Faster pairing computation in Edwards coordinates

Sorina Ionica

PRISM, Université de Versailles

(joint work with Antoine Joux)

Journées de Codage et Cryptographie 2008

通 と く ヨ と く ヨ と

э.

Edwards coordinates

▶ **Thm:** (Bernstein and Lange, 2007) Let *E* be an elliptic curve on F_q . If $E(F_q)$ has a unique element of order 2 then there is a nonsquare $d \in F_q$ such that *E* is birationally equivalent over F_q to the *Edwards curve*

$$x^2 + y^2 = 1 + dx^2 y^2.$$

On the Edwards curve the addition law is

$$(x_1, y_1), (x_2, y_2) \rightarrow (\frac{x_1y_2 + y_1x_2}{1 + dx_1x_2y_1y_2}, \frac{y_1y_2 - x_1x_2}{1 - dx_1x_2y_1y_2})$$

A B > A B >

Homogeneous Edwards coordinates

- In cryptographic applications one should use homogeneous Edwards coordinates, i.e. (X, Y, Z) corresponding to (X/Z, Y/Z) on the Edwards curve.
- Addition becomes:

$$\begin{array}{rcl} X_3 &=& Z_1 Z_2 (X_0 \, Y_1 + \, Y_0 X_1) (Z_1^2 Z_2^2 + dX_0 X_1 \, Y_0 \, Y_1) \\ Y_3 &=& Z_1 Z_2 (Y_0 \, Y_1 - X_0 X_1) (Z_1^2 Z_2^2 - dX_0 X_1 \, Y_0 \, Y_1) \\ Z_3 &=& (Z_1^2 Z_2^2 + dX_0 X_1 \, Y_0 \, Y_1) (Z_1^2 Z_2^2 - dX_0 X_1 \, Y_0 \, Y_1) \end{array}$$

Edwards versus Jacobian

Let *E* be an elliptic curve over F_q , i.e.

$$E: y^2 = x^3 + ax + b.$$

- ► Jacobian coordinates :(X, Y, Z) such that (X/Z², Y/Z³) is a point on the elliptic curve E.
- Computations in Edwards coordinates are significantly faster than in Jacobian coordinates!

/□ ▶ < □ ▶ < □ ▶ -

Edwards versus Jacobian

Table: Performance evaluation: Edwards versus Jacobian

	Edwards coordinates	Jacobian coordinates
addition	10 M +1 S	11 M +5 S
		(plus S-M tradeoff)
doubling	3 M +4 S	1 M +8 S
		or 4 M+ 4 S for <i>a</i> = −3
mixed addition	9 M +1 S	8 M +3 S
$(Z_2 = 1)$		(plus 2 M-S tradeoffs)

→ ∃ > < ∃ >

A pairing is a map

$$e:G_1\times G_1'\to G_2$$

where G_1, G'_1, G_2 are groups of order *r* such that the following hold:

- ▶ bilinear: e(aP, Q) = e(P, aQ) = e(P, Q)^a
- non-degenerate: for every P ∈ G₁ different from 0 there is Q ∈ G'₁ such that e(P, Q) ≠ 1.

The Tate pairing. Notations.

Let *E* be an elliptic curve over F_q , i.e.

$$E: y^2 = x^3 + ax + b.$$

Let r | #E(F_q) and E[r] the subgroup of points of order r, i.e.

$$E[r] = \{P \in E(\overline{F_q}) | rP = 0\}$$

- Embedding degree: *k* minimal with $r|(q^k 1)$.
- Note *r*-roots of unity $\mu_r \in F_{a^k}^{\times}$.
- If k > 1 then $E(F_{q^k})[r] = E[r]$.

白マメリア・ロ

The Tate pairing

- Choose $P \in E[r]$ and $Q \in E(F_{q^k})$.
- ► Take f_{r,P} = r(P) r(O) and D = (Q + T) (T), with T such as the support of D is different from the support of f_{r,P}.
- The Tate pairing is given by

$$T_r(P,Q) = f_{r,P}(D)^{(q^k-1)/r}$$

Domain and image are

$$T_r(\cdot, \cdot) : E[r] \times E(F_{q^k}) / rE(F_{q^k}) \to \mu_r$$

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Miller's algorithm

- ► Introduce for $i \ge 1$ functions $f_{i,P}$ such as div $(f_{i,P}) = i(P) - (iP) - (i-1)(O)$
- Note div $f_{r,P} = r(P) r(O)$.
- Establish the Miller equation

$$f_{i+j,P} = f_{i,P}f_{j,P}\frac{l}{v}$$

where I and v are such that

div
$$(I) = (iP) + (jP) + (-(i+j)P) - 3(O)$$

and div $(v) = (-(i+j)P) + ((i+j)P) - 2(O)$.

通 と く ヨ と く ヨ と

Miller's algorithm

- Use the double and add method to compute $f_{r,P}(D)$.
- Exploit the Miller equation

$$f_{i+j,P} = f_{i,P}f_{j,P}\frac{l}{v}$$

- I: the line through iP and jP
- v: the vertical line through (i + j)P.
- Evaluate at D' at every step.

Miller's algorithm

- Count number of operations in the doubling step in the double and add method to evaluate performance of the algorithm independently from
 - any faster exponentiation techniques
 - ▶ the Hamming weight of *r*.
- Up to now best performance in Jacobian coordinates.

伺 と く ヨ と く ヨ と

Back to Edwards curves

Note a 4-torsion subgroup defined over F_q:

$$\{O = (0, 1), T_4 = (1, 0), T_2 = (0, -1), -T_4 = (-1, 0)\}$$

• Take at look at the action of this subgroup on a fixed point P = (x, y):

 $P \rightarrow \{P, P+T_4 = (y, -x), P+T_2 = (-x, -y), P-T_4 = (-y, x)\}$

掃▶ ▲ 耳▶ ▲ 耳▶ 耳 の Q (>

Back to Edwards curves

- If xy ≠ 0 note p = (xy)² and s = x/y − y/x to characterize the point P up to the action of the 4-torsion subgroup.
- Take $E_{s,p}$: $s^2p = (1 + dp)^2 4p$ and define

$$egin{array}{rcl} \phi: E &
ightarrow & E_{s,p} \ \phi(x,y) & = & ((xy)^2, rac{x}{y} - rac{y}{x}). \end{array}$$

• ϕ is separable of degree 4.

直 く き と く き と … ほ

And back to an elliptic curve...

► *E*_{s,p} is elliptic as :

$$s^{2}p = (1 + dp)^{2} - 4p$$

$$\downarrow (P, S, Z)$$

$$S^{2}P = (Z + dP)^{2}Z - 4PZ^{2}$$

$$\downarrow (P = 1)$$

$$s^{2} = z^{3} + (2d - 4)z^{2} + dz$$

► Consider the standard addition law: O_{s,p} = (0, 1, 0) neutral element and T_{2,s,p} = (1, 0, 0) point of order 2.

直 く き と く き と … ほ

Arithmetic of E_{s,p}

- Take P_1 and P_2 two points on $E_{s,p}$
- ► Take I_{s,p} the line passing through P₁ and P₂. Take R its third point of intersection with the curve E_{s,p}.
- Take $v_{s,p}$ the vertical line through *R*.
- Define P₁ + P₂ as the second point of intersection of v_{s,p} with E_{s,p}.
- Note that

div $(I_{s,p}) = (P_1) + (P_2) + (-(P_1 + P_2)) - 2(T_{2,s,p}) - (O_{s,p})$ and div $(v_{s,p}) = (P_1 + P_2) + (-(P_1 + P_2)) - 2(T_{2,s,p}).$

Miller's algorithm on Edwards curves

Consider slightly modified functions f⁽⁴⁾_{i,P}:

$$\begin{split} f_{i,P}^{(4)} &= i((P) + (P + T_4) + (P + T_2) + (P - T_4)) \\ &- ((iP) + (iP + T_4) + (iP + T_2) + (iP - T_4)) \\ &- (i - 1)((O) + (T_4) + (T_2) + (-T_4)). \end{split}$$

- ▶ Then $f_{r,P}^{(4)} = r((P) + (P + T_4) + (P + T_2) + (P T_4)) r((O) + (T_4) + (T_2) + (-T_4)).$
- Compute the 4-th power of the Tate pairing:

$$T_r(P, Q)^4 = f_{r,P}^{(4)}(D)^{\frac{q^k-1}{r}}.$$

Miller's algorithm on the Edwards curve

Establish the Miller equation:

$$f_{i+j,P}^{(4)} = f_{i,P}^{(4)} f_{j,P}^{(4)} \frac{I}{V},$$

where I/v is the function of divisor

$$div(\frac{l}{v}) = ((iP) + (iP + T_4) + (iP + T_2) + (iP - T_4)) + ((jP) + (jP + T_4) + (jP + T_2) + (jP - T_4)) - (((i + j)P) + ((i + j)P + T_4) + ((i + j)P + T_2) + ((i + j)P + T_4)) - ((0) + (T_4) + (T_2) + (-T_4)).$$

3 X X 3 X

Miller's algorithm on the Edwards curve

→ ∃ > < ∃ >

Computations

• doubling for
$$K = (X_1, Y_1, Z_1)$$
:

$$\begin{array}{rcl} X_3 & = & 2X_1 \, Y_1 (2Z_1^2 - (X_1^2 + Y_1^2)), \\ Y_3 & = & (X_1^2 + Y_1^2) (Y_1^2 - X_1^2), \\ Z_3 & = & (X_1^2 + Y_1^2) (2Z_1^2 - (X_1^2 + Y_1^2)). \end{array}$$

computing I and v:

$$\begin{split} l(x,y) &= l_1(x,y)/l_2 = ((X_1^2 + Y_1^2 - Z_1^2)(X_1^2 - Y_1^2)) \\ &\cdot ((2X_1Y_1(x/y - y/x) - 2(X_1^2 - Y_1^2))) \\ &- Z_3(dZ_1^2(xy)^2 - (X_1^2 + Y_1^2 - Z_1^2)))/Z_1^6 \\ v(x,y) &= v_1(x,y)/v_2 = (dZ_3^2(xy)^2 - (X_3^2 + Y_3^2 - Z_3^2))/Z_3^2. \end{split}$$

・ロン ・聞 と ・ ヨ と ・ ヨ と

∃ 990

Operation count and conclusions

Table: Comparison of costs

	<i>k</i> = 1
Jacobian coordinates	8 s + 12 m
Edwards coordinates	6 s + 12 m

 similar analysis for k odd (although such curves are less used in practice)

∃ ► < ∃ ►</p>

Even embedding degree k

- Choose *P* such that $\langle P \rangle \subset E(F_q)$
- Choose Q such as elements of < Q > have one coordinate defined over F_{a^{k/2}}
- Compute $T_r(P, Q) = f_{r,P}(Q)^{(q^k-1)/r}$.

Operation count and conclusions

Table: Comparison of costs in the case of k = 2

	<i>k</i> = 2
Jacobian coordinates	$6\mathbf{s} + 7\mathbf{m} + \mathbf{S} + \mathbf{M}$
Jacobian coordinates for $a = -3$	$4\mathbf{s} + 8\mathbf{m} + \mathbf{S} + \mathbf{M}$
Edwards coordinates	3s + 10m + S + M

► s, m costs of operations in F_q and S, M costs of operations in F_{q^k}

直 ト イヨ ト イヨ ト

э.

Operation count and conclusions

Table: Comparison of costs in the case of $k \ge 4$ even

	$k \ge 4$ even
Jacobian coordinates	$6\mathbf{s} + (k+6)\mathbf{m} + \mathbf{S} + \mathbf{M}$
Jacobian coordinates for $a = -3$	4s + (k + 7)m + S + M
Edwards coordinates	3s + (k + 9)m + S + M

► s, m costs of operations in F_q and S, M costs of operations in F_{q^k}

Questions...?