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1 FSB Specifications

1.1 Overview

The FSB hash function we present uses the Merkle-Damg̊ard domain extender [11, 18], with a
large internal state and an additional final compression function (see Figure 1). It is thus based
on a main compression function taking s input bits and outputting r bits. The message to hash
is first split into blocks of size s−r and some padding (including the message length) is added in
order to obtain an integer number of blocks. The first block is compressed together with an IV
of r bits to obtain the first r-bit chaining value. Then the second message block is compressed
together with the first chaining value to obtain a second chaining value of r bits. This continues
until the final block of message (the one containing the message length) is compressed to obtain
what we will call the pre-final hash. This pre-final hash is then compressed using the final
compression function to obtain the hash of the message.
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Figure 1: The Merkle-Damg̊ard domain extender, with an additional final compression function.

The compression function of FSB uses coding theory techniques and computes the r bits
syndrome of a binary word derived from the s input bits. In practice, the output of the
compression function is simply the XOR of some cyclic shifts of a set of predefined vectors.

The padding is a standard Merkle-Damg̊ard padding and for the final compression function
we use a few rounds of Whirlpool.

We define 5 versions of FSB, each with a different output length and different compression
function parameters. They are reported in Table 1.

hash size s r

FSB160 160 bits 1 120 640
FSB224 224 bits 1 568 896
FSB256 256 bits 1 792 1 024
FSB384 384 bits 2 392 1 472
FSB512 512 bits 3 224 1 984

Table 1: Parameters for the five versions of FSB.

1.2 Detailed Description

We now give a detailed description of each of the components of FSB. In this description, the
first bit of a byte refers to the highest weight bit of this byte. The first byte of a table of bytes
is the byte at position 0. Thus the first bit of a table of bytes is the highest weight bit of the
byte at position 0.
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1.2.1 Domain Extender

Padding. Suppose we want to hash a message of databitlen bits. The domain extender first
splits this message in bdatabitlens−r c full blocks of s − r bits. The last block of message contains
σ = databitlen mod (s − r) bits. This number of bits σ is between 0 and s − r − 1 and a
padding has to be applied. Two cases can occur:

• if σ ≤ s − r − 65 the padding can fit in the space remaining in this partially completed
block. First a single bit “1” is appended to the message bits, then s− r− σ− 65 bits “0”
are appended (it is possible that no such “0” are added) leaving 64 bits in the block to
append the value databitlen coded on 64 bits.

• if σ > s−r−65 the padding will not fit in the remaining space of the block. First a single
bit “1” is appended to the message bits, then s−r−σ bits “0” are appended (it is possible
that no such “0” are added). This completes a (s − r)-bit block. Then a final block is
appended to the message consisting of s − r − 64 bits “0” and the value of databitlen
coded on 64 bits.

The 64 last bits of the last block reserved for the value of databitlen are filled as follows: these
64 bits are seen as a table of 8 bytes, the first byte will contain the highest weight byte of the
value of databitlen, the second block the second highest byte of databitlen, and so on down
to the eighth byte which will contain the lowest weight byte of databitlen. If:

databitlen = b0 + b1 × 28 + b2 × 216 + ... + b7 × 256

where all the bi are a byte of value between 0 and 255, then, the 64 for last bits of the last block
will be the 8 bytes table:

[b7, b6, b5, b4, b3, b2, b1, b0].

Initial Value (IV). For all the versions of FSB, the IV is the all “0” r-bit vector.

Block Processing. After the padding, we obtain ddatabitlen+65
s−r e blocks of s− r bits. These

blocks are processed in order starting from the first.

• The first (s− r)-bit block is concatenated with the r-bit IV to obtain s bits. These s bits
are input to the compression function which outputs r bits. These r bits are used as a
chaining value for the next message block.

• For each of the following blocks, the r-bit chaining value of the previous block is concate-
nated with the s − r bits of message. Theses bits are input to the compression function
to obtain the next round r-bit chaining value.

• When the last block (the one containing the value of databitlen) is compressed, the
output r bits will constitute the pre-final hash of the message. This pre-final hash is input
to the final compression function which outputs the hash of the message.

1.2.2 Compression Function

The compression function is defined by 4 parameters (n,w, r, p). From these parameters it is
possible to compute its input size s = w × log2

n
w . Table 2 below contains the values of n,w, r

and p for the 5 versions of FSB.
This compression uses b = n

r pre-defined p-bit vectors. The output is the XOR of w distinct
cyclic shifts of some of these vectors, truncated to r bits.
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n w r p s

FSB160 5× 218 80 640 653 1 120
FSB224 7× 218 112 896 907 1 568
FSB256 221 128 1 024 1 061 1 792
FSB384 23× 216 184 1 472 1 483 2 392
FSB512 31× 216 248 1 984 1 987 3 224

Table 2: Parameters for the five versions of FSB.

Vectors Definitions. For each FSB version, a set of b = n
r vectors (Vj)j∈[0,b−1] of p bits is

defined using the parity of the decimal digits of π. The first vector V0 corresponds to the p
first digits of π: if a digit is even, the vector contains a “0”, if it is odd it contains a “1”. For
efficiency reasons, the first bit of a vector is always aligned with a digit of π at a position which
is a multiple of 8. Therefore, there are some small gaps between the vectors. Figure 2 gives an
example of how the vectors Vj are computed. Then these b vectors are converted to tables of
bytes with the first bit of each vector going to the hight weight bit of the byte at position 0.

3.14159265 35897932 38462643 38327950 28841971 69399375

10111001 11011110 10000001 10101110 00001111 01111111

10111001 11011 10000001 10101 00001111 01111110 110 111

parity

blocs of bitsp

{0xb9,0xd8} {0x81,0xa8} {0x0f,0x78}

tables of bytes

Figure 2: An example of how vectors are computed from the parity of digits of π. Here p = 13,
so there are gaps of 3 bits between vectors.

These vectors need to be cyclically shifted to the right and truncated to r bits before the
XORing step. This operation is a standard cyclic shift (to the right) on the p bit vector followed
by a truncation to the r first bits. With the conversion choice to tables of bytes, this operation
also corresponds to right shifts on the bytes1. Figure 3 gives an example of such a cyclic shift.

10111001 11011

{0xb9,0xd8} >>>1

shift by 1

11011100 11101

{0xdc,0xe8} >>>3

shift by 3

10111011 10011

{0xbb,0x98}

truncate to bitsr

{0xb9,0xc0} {0xdc,0xc0} {0xbb,0x80}

10111001 11 11011100 11 10111011 10

Figure 3: Cyclic shift to the right of a vector of p bits, followed by a truncation to r bits. Here
p = 13 and r = 10.

Vector XORing. Given the s input bits of the function, we derive a set of w indexes
(Wi)i∈[0,w−1] between 0 and n − 1. The value of each Wi is computed from the inputs bits

1This is not a byte-wise cyclic shift, as what is shifted out of a byte comes inside the next byte

4



like this:

Wi = i× n

w
+ IVi + Mi × 2

r
w .

Where IVi and Mi are two indexes read from the r bits of IV (or chaining) and the s− r bits of
message computed as follows (see Figure 4):

• each IVi is a value between 0 and 2
r
w −1 derived from r

w bits of IV (or chaining). The bits
are read in order, starting from the beginning of the IV (first bytes of the table, highest
weight first), the first r

w bits define IV0, the next ones IV1, and so on. Again, for each IVi,
the first of the r

w bits will be the high weight bit and the last one the bit of lowest weight.

• similarly, Mi is a value between 0 and 2
s−r
w − 1 derived from s−r

w bits of message. The bits
are read exactly as for the IV.

• note that when computing Wi, the bits of IV are of lowest weight than those of message.

01011001 11000110 10100101 00101101 10011010

r bits s r- bits

r

w

s r-
w

IV
0
=22 IV

1
=28 IV

2
=26 IV

3
=37 M

0
=2 M

1
=13 M

2
=9 M

3
=10

IV message

Figure 4: Computing the values IVi and Mi from the IV and message bits. Here w = 4, r
w = 6

and s−r
w = 4.

Once the Wi are computed, they are used to determine which of the b = n
r vectors are

XORed and by how much they should be shifted cyclically. Each Wi correspond to the vector
number bWi

r c cyclically shifted to the right by Wi mod r positions. These vectors are then
XORed to obtain the output h of the compression function. If we denote by Vj the j-th vector
previously computed (from the digits of π), by trunc( · , r) the truncation to r bits and by
>>>k the cyclic shift to the right by k positions, the output h is computed as:

h =
w⊕

i=0

trunc
(
VbWi

r
c>>>(Wi mod r), r

)
.

Table 3 below gives the number of bits read from the IV and from the message for each
index computation.

bits per index bits from the IV bits from the message
s/w r/w (s− r)/w

FSB160 14 8 6
FSB224 14 8 6
FSB256 14 8 6
FSB384 13 8 5
FSB512 13 8 5

Table 3: Number of input bits per Wi index for the five versions of FSB.
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1.2.3 Final Compression Function

At the last round of the previous compression function, a pre-final hash of r bits is output.
This output is compressed to the desired length (size bits for FSBsize) by a final compression
function. For this final compression function we use the Whirlpool hash function, designed by
Barreto and Rijmen [20], which produces an output hash of 512 bits which we then truncate (we
keep the first size bits) to the desired output length. We insist that the whole Whirlpool hash
function is used (including the padding), not only the compression function of Whirlpool, as a
single round of compression would not be enough for large values of r. For a detailed description
of Whirlpool, please refer to the Whirlpool documentation available at http://paginas.terra.
com.br/informatica/paulobarreto/WhirlpoolPage.html, or to the ISO/IEC 10118-3:2004
standard.

2 Design Rationale

The design of FSB is not new, it is an improvement of earlier published versions [1, 12, 13].
Some cryptanalysis work has also been published [10, 14, 21], bringing light on some weaknesses
in previous versions. These attacks made it necessary to readjust some parameters but did not
require a complete re-design of the system. The parameters we present were chosen so as to
resist all currently known attacks.

2.1 Domain Extender

We use the Merkle-Damg̊ard domain extender. It has been widely studied and, though some
potential weaknesses have been pointed out, it is still believed to propagate the main security
features from the compression function to the hash function. It will be enough in practice to
establish our security claims.

Many other domain extenders are compatible with the FSB primitive. If needed we may
use, for instance, the EMD domain extender [3] without significantly changing the algorithm.

2.2 Compression Function

The core of the compression function of FSB is the XOR of a set of binary vectors. If we
compute all the possible vectors that can be XORed, that is, all the valid shifts of all the Vj

vectors, we obtain n vectors that we can combine as columns of a single matrix H of size r×n.
The compression function of FSB then consists in generating a binary word of length n and
Hamming weight w that we multiply by matrix H. From a coding theory point of view, the
word of weight w can be seen as an error pattern, and the multiplication is the computation of
the syndrome of this error. In Appendix A we consider the case where H is a random binary
matrix and obtain tight security reductions for attacks on the compression function of FSB to
well known coding theory problems.

In practice, H is not a random binary matrix but a truncated quasi-cyclic matrix, and only
regular words are multiplied by H. The next two sections explain why these modifications do
not weaken the security results.

2.2.1 Quasi-Cyclic Codes and Truncated Quasi-Cyclic Codes

Before showing why the use of a truncated quasi-cyclic matrix is not a threat for FSB we need
to explain what are truncated quasi-cyclic matrices. We start with a few definitions.
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Definition 1 A matrix H of size r × r is circulant if it is obtained by cyclically right-shifting
its first row (see Figure 5).

Definition 2 A matrix H of size r×n is quasi-cyclic if it is the concatenations of n
r circulant

matrices (see Figure 5).

Definition 3 A matrix H of size r × r is a truncated quasi-cyclic matrix if it is the concate-
nation of n

r submatrices of size r× r, and each of these submatrices is the top left submatrix of
a p× p circulant matrix (see Figure 5).

1 r

1r

circulant quasi-cyclic

1 r

1r

1 r

1r

1 r

1r

n

truncated quasi-cyclic

1 r

1r

1 r

1p

p 1 r

1r

1 r

1p

p 1 r

1r

1 r

1p

p

p

r

Figure 5: Structure of a circulant, a quasi-cyclic and a truncated quasi-cyclic matrix.

As one can easily check, the vector shifts used in FSB exactly correspond to choosing columns
from a truncated quasi-cyclic matrix composed of b = n

r blocks of size p× p truncated to r× r.
Also, these three kind of matrices have in common that they are completely defined by their
first row. This is an important feature for FSB as the description of the hash function can thus
be reduced by a factor r compared to using a truly random binary matrix. Also, this improves
the speed of the hash function as the whole description of the matrix can now fit in the cache
of a standard CPU.

In order to explain why truncated quasi-cyclic matrices are also a good choice for the security
of FSB we have to look at them from a coding theory point of view.

Definition 4 A linear code C of length n = r× b is a quasi-cyclic code of order r (and index
b) if C has a parity-check matrix H which is a quasi-cyclic matrix composed of b circulant blocks
of size r × r.

Gilbert-Varshamov Bound and Hardness of Decoding Quasi-Cyclic Codes. The
Gilbert-Varshamov bound gives information about the best possible codes that exist for a given
length and dimension. It is well known that codes built from a random binary r×n parity check
matrix lie almost always on the Gilbert-Varshamov bound. This means that such codes are very
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good codes (from the decoding capacity point of view) and in practice also means that they are
necessarily hard to decode. This result has been generalized by Gaborit and Zémor [15] who
have developed methods from which they prove that this result is also true for double-circulant
codes (that is, quasi-cyclic codes of index 2). In fact they prove that double-circulant codes
do even slightly better than random codes, moreover their method can also be generalized to
general quasi-cyclic codes. This is in particular the case for codes of quasi-cyclic order p where
p is prime and 2 is a generator of GF(p). This is how values of p have been selected for FSB.

It was proven in [5] that the syndrome decoding of random codes is NP-complete. It has
recently been shown that this result is also valid for quasi-cyclic codes [4]. As a consequence,
if one replaces the binary matrices of the CSD and CF problems presented in Appendix A by
quasi-cyclic matrices, the two problems remain NP-hard, and the reductions to collision finding,
inversion or second preimage are still valid.

Truncated Quasi-Cyclic Codes. In FSB, truncated quasi-cyclic codes are used instead of
quasi-cyclic codes. Although these codes are not technically quasi-cyclic, they are closely related
to them, since the number of rows and columns we truncate is small compared to the length
of the matrix. Since both random codes and random quasi-cyclic codes lie on the Gilbert-
Varshamov bound we assume that these codes also lie on the Gilbert-Varshamov bound. This
was confirmed through experimental computation of minimum distances for such codes.

Concerning the hardness of decoding, since quasi-cyclic matrices are a special case of trun-
cated quasi-cyclic matrices, decoding these codes is also an NP-complete problem. From a
practical point of view, knowing that H is a truncated quasi-cyclic matrix does not help to
improve the best decoding algorithms.

2.2.2 Regular Words

The way the indexes Wi (defining which vectors to use and how much they should be shifted)
are chosen is not completely generic. If we look at the compression function as the product
between a binary word of length n and Hamming weight w and an r × n matrix H, then the
indexes Wi correspond to what we call regular words.

Definition 5 A binary word of length n and Hamming weight w is regular if it is of weight
exactly 1 on every interval of the form [i× n

w , (i + 1)× n
w − 1].

This means that, contrarily to what is assumed in Appendix A, not all words of weight w
and length n can be represented by the Wi. The reason for this choice is the huge gain in the
speed of the conversion from s bits to a word of weight w. Using a one-to-one mapping able to
code all the

(
n
w

)
words of weight w would increase s thus gaining a few input bits and possibly

decreasing the number of calls to the FSB compression function. However, such a one to one
mapping requires to perform complex computations involving big integers whereas mapping
regular words simply requires bit shifts. Tradeoffs also exist [19] but regular words are simple
to describe, simple to implement and are what gives the best overall speed for FSB.

Concerning the security of regular words, restricting the set of input words of weight w
cannot be a weakness. Indeed, if an adversary is able to build a collision (respectively, invert
or find a second preimage) on the compression function of FSB using regular words, then this
collision (respectively, inverse or second preimage) is also valid for the idealized version using
all words of weight w. Therefore, if one is able to attack FSB using regular words, he will also
be able to attack the idealized FSB using the exact same technique. Thus, the use of regular
words cannot be a threat for the security of FSB.
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In practice, attacking FSB with regular word is even harder than with a one-to-one mapping:
having a smaller set of inputs decreases the number of possible solutions and thus, increases the
cost of the attacks. However, taking this improvement into account could be a risk as it might
be possible to fine-tune the GBA and ISD attacks to perform better than expected on regular
words.

To remain on the safe side, we chose to use regular words for the speed gain they bring, but
yet, to evaluate the security against GBA and ISD as if all

(
n
w

)
words of weight w were available

for collision search, inversion or second preimage.

2.3 Final Compression Function

FSB uses a large internal state of r bits and has to use a final compression function to obtain the
desired output size. The main reason why this final compression function is necessary is that
our compression function cannot achieve a security of 2

r
2 against collision search or 2r against

inversion: if our compression function is to compress (that is, s > r), then the GBA attack will
always have a complexity lower than 2

r
4 for collision search.

Knowing that a final compression function was necessary we tried to precisely identify the
requirements for this function:

• it has to be non-linear: a linear function would decrease the security of FSB as applying
it to each columns of H would give a new matrix H ′ of size r′×n (this time with r′ equal
to the output size of the hash function) on which GBA could still be used for collision
search or inversion. A linear function would thus decrease the security of FSB.

• being collision resistant is not necessary: if a collision is found on the final compression
function, two pre-final hashes with the same hash are obtained. Finding a collision on
the whole hash function still requires to find inverses for these pre-final hashes. Similarly,
being hard to invert is not necessary.

This leaves us with a lot of liberty for the choice of the final compression function. We chose
to use Whirlpool because it is highly non-linear, it behaves well when its output is truncated
to a smaller size and people are confident that it has a good security. However, we must insist
that if collisions are found on Whirlpool, this will not make collision finding on FSB any easier.
Whirlpool must thus be seen more as a safe choice than as a practical need: much simpler
non-linear functions would be suitable, but would probably also be considered as a possible
weakness.

3 Practical Security

As seen in Section A.3, the best attacks against the compression function of FSB are well
identified and it is possible to precisely evaluate their complexity. Table 4 gives the complexities
of the different attacks we considered when selecting parameters for FSB.

As explained in the previous section, the Merkle-Damg̊ard domain extender and the final
compression function Whirlpool were chosen so as to preserve as much as possible the security
of the FSB compression function. More precisely, noting CF the compression function and HF
the whole hash function, we have:

• for collision resistance, Merkle and Damg̊ard proved that b bits of security on CF yield b
bits of security on HF.

• for inversion, b bits of security on CF also yield b bits of security on HF.
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collision search inversion second preimage
GBA(n, 2w, r) ISD(n, 2w, r) GBA(n,w, r) ISD(n,w, r) GBA(n− w,w, r) ISD(n− w, w, r)

FSB160 2119.2 2100.3 2163.6 2211.1 2163.6 2211.1

FSB224 2166.9 2135.3 2229.0 2292.0 2229.0 2292.0

FSB256 2190.7 2153.0 2261.6 2330.8 2261.6 2330.8

FSB384 2281.0 2215.5 2391.5 2476.7 2391.5 2476.7

FSB512 2378.7 2285.6 2527.4 2687.8 2527.4 2687.8

Table 4: Complexity of the best attacks known against the compression function of FSB.

• for second preimage, no such result exists. The best known attack is the herding attack
by Kelsey and Kohno [17] which for a message of length 2k reduces b bits of security on
CF to b− k bits of security on HF.

The complexities of the attacks on the FSB compression function reported in Table 4 can
thus be transposed directly to the whole hash function and are all above the complexities of
generic attacks on the whole FSB, which gives us the following security claim.

Security Claim for FSB

For size ∈ {160, 224, 256, 384, 512} and a message of length at most 2k, the best attacks on
FSBsize are generic attacks that apply to any hash function with the following complexities:

collision: 2
size
2

inversion: 2size

second preimage: 2size−k

Toy Version of FSB. In addition to the 5 standard hash sizes we propose for FSB, our
reference implementation also implements FSB48, a toy version of FSB designed for practical
cryptanalysis. This version uses the parameters n = 3 × 217, w = 24, r = 192 and p = 197.
These parameters were selected exactly as for the other sets of parameters: so as to obtain
the highest throughput on our reference platform while maintaining the required security level.
This toy version offers the following security levels:

collision search inversion second preimage
GBA(n, 2w, r) ISD(n, 2w, r) GBA(n,w, r) ISD(n, w, r) GBA(n− w, w, r) ISD(n− w, w, r)

FSB48 235.8 237.4 249.2 273.9 249.2 273.9

Table 5: Complexity of the best attacks against the compression function of FSB48.

Used within the Merkle-Damg̊ard domain extender and once the final compression function
applied, FSB48 will have security levels against collision, inversion and second preimage of
respectively 24 bits, 48 bits and 48− k bits.

4 Computational Efficiency

4.1 General Considerations

The compression function of FSB is very simple: read the input bits by small blocks to compute
some indexes and use these indexes to determine how much vectors have to be shifted before
being XORed. The index computations can be done using only shifts and masking so that only
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bitwise logical operations are used in the compression function. These operations are available
on any kind of processor making the implementation of FSB very easy, whatever the hardware.

However, for efficiency, FSB has to use quite a lot of memory: all versions have to load about
218 bytes, precomputed from the digits of π. This was chosen so as to fit well in the cache of
modern CPUs, but is probably not the best choice for memory constrained environments. If
this is a concern, other parameter choices could decrease the memory requirements without any
loss of security, this would however change the KATs. Also note that in our optimized imple-
mentation the tables have been hard-coded in the program, avoiding to have to recompute them
at startup. Due to this the program size is much larger than for the reference implementation
which recomputes these tables at initialization. However, while the reference implementations
takes several million cycles at startup, the optimized implementation behaves a lot better.

4.2 Efficiency on a Core2 Processor

All the tests we conducted were done using gcc 4.1.2 (with the -O3 flag) under 32-bit Linux
on a 3GHz Core2 Duo processor with 6MB of cache and 4GB of memory. This platform should
behave similarly to the NIST reference platform.

Table 6 below contains the results we obtained from the various tests we performed. The
column “100 000 inits” gives the time taken to successively hash a 512-bit message block 100 000
times, similarly to what is done in the Monte Carlo test performed by genKAT. The timings
obtain are very similar for the optimized and the reference implementations, except for the
initialization time where the optimized version is much faster. Note that if initialization is
much faster for FSB384 and FSB512 than for the other hash sizes it is because these two versions
use b = n

r = 1 024 instead of 2 048.

100 000 inits file hash time init hash speed
time 1 MB 100 MB cycles cycles/byte

FSB160 15.9s 0.09s 8.57s ∼ 475 000 ∼ 257
FSB224 15.9s 0.10s 9.89s ∼ 475 000 ∼ 297
FSB256 16.1s 0.11s 10.8s ∼ 480 000 ∼ 324
FSB384 9.6s 0.14s 14.1s ∼ 290 000 ∼ 423
FSB512 10.7s 0.17s 16.9s ∼ 320 000 ∼ 507

Table 6: Performances of the 5 versions of FSB on a 3GHz Core2 Duo processor.

4.3 Efficiency on an 8-bit processor

We did not have any 8-bit processor at hand to test FSB in practice. Thus, we only present
estimates of how FSB should behave on such processor. With our implementation, the most
cycle-consuming operation in the compression function is the XORing of the w shifted vectors.
As the shifts are precomputed we only have to perform the XORs which are responsible for
approximately 80% of the cycles (the rest corresponding to the bit manipulations to obtain the
indexes Wi). This XORing part will simply be 4 times longer on an 8-bit processor than on a
32-bit processor. However, 8-bit processors usually do not have a large cache and the shift will
have to be recomputed : each XOR should thus be replaced by two shifts and two XORs, which
should multiply the number of cycles by 4. Concerning the index computation, this part only
manipulates small numbers of bits at a time, and it will probably not be more costly on 8-bit
processors than on 32-bit processors. Summing up we get that 80% of the cycles will cost 16
times more and that 20% will cost the same. From N cycles per byte on a 32-bit architecture,
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we increase to 13 × N cycles per byte on an 8-bit architecture. However, this is only a very
rough estimate and optimizations are certainly possible.

Concerning the initialization time, if no shift precomputations are performed then it is
possible to directly read in the table of digits of π when hashing (here the little gaps between
the vectors used to keep an 8-bit alignment are very useful) and thus, initialization time will
probably be reduced to a few hundred cycles.

5 Advantages and Limitations

FSB has many advantages over traditional hash functions, in particular concerning security
reductions, however this comes at a cost, and FSB also has a few limitations.

5.1 Limitations

• First of all, FSB is slower than the traditional MD5 or SHA-1. It uses much more cycles
per byte to hash and also has an important initialization time (this will probably be
improved through implementation optimizations).

• FSB has a large description: about 2 millions bits generated from digits of π are used. The
parameters of FSB could be changed to improve this, but this would also change the hash
values: this is a one time change. Another solution would be to introduce additional hash
sizes with tweaked parameters so as to use less memory: for example, we could introduce
hashes of 264 bits, with a much slower hash speed than for 256 bits, but with a smaller
memory usage. FSB description will however always be much larger than for traditional
hash functions.

• FSB uses a large internal state (about 4 times the final hash size) which makes it necessary
to add a final compression function. Reducing the size of the internal state will reduce
the security of the compression function, so this final compression is mandatory. Here, we
use Whirlpool, but any other function could have been used: we need non-linearity but
not necessarily collision resistance. If collisions are found on Whirlpool this will not affect
the security of FSB.

• FSB still uses the Merkle-Damg̊ard domain extender. This is probably not the best choice,
but it is the simplest one. Any other domain extender preserving the collision resistance
and inversion resistance of the compression function could be used.

5.2 Advantages

• The most decisive advantage of FSB is that it comes with a proof of reduction to hard
algorithmic problems. An algorithm able to find collisions on FSB or to invert FSB is also
able to solve hard problems from coding theory. These problems have been well studied
for many years and it is unlikely that new attacks could be much more efficient than the
existing ones. The parameters of FSB were chosen accordingly.

• The design of FSB is very simple: wether you see the compression function as the XOR of
shifted vectors or the XOR of columns of a quasi-cyclic matrix, in both cases, describing
FSB is simple. Having an easy to understand design helps when it comes to implementa-
tion.
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• Also FSB uses mostly very simple operations: some shifts and some XORs. It is thus easy
to obtain an optimized implementation spending a majority of time on operations that
cannot be compressed.

• FSB is very flexible in terms of parameters: these have to be selected with caution in order
to ensure all the security requirements, but proposing sets of parameters for all lengths
from 160 to 512 bits would be possible. This could avoid having to use truncated hashes.

• The reference implementation of FSB we provide is relatively efficient (apart from the long
initialization time) and is suitable for any set of parameters. A single implementation can
be used for all versions of FSB.
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A Security of the FSB Compression Function

A.1 Difficult computational problems from coding theory

The core of the FSB compression function is the syndrome primitive (r < n)

SH : {0, 1}n −→ {0, 1}r

y 7−→ yHT

where H is a binary r × n matrix. We will call yHT the H-syndrome of y. This mapping is
linear and, for any element s in {0, 1}r, finding y in {0, 1}n such that yHT = s is easy. If we
restrict the problem to words y of Hamming weight (we denote wH(y)) lower than some bound
w the inversion becomes difficult for well chosen parameters n, r and w. In fact the following
problem is NP-hard [5]

Problem 1 (Computational Syndrome Decoding) Given a binary r × n matrix H, a
word s ∈ {0, 1}r and an integer w > 0, find a word e in {0, 1}n of Hamming weight ≤ w such
that eHT = s.

Moreover, decades of research in coding theory strongly suggest that the problem is hard in the
average case [2]. Another related problem is the codeword finding problem

Problem 2 (Codeword Finding) Given a binary r × n matrix H and an integer w > 0,
find a non-zero word e in {0, 1}n of Hamming weight ≤ w with an all zero H-syndrome.

Obviously CF is a particular case of CSD. In practice the two problems can be tightly reduced
to one another [5, 19].

The idealized one-way primitive used as compression function for FSB is the restriction of
SH to the set Wn,w of binary words of length n and Hamming weight w:

FH,w : Wn,w −→ {0, 1}r

e 7−→ eHT

Hence the parameters are r, n and w and H a random r × n binary matrix. We will denote
CSD(n, r, w) and CF(n, r, w) to refer to the above problems with specific sizes. All known
algorithms for solving those problems have essentially the same complexity for given parameters.
For a fixed matrix size r × n, the typical cost for finding a word of weight w with a given H-

d0 w

log(computation cost)

Figure 6: Cost (log scale) for finding words of weight w with a given H-syndrome.
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syndrome (provided such a word exists) will vary as described in Figure 6. The value d0 for
which the cost is maximal is called the Gilbert-Varshamov distance and is defined as the largest
integer such that

d0−1∑

i=0

(
n

i

)
≤ 2r.

We must have w > d0 else the compression function provides no compression. The greater is
w, the greater is the compression ratio (and the speed) and the lower is the security.

A.2 Security reduction

Let (n, r, w) be a set of parameters for the compression function.
On one hand, we define two adversaries related to the difficult computational problems of

the previous section. Let us define a CSD(n, r, w) adversary as a mapping

ACSD : {0, 1}r×n × {0, 1}r → {0, 1}n.

It is successful on input (H, s) if ACSD(H, s) = e with wH(e) ≤ w and eHT = s. Similarly, a
CF(n, r, w) adversary is a mapping

ACF : {0, 1}r×n → {0, 1}n,

which is successful on input H if ACF(H) = e with wH(e) ≤ w and eHT = 0.
On the other hand we define three adversaries related to attacks on the compression function.

We define

• A collision adversary is a mapping

Ac : {0, 1}r×n → Wn,w ×Wn,w.

It is successful on input H if Ac(H) = (e, e′) with e 6= e′ and FH,w(e) = FH,w(e′).

• An inversion adversary is a mapping

Ai : {0, 1}r×n × {0, 1}r → Wn,w.

It is successful on input (H, s) if Ai(H, s) = e with FH,w(e) = s.

• A second preimage adversary is a mapping

A2p : {0, 1}r×n ×Wn,w → Wn,w.

It is successful on input (H, e) if A2p(H, e) = e′ with e 6= e′ and FH,w(e) = FH,w(e′).

For any adversary A, we will denote |A| its maximal running time. The purpose of the state-
ments coming next in this section is to formally relate the existence of efficient adversary for
inverting, finding collision or finding second preimage with the existence of efficient CF or CSD
adversaries.

Proposition 1 Let Ac be a collision adversary. For all H ∈ {0, 1}r×n, we define a CF(n, r, 2w)
adversary A as A(H) = e + e′ where Ac(H) = (e, e′). We have

{ |A| = |Ac|+ O(n)
∀H,Ac(H) successful ⇒ A(H) successful.
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input: H ∈ {0, 1}(r−w)×(n−w), w > 0
R

r← {0, 1}w×n

U
r← {0, 1}r×r non singular

P
r← n× n permutation matrices

H ′ ← U

(
0 H

R

)
P

e ← (1w, 0n−w)P
e′ ← A2p(H ′, e)
e′′ ← the last n− w bits of (e + e′)P T

return e′′

Where A2p is a second preimage adversary for the parameters (n, r, w) and r← means
“pick uniformly in”.

Figure 7: CF(n− w, r − w,w) adversary from second preimage adversary.

Proposition 2 Let Ai be an inversion adversary. For all (H, s) ∈ {0, 1}r×n×{0, 1}r, we define
the CSD(n, r, w) adversary A as A(H, s) = Ai(H, s). We have

{ |A| = |Ai|
∀(H, s),Ai(H, s) successful ⇔ A(H, s) successful.

Proposition 3 Let A be the CF(n− w, r − w, w) adversary derived from the second preimage
adversary A2p as defined in Figure 7. We have |A| = |A2p|+ O(r2n) and

Prob
(
A(H) successful | H r← {0, 1}(r−w)×(n−w)

)

≥ Prob
(
A2p(H, e) successful | H r← {0, 1}r×n, e

r← Wn,w

)
.

Proof: We use the notations of Figure 7.

0 H

U−1H ′P T =

R

eP T = 1 · · · 1 0 · · · 0

When H,R, U, P are independently and uniformly chosen then H ′ and e are independently
and uniformly distributed.

If the call A2p(H ′, e) is successful, then e + e′ is a codeword of the code C′ of parity check
matrix H ′. Thus we have (e + e′)H ′T = 0 and (e + e′)P T (U−1H ′P T )T = 0 and, if e′′

is defined as in the algorithm, we have e′′HT = 0. Moreover the Hamming weight of e′′

is less or equal to w because it cannot exceed the weight of e′. The adversary A is thus
successful. This proves the inequality of the probabilities.

Finally, if we exclude the call to A2p, the computations in A are limited to O(r2n) (cost
of the matrix multiplication by U). ¦
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A.3 Best known attacks

In practice, solving CSD(n, r, w) or CF(n, r, w) requires a comparable computation effort. When
the weight w varies for fixed (n, r), the best decoding (or codeword finding) technique will be one
of three algorithms: information set decoding, generalized birthday attack [23], or linearization
attack [21].

Information set decoding is always the most efficient method when w ≤ d0 (see Figure 6).
The linearization attack is devastating for w ≥ r and remains possible with increasing efficiency
in the range r/2 < w < r. Below this value, the information set decoding or the generalized
birthday attack is more efficient.

Following the previous section, the FSB compression function must resist decoding and/or
codeword finding attacks for the weights w and 2w. The parameters we propose are such that
2w = r/4, which is out of reach of the linearization attack. This means that we will only
consider information set decoding and generalized birthday attack. In the considered range, we
are not aware of any attack on the FSB primitive that would be more efficient.

We will first give a lower bound on the cost of those two attacks. Then we will consider how
they can be used to threaten our compression function.

A.3.1 Decoding attacks

Information set decoding. Information set decoding belongs to the folklore of coding the-
ory. The version we consider here is due to Stern [22]. The algorithm has been first improved
and implemented in [8] and again more recently in [6]. A quick survey can be found in [19].
The algorithm iterates the two following steps

1. Permute the columns of H and perform a Gaussian elimination to get H ′.

2. Find a set of w columns of H ′ which add to a prescribed value (possibly zero).

The second step above is rather involved and depends on two positive integers p and ` which
have to be optimized for every set of parameters (n, r, w). For a fixed triple (n, r, w) let us
define the following quantities depending on p and `

L(p) =
(

(n− r)/2
p

)
,

N(p, `) =
2r

L(p)2
(

r−l
w−2p

) ,

L′(p, `) = L(p)
√

N(p, `),

C(p, `, X) = 2X (log2(X) + `) +
X2

2`
4p(w − 2p),

K(p, `) =
{

N(p, `)C(p, `, L(p)) if N(p, `) > 1
C(p, `, L′(p, `)) else.

For w greater than the Gilbert-Varshamov distance (in fact
(

n
w

) ≥ 2r which is almost the same
thing), the binary workfactor of any known variant of the information set decoder is lower
bounded by

WF (n, r, w) = min
p,`

K(p, `).

If w is smaller than the Gilbert-Varshamov distance (which is of no interest here), we would have
to replace 2r by

(
n
w

)
in the formula giving N(p, `). The value N(p, `) is the expected number

of iterations of the algorithm. The cost of one iteration is C(p, `, L(p)). When N(p, `) ≤ 1 (we
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expect to succeed at the first iteration) the cost of the unique iteration is smaller (we replace
L(p) by L′(p, `) which is smaller).

Generalized birthday attack. The generalized birthday algorithm (GBA) was presented
by Wagner [23] and is a generalization of the well known birthday technique. It was first applied
to decoding problems by Coron and Joux [10] and had already been introduced in a few other
articles before [7, 9, 16]. Suppose you have a set of binary vectors of length r and you want
to find a subset of w vectors XORing to 0. With the standard birthday technique, one would
build two lists of L elements resulting from the XOR of w

2 vectors, sort the first of these lists
and lookup the elements of the second list in the first one. Each time a match is found, a valid
subset of w vectors is also found. If the size L of the lists is such that L2 ≥ 2r, then matches
will probably be found. This gives a solution to the problem with complexity O(r × 2

r
2 ).

The idea behind GBA is to use 2a lists instead of only 2, where the value of the parameter
a will depend on the size of the set of vectors. GBA works in a steps, and at each step lists are
merged pairwise so as to divide the number of lists by 2. One starts with 2a lists of L elements
resulting from the XOR of w

2a vectors. Then at first step, these lists are grouped by pairs and
each pair is merged into a single list by XORing one element of the first list with one of the
second. However, only the XORs starting with log2 L zeros are kept: this will discard some
possible valid solutions but this will, in average, maintain the size of the lists constant, keeping
the complexity of the algorithm low. At the end of the first step one has 2a−1 lists of L elements
resulting of the XOR of w

2a−1 vectors, all starting with log2 L zeros. The second step does exactly
the same so as to obtain 2a−2 lists of vectors starting with 2 log2 L zeros, and so on, until only 2
lists are left. At this point a simple application of the standard birthday technique tells us that
if L2 ≥ 2r−(a−1) log2 L, then a match will probably be found. This gives us the minimal value of L
for the algorithm to work: L ≥ 2

r
a+1 . For a = 1 we have the standard birthday algorithm result,

for a larger, the complexity can be greatly improved, as long as enough vectors are available to
build sufficiently large lists. If it is possible to build lists of size 2

r
a+1 , then the algorithm has a

total complexity of O(r × 2
r

a+1 ).
This result gives us an algorithm to solve both CF and CSD with a good complexity when

a lot of solutions exist: for CF this is straight-forward, for CSD one needs first to XOR the
target syndrome with all the elements of one of the starting lists and then the algorithm can be
applied. For collision search, one will thus have to find null combinations of 2w vectors of r bits
starting from a set of n vectors, for inversion one has to find null combinations of w vectors.
Practical Complexity of GBA. When applying GBA, one starts with lists of size L containing
XORs of w

2a columns of H. The size of the lists must verify the bound
(

L
2a

) ≤ (
n
w

)
(any

combination of w columns of H can be seen as a combination of 2a combinations of w
2a columns

of H). Also, for GBA to apply, the lists must contain enough elements, that is: L ≥ 2
r

a+1 . We
obtain the following bound on the value of parameter a:

(
2

r
a+1

2a

)
≤

(
n

w

)
a small⇐⇒ r

a + 1
≤ log2

(
n
w

)

2a
⇐⇒ 2a

a + 1
≤ log2

(
n
w

)

r
. (1)

The complexity of GBA is thus O(r× 2
r

a+1 ) for the maximum value of a verifying equation (1).
Using Non-Integer Values of Parameter a. Normally, GBA only applies to integer values of
a, leading to discontinuities in its complexity when w varies. In practice, it is possible to
remove these discontinuities by modifying the algorithm a little: if one can build larger lists
than required, then it is possible to start with lists of vectors all starting by a few zeros, thus
slightly decreasing the value of r and the complexity of the attack. This improvement almost
correspond to being able to use non-integer values of a. When computing the complexity of
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GBA we solve equation (1) for the maximum value of a and consider the complexity to be 2
r

a+1 .
Obtaining this complexity with the generalized birthday algorithm might not be possible, but
this is a safe bound.

We will denote respectively ISD(n, r, w) and GBA(n, r, w) to refer to an information set
decoder or a generalized birthday algorithm for a given set of parameters (n, r, w).

A.3.2 Best attacks on the FSB compression function

Collision resistance. The Proposition 1 states that finding a collision for the compression
function FH,w is at least as difficult as finding a codeword of weight ≤ 2w. Conversely, we may
build a collision adversary from any CF(n, r, 2w) adversary.

Proposition 4 Let ACF be a CF(n, r, 2w) adversary returning words of weight 2w exactly. For
all H ∈ {0, 1}r×n, we define the collision adversary A as A(H) = (e, e′) where e and e′ are two
words of weight w such that e + e′ = ACF(H). We have

{ |A| = |ACF|+ O(n)
∀H,ACF(H) successful ⇒ A(H) successful

The CF adversary in the above statement is slightly stronger as we require it to return errors of
weight = 2w instead of just ≤ 2w. In practice, it won’t be a problem because all the decoding
technique we consider have this feature. For all the proposed parameters, the best algorithm
for finding codeword of weight 2w is always information set decoding.

Preimage resistance. The Proposition 2 states that inverting the compression function FH,w

for some s ∈ {0, 1}r is at least as difficult as solving the syndrome decoding problem with input
(H, s, w). Conversely we have

Proposition 5 Let ACSD be a CSD(n, r, w) adversary returning words of weight w exactly. For
all (H, s) ∈ {0, 1}r×n × {0, 1}r, we define the inversion adversary A as A(H, s) = ACSD(H, s).
We have { |A| = |Ai|

∀(H, s),Ai(H, s) successful ⇔ A(H, s) successful

For all the proposed parameters, the best algorithm for decoding w errors is always the gener-
alized birthday attack.

Second preimage resistance. The Proposition 3 states that finding a second preimage for
the compression function FH,w and some e ∈ Wn,w is at least as difficult as finding a codeword
of weight ≤ w in a code whose parity check matrix is a (r − w) × (n − w) submatrix of H.
Conversely, we can also build a second preimage adversary from a CF adversary.

Proposition 6 Let ACSD be a CSD(n−w, r, w) adversary returning words of weight w exactly.
For all (H, e) ∈ {0, 1}r×n × Wn,w, we define the second preimage adversary A as A(H, e) =
ACSD(H ′, eHT ) where H ′ is the r × (n−w) submatrix of H obtained by removing the columns
whose index are in the support of e. We have

{ |A| = |ACSD|+ O(rw)
∀(H, e),ACSD(H ′, eHT ) successful ⇒ A(H ′, e) successful

As for preimage, with all the proposed parameters, the most efficient attack is the generalized
birthday attack.
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A.3.3 Practical security of the FSB primitive

All the security features are summarized in the Table 7. It is interesting to see that the security
reduction for both collision and inversion is very tight. In both cases, the best attack solves
precisely the problem to which the security is reduced.

Collision resistance :
{

Best attack ISD(n, r, 2w)
Security reduction CF(n, r, 2w)

Preimage resistance :
{

Best attack GBA(n, r, w)
Security reduction CSD(n, r, w)

2nd preimage resistance :
{

Best attack GBA(n− w, r, w)
Security reduction CF(n− w, r − w, w)

Table 7: Security of the FSB compression function

For second preimage resistance, the situation is slightly different. There is a small gap
between the best second preimage attack and the problem to which the security is reduced.

In practice, we will use GBA(n − w, r, w) to measure the security against second preimage
attacks. Because w ¿ n and the parameter n has a relatively small impact on the decod-
ing complexity, the workfactor for GBA(n − w, r, w) is almost the same a the workfactor for
GBA(n, r, w) which is used for preimage resistance.

Finally, note that in the unlikely event that a 2nd preimage attack based on GBA(n−w, r−
w, w) can be found, the security will not decrease a lot. We use w = r/8 and the number of
bits of security is roughly proportional to r. Instead of b bits of security, we would “only” have
7
8b bits of security.
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