div (v) = (�(i + j)P) + ((i + j)P)� 2(O):
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Miller’s algorithmI Use the double and add method to compute fr ;P(D).I Exploit the Miller equation

fi+j ;P = fi ;P fj ;P l
vI l : the line through iP and jPI v : the vertical line through (i + j)P.I Evaluate at D

0
at every step.
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Miller’s algorithm

I Count number of operations in the doubling step in the
double and add method to evaluate performance of the
algorithm independently fromI any faster exponentiation techniquesI the Hamming weight of r .I Up to now best performance in Jacobian coordinates.
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Back to Edwards curves

I Note a 4-torsion subgroup defined over Fq:fO = (0;1);T4 = (1;0);T2 = (0;�1);�T4 = (�1;0)gI Take at look at the action of this subgroup on a fixed point
P = (x ; y):
P ! fP;P+T4 = (y ;�x);P+T2 = (�x ;�y);P�T4 = (�y ; x)g
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Back to Edwards curves

I If xy 6= 0 note p = (xy)2 and s = x=y � y=x to characterize
the point P up to the action of the 4-torsion subgroup.I Take Es;p : s2p = (1 + dp)2 � 4p and define� : E ! Es;p�(x ; y) = ((xy)2; x

y
� y

x
):I � is separable of degree 4.
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And back to an elliptic curve...I Es;p is elliptic as :

s2p = (1 + dp)2 � 4p# (P;S;Z )
S2P = (Z + dP)2Z � 4PZ 2# (P = 1)

s2 = z3 + (2d � 4)z2 + dzI Consider the standard addition law: Os;p = (0;1;0) neutral
element and T2;s;p = (1;0;0) point of order 2.
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Arithmetic of Es;pI Take P1 and P2 two points on Es;pI Take ls;p the line passing through P1 and P2. Take R its
third point of intersection with the curve Es;p.I Take vs;p the vertical line through R.I Define P1 + P2 as the second point of intersection of vs;p
with Es;p.I Note that
div (ls;p) = (P1) + (P2) + (�(P1 + P2))� 2(T2;s;p)� (Os;p)
and div (vs;p) = (P1 + P2) + (�(P1 + P2))� 2(T2;s;p):

Sorina Ionica Faster pairing computation in Edwards coordinates



Miller’s algorithm on Edwards curvesI Consider slightly modified functions f (4)i ;P :

f (4)i ;P = i((P) + (P + T4) + (P + T2) + (P � T4))� ((iP) + (iP + T4) + (iP + T2) + (iP � T4))� (i � 1)((O) + (T4) + (T2) + (�T4)):I Then f (4)r ;P = r((P) + (P + T4) + (P + T2) + (P � T4))�
r((O) + (T4) + (T2) + (�T4)).I Compute the 4-th power of the Tate pairing:

Tr (P;Q)4 = f (4)r ;P (D) qk�1
r :
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Miller’s algorithm on the Edwards curve

Establish the Miller equation:

f (4)i+j ;P = f (4)i ;P f (4)j ;P l
v
;

where l=v is the function of divisor

div( l
v
) = ((iP) + (iP + T4) + (iP + T2) + (iP � T4))+ ((jP) + (jP + T4) + (jP + T2) + (jP � T4))� (((i + j)P) + ((i + j)P + T4) + ((i + j)P + T2) + ((i + j)P � ))� ((0) + (T4) + (T2) + (�T4)):
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Miller’s algorithm on the Edwards curve

I Let P
0 = �(P) and ls;p and vs;p such as

div (ls;p) = (iP 0) + (jP 0) + ((i + j)P 0)� 2(T2;s;p)� (Os;p)
and div (vs;p) = ((i + j)P 0) + (�(i + j)P 0)� 2(T2;s;p):I Get l=v = ��(ls;p=vs;p).
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ComputationsI doubling for K = (X1;Y1;Z1):
X3 = 2X1Y1(2Z 2

1 � (X 2
1 + Y 2

1 ));
Y3 = (X 2

1 + Y 2
1 )(Y 2

1 � X 2
1 );

Z3 = (X 2
1 + Y 2

1 )(2Z 2
1 � (X 2

1 + Y 2
1 )):I computing l and v :

l(x ; y) = l1(x ; y)=l2 = ((X 2
1 + Y 2

1 � Z 2
1 )(X 2

1 � Y 2
1 )� ((2X1Y1(x=y � y=x) � 2(X 2

1 � Y 2
1 ))� Z3(dZ 2

1 (xy)2 � (X 2
1 + Y 2

1 � Z 2
1 )))=Z 6

1

v(x ; y) = v1(x ; y)=v2 = (dZ 2
3 (xy)2 � (X 2

3 + Y 2
3 � Z 2

3 ))=Z 2
3 :
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Operation count and conclusions

Table: Comparison of costs

k = 1
Jacobian coordinates 8s + 12m
Edwards coordinates 6s + 12mI similar analysis for k odd (although such curves are less

used in practice)
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Even embedding degree k

I Choose P such that < P >� E(Fq)I Choose Q such as elements of < Q > have one
coordinate defined over Fqk=2I Compute Tr (P;Q) = fr ;P(Q)(qk�1)=r .
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Operation count and conclusions

Table: Comparison of costs in the case of k = 2

k = 2
Jacobian coordinates 6s + 7m + S + M

Jacobian coordinates for a = �3 4s + 8m + S + M
Edwards coordinates 3s + 10m + S + MI s;m costs of operations in Fq and S;M costs of operations

in Fqk
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Operation count and conclusions

Table: Comparison of costs in the case of k � 4 even

k � 4 even
Jacobian coordinates 6s + (k + 6)m + S + M

Jacobian coordinates for a = �3 4s + (k + 7)m + S + M
Edwards coordinates 3s + (k + 9)m + S + MI s;m costs of operations in Fq and S;M costs of operations

in Fqk
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Questions...?
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