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Purpose of this Tutorial

Provide an overview of the most important aspects of code-based

cryptography in order to

• understand the main code-based cryptosystems

• design new secure and efficient systems
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Using Codes for Cryptography - Basic Idea

Error correcting codes consist in appending some redundancy to a

block of data (the resulting - larger - block is called a codeword) in

order to resist to transmission errors

Provided the number of errors is not too large, the process of adding

random errors to a codeword

• is reversible in an information theoretic point of view

• is computationally intractable in general

This provides the basis for a cryptographic one way function

Algebraic coding theory provides encoding techniques with polynomial

time error correcting procedures

This allows the introduction of trapdoors by choosing codes with a

proper algebraic structure
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I. Introduction to Codes and

Code-based Cryptography



Notations

Fq the finite field with q elements

Hamming distance: x = (x1, . . . , xn) ∈ Fn
q , y = (y1, . . . , yn) ∈ Fn

q

dist(x, y) = |{i ∈ {1, . . . , n} | xi 6= yi}|

Hamming weight: x = (x1, . . . , xn) ∈ Fn
q ,

wt(x) = |{i ∈ {1, . . . , n} | xi 6= 0}| = dist(x, 0)

Bn(x, t) = {y ∈ Fn
q | dist(x, y) ≤ t} the ball of center x and radius t

Sn(x, t) = {y ∈ Fn
q | dist(x, y) = t} the sphere of center x and radius t

Bn(0, t) the words of weight ≤ t

Sn(0, t) the words of weight t
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Linear Error Correcting Codes

A q-ary C(n, k) code is a k-dimensional subspace of Fn
q

A generator matrix G ∈ Fk×n
q of C is such that C =

{
xG | x ∈ Fk

q

}

It defines an encoder for C
fG : Fk

q → C
x 7→ xG

The encoding can be inverted by multiplying a word of C by a right

inverse G∗ of G: if GG∗ = Id then fG(x)G∗ = xGG∗ = x

If G is in systematic form, G = (Id | R) then G∗ = (Id | 0)T is a right

inverse and the de-encoding consists in truncating
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Parity Check Matrix and Syndrome

Let C be a q-ary (n, k) code and let r = n− k denote its codimension

A parity check matrix H ∈ Fr×n
q of C is such that C =

{
x ∈ Fn

q | xHT = 0
}

The H-syndrome (or syndrome) of y ∈ Fn
q is SH(y) = yHT

For all y ∈ Fn
q , let s = yHT , the coset of y is defined as

Coset(y) = y + C = {z ∈ Fn
q | zHT = yHT = s} = S−1

H (s)

The cosets form a partition of the space Fn
q

Inverting the syndrome: (H∗ a right inverse of H)

• Given s ∈ Fr
q the word y = sH∗T ∈ Fq admits s as syndrome

• If H = (Id | R) is systematic then y = (s,0) ∈ S−1
H (s)

• Finding a word of S−1
H (s) of smallest weight (coset leader) is

another matter (NP-hard)
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Decoding

Let C be a q-ary (n, k) code of minimum distance d

Minimum distance of C: dmin(C) = min{wt(x) | x ∈ C, x 6= 0}

A decoder is a mapping ΦC : Fn
q → C

A decoder ΦC is t-bounded if for all x ∈ C and all y ∈ Fn
q

dist(x, y) ≤ t ⇒ ΦC(y) = x

If a decoder is t-bounded, any ele-

ment of Bn(x, t) with x ∈ C is de-

coded as x

A t-bounded decoder exists if and

only if t ≤ d−1
2

�

	 -�

d

d−1
2
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Syndrome Decoding

Let C be a q-ary (n, k) code a minimum distance d and let H ∈ Fr×n
q

be a parity check matrix of C

ΨH : Fr
q → Fn

q is H-syndrome decoder if ΨH(s)HT = s for all s ∈ Fr
q

ΨH is t-bounded if for all s ∈ Fr
q and for all e ∈ Fn

q

wt(e) ≤ t ⇒ ΨH(eHT ) = e

e
x′ + e

x + e

The coset elements (in color) share

the same syndrome s = eHT .

On input s ∈ Fr
q , a t-bounded de-

coder returns the element of the

coset S−1
H (s) in Bn(0, t), if any

A t-bounded decoder exists if and

only if t ≤ d−1
2

0
x′

x

R R

R
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Decoding vs. Syndrome Decoding

Let C be a q-ary (n, k) code and let H ∈ Fr×n
q be a parity check matrix

Ideally, a decoder looks for a codeword closest to its input while a

syndrome decoder looks for a word of smallest weight in a coset.

Let ΨH be a syndrome decoder, we define for all y ∈ Fn
q

φ(y) = y − e where e = ΨH(yHT )

Let ΦC be a decoder for C, we define for all s ∈ Fr
q (let HH∗ = Id)

ψ(s) = y −ΦC(y) where y = sH∗T

We have





ΨH is t-bounded ⇒ φ is a t-bounded decoder for C
ΦC is t-bounded ⇒ ψ is a t-bounded syndrome decoder

→ decoding and syndrome decoding are essentially the same thing
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McEliece Public-key Encryption Scheme – Overview

Let C be a binary linear (n, k) code

Public key: a generator matrix G ∈ {0,1}k×n of C
C =

{
xG | x ∈ {0,1}k

}

Secret key: a t-bounded decoder Φ : {0,1}n → C for C
∀y ∈ {0,1}n,∀x ∈ C, (dH(x, y) ≤ t) ⇒ (Φ(y) = x)

Encryption:


 EG : {0,1}k → {0,1}n

x 7→ xG + e


 with e random of weight t

Decryption:


 DΦ : {0,1}n → {0,1}k

y 7→ Φ(y)G∗


 where GG∗ = 1

Proof: DΦ(EG(x)) = DΦ(xG + e) = Φ(xG + e)G∗ = xGG∗ = x
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Niederreiter Public-key Encryption Scheme – Overview

Let C be a binary linear (n, k) code, r = n− k

Public key: a parity check matrix H ∈ {0,1}r×n of C
C =

{
x ∈ {0,1}n | xHT = 0

}

Secret key: a t-bounded H-syndrome decoder Ψ : {0,1}r → {0,1}n
∀e ∈ {0,1}n, (wt(e) ≤ t) ⇒ (Ψ(eHT ) = e)

Encryption:


 EH : Sn(0, t) → {0,1}r

e 7→ eHT




Decryption:


 DΨ : {0,1}r → Sn(0, t)

s 7→ Ψ(s)


 s must be a cryptogram

Proof: DΨ(EH(e)) = DΨ(eHT ) = e
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McEliece/Niederreiter Security

We must make sure that the following two problems are difficult

enough to an attacker:

1. Retrieve a t-bounded decoder from the public key, a generator

matrix or a parity check matrix

The legal user must be able to decode so the algebraic structure

exists, it must remain hidden to the cryptanalyst

2. Decode t errors in a random binary (n, k) code

Without the algebraic structure, the cryptanalyst can only use

generic technique to decode

The parameters n, k and t must be chosen large enough
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In Practice

[McEliece, 1978]

“A public-key cryptosystem based on algebraic coding theory”

The secret code was an irreducible binary Goppa code of length 1024,

dimension 524 correcting up to 50 errors

• public key size: 536576 bits

• cleartext size: 524 bits

• ciphertext size: 1024 bits

A bit undersized today (attacked in 2008 with ≈ 260 CPU cycles)

[Niederreiter, 1986]

“Knapsack-type cryptosystems and algebraic coding theory”

Several families of secret codes were proposed, among them Reed-

Solomon codes, concatenated codes and Goppa codes. Only Goppa

codes are secure today.
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II. Security Reduction to

Difficult Problems



Hard Decoding Problems

[Berlekamp & McEliece & van Tilborg, 78]

Syndrome Decoding NP-complete

Instance: H ∈ {0,1}r×n, s ∈ {0,1}r, w integer

Question: Is there e ∈ {0,1}n such that wt(e) ≤ w and eHT = s?

Computational Syndrome Decoding NP-hard

Instance: H ∈ {0,1}r×n, s ∈ {0,1}r, w integer

Output: e ∈ {0,1}n such that wt(e) ≤ w and eHT = s

[Finiasz, 04]

Goppa Bounded Decoding NP-hard

Instance: H ∈ {0,1}r×n, s ∈ {0,1}r
Output: e ∈ {0,1}n such that wt(e) ≤ r

log2 n
and eHT = s

Open problem: average case complexity (Conjectured difficult)
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Hard Structural Problems

Goppa code Distinguishing NP

Instance: H ∈ {0,1}r×n

Question: Is
{
x ∈ {0,1}n | xHT = 0

}
a binary Goppa code?

Goppa code Reconstruction

Instance: H ∈ {0,1}r×n

Output: (L, g) such that Γ(L, g) =
{
x ∈ {0,1}n | xHT = 0

}

• NP: the property is easy to check given (L, g)

• Completeness status is unknown

• Tightness: gap between decisional and computational problems
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Goppa Code Distinguisher

For given parameters n, k

Let G denote the set of all generator matrices of a Goppa code.

For any program D : {0,1}k×n → {true, false}, we define the event

TD = {G ∈ Ω | D(G) = true}
in the sample space Ω = {0,1}k×n uniformly distributed

D is a (T, ε)-distinguisher if

• running time: |D| ≤ T

• advantage: Adv(D) =
∣∣∣ PrΩ(TD)− PrΩ(TD | G)

∣∣∣ ≥ ε
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Decoding Adversary

For given parameters n, k and t

For any program A : {0,1}n×{0,1}k×n → {0,1}k, we define the event

SA = {(x, G, e) ∈ Ω | A(xG + e, G) = x}
in the sample space Ω = {0,1}k × {0,1}k×n × Sn(0, t) uniformly dis-

tributed

A is a (T, ε)-decoder if

• running time: |A| ≤ T

• success probability: Succ(A) = PrΩ(SA) ≥ ε
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Adversary against McEliece

For given parameters n, k and t

Let G denote the set of all generator matrices of a Goppa code.

For any program A : {0,1}n×{0,1}k×n → {0,1}k, we define the event

SA = {(x, G, e) ∈ Ω | A(xG + e, G) = x}
in the sample space Ω = {0,1}k × {0,1}k×n × Sn(0, t) uniformly dis-

tributed

A is a (T, ε)-adversary (against McEliece) if

• running time: |A| ≤ T

• success probability: SuccMcE(A) = PrΩ((x, G, e) ∈ SA | G ∈ G) ≥ ε

If there exists a (T, ε)-adversary then there exists either

• a (T, ε/2)-decoder,

• or a (T + O(n2), ε/2)-distinguisher,
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Adversary against Niederreiter

For given parameters n, r and t

Same thing with a slightly different adversary

A : {0,1}r × {0,1}r×n → Sn(0, t), with Ω = Sn(0, t)× {0,1}r×n and

SA = {(e, H) ∈ Ω | A(eHT , H) = e}

A is a (T, ε)-decoder if

• running time: |A| ≤ T

• success probability: Succ(A) = PrΩ(SA) ≥ ε

A is a (T, ε)-adversary (against Niederreiter) if

• running time: |A| ≤ T

• success probability: SuccNied(A) = PrΩ(SA | G) ≥ ε

If there exists a (T, ε)-adversary then there exists either

• a (T, ε/2)-decoder,

• or a (T + O(n2), ε/2)-distinguisher,
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One Way Encryption Schemes

A scheme is OWE (One Way Encryption) if the all attacks are in-

tractable in average when the messages and the keys are uniformly

distributed

Loosely speaking, there is no (T, ε)-adversary with T/ε upper bounded

by a polynomial in the system parameters

Assuming

• decoding in a random linear code is hard

• Goppa codes are pseudorandom

McEliece and Niederreiter cryptosystems are One Way Encryption

(OWE) schemes
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Malleability attack

[folklore]

You intercept a ciphertext y corresponding to un unknown message

x (i.e. y = xG + e)

You choose a codeword a and you transmit y + a which is a valid

ciphertext for some unknown cleartext different from x

This is not a desirable feature, a priori...
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Resend-message Attack

[Berson, 97]

The same message x is sent twice with the same key G

Adding the two ciphertexts y1 = xG + e1 and y2 = xG + e2 we obtain

y1 + y2 = e1 + e2

The word e1+e2 will have a weight ρ = 2(t−ν) where ν is the number

of overlapping non-zero positions in e1 and e2

In practice ν is small (2.5 in average with the original McEliece param-

eters) and we know all but ν of the error positions in the ciphertexts

Removing the ν remaining errors is a simple matter
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Reaction Attack

[Kobara & Imai, 00] ??

In this attack, we assume the system can be used as an oracle in the

following sense:

• If the system receives a word at distance > t from the code it

answers “invalid ciphertext”

• If the system receives a word at distance ≤ t from the code it

behaves otherwise (for instance, it proceeds with the protocol)

Given a ciphertext y we transform it into a word y′ by flipping the i-th

bit. If i was an error position y′ is at distance t − 1 from the code,

else it is at distance t + 1. We submit y′ and from the answer we

know whether or not i was an error position.

We try this for every position and we retrieve the error pattern

In fact this is a proof that there is no gap between “Decisional Syn-

drome Decoding” and “Computational Syndrome Decoding”
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Semantically Secure Conversions

Being OWE is a very weak notion of security. In the case of code-

based systems, it does not encompass attacks such that the “resend-

message attack”, the “reaction attack” or, more generally, attacks

related to malleability.

Fortunately, using the proper semantically secure conversion any de-

terministic OWE scheme can become IND-CCA2, the strongest se-

curity notion.

McEliece is not deterministic but IND-CCA2 conversion are possible

nevertheless, see [Kobara & Imai, 01] for the first one.
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III. Implementation



A Remark on Niederreiter Encryption Scheme

In Niederreiter’s system the encryption procedure is:

EH : Sn(0, t) → {0,1}r
e 7→ eHT

The set Sn(0, t) is not very convenient to manipulate data, we would

rather have an injective mapping

ϕ : {0,1}` → Sn(0, t)

with ` < log2

(
n
t

)
but as close as possible. In addition, we need ϕ and

ϕ−1 to have a fast implementation.

In that case the encryption becomes EH◦ϕ and the decryption ϕ−1◦DΨ

Note that ϕ is also required for the semantically secure conversions

of McEliece as we must “mix” the error with the message
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Constant Weight Words Encoding - Combinatorial Solution

[Schalkwijk, 72]

We represent a word of Sn(0, t) by the indexes of its non-zero co-

ordinates 0 ≤ i1 < i2 < . . . < it < n and we define the one-to-one

mapping

θ : Sn(0, t) −→
[
0,

(
n
t

)[

(i1, . . . , it) 7−→
(
i1
1

)
+

(
i2
2

)
+ · · ·+

(
it
t

)

This mapping can be inverted by using the formula [S. 02]

i ≈ (xt!)1/t +
t− 1

2
where x =

(
i
t

)

We can encode ` =
⌊
log2

(
n
t

)⌋
bits in one word of Sn(0, t)

The cost in quadratic in `

N. Sendrier – The Design of Code-based Cryptosystems 26/51



Constant Weight Words Encoding - Source Coding Solutions

Another approach is to use source coding. We try to find an ap-

proximative models for constant weight words which are simpler to

encode.

It is possible to design fast (linear time) methods with a minimal loss

(one or very few bits per block)

• fastest → variable length encoding

• fast → constant length encoding (implemented in HyMES)

Still not negligible compared to the encryption cost

Regular word (used in code-based hash function FSB) is an extreme

example with a very high speed but a big information loss (the model

for generating constant weight words is very crude)
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Deterministic Version of McEliece

Hybrid McEliece encryption scheme (HyMES) [Biswas & S., 08]

Parameters: m, t, n = 2m, ϕ : {0,1}` → Sn(0, t)

Secret key: an irreducible binary Goppa code Γ(L, g)

ΦL,g a t-bounded decoder

Public key: a systematic generator matrix G = (Id | R) of Γ(L, g)

Encryption:


 ER : {0,1}k × {0,1}` → {0,1}n

(x, x′) 7→ (x, xR) + ϕ(x′)




Decryption:


 DL,g : {0,1}n → {0,1}k × {0,1}`

y 7→ (x, x′)




where (x, ∗) = ΦL,g(y) and x′ = ϕ−1(y −ΦL,g(y))
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Security of Hybrid McEliece

• Using the error for encoding information

No security loss!

In fact, there is a loss of a factor at most 2`/
(
n
t

)

• Using a systematic generator matrix

The system remains OWE, puzzling but true!

cleartext: x

ciphertext: (x, xR) + e with e of small weight

No change in security, but there is a need for a semantically secure

layer (as for the original system)

N. Sendrier – The Design of Code-based Cryptosystems 29/51



Conversion for Semantic Security – OAEP

[Bellare & Rogaway, 94]

(rnd) (0 · · ·0)yx

y ⊕ f(x)x

y ⊕ f(x)x⊕ h(y ⊕ f(x))

f ⊕

h⊕

?

?

?

- -

?

? ?

��

2-round Feistel scheme





a = x⊕ h(y ⊕ f(x))

b = y ⊕ f(x)
⇔





x = a⊕ h(b)

y = b⊕ f(a⊕ h(b))

Under the “random oracle assumption” on f and h this conversion
provides semantic security (non malleability and indistinguishability).
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Some Set of Parameters

McEliece Niederreiter Hybrid key secur.

m, t cipher clear cipher clear cipher clear size bits∗

10,50 1024 524 500 284 1024 808 32 kB 60

11,32 2048 1696 352 233 2048 1929 73 kB 86

12,21 4096 3844 252 185 4096 4029 118 kB 87

12,40 4096 3616 480 320 4096 3936 212 kB 127

13,18 8192 7958 234 180 8192 8138 227 kB 91

13,29 8192 7815 377 273 8192 8088 360 kB 128

∗ logarithm in base 2 of the cost of the best known attack

key size is given for a key in systematic form
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HyMES – Encryption/Decryption Speed

cycles/byte

m, t encrypt decrypt key size security

10,50 243 7938 32 kB 60

11,32 178 1848 73 kB 86

12,21 126 573 118 kB 87

12,41 164 1412 212 kB 130

13,18 119 312 227 kB 91

13,29 149 535 360 kB 129

14,15 132 229 415 kB 91

15,13 132 186 775 kB 90

16,12 132 166 1532 kB 91

AES: 15-20 cycles/byte

RSA 2048: 834 for encryption, 55922 for decryption

(All timings on Intel Core 2 processor)

N. Sendrier – The Design of Code-based Cryptosystems 32/51



IV. Practical Security - The

Attacks



Best Known Attacks

Decoding attacks. For the public-key encryption schemes the best

attack is always Information Set Decoding (ISD), this will change

for other cryptosystems

Key attacks. Most proposals using families other than binary Goppa

codes have been broken

For binary Goppa codes there are only exhaustive attacks enumer-

ating either generator polynomials either supports (that is permu-

tations)
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Syndrome Decoding – Problem Statement

Computational Syndrome Decoding

CSD(n, r, w)

Given H ∈ {0,1}r×n and s ∈ {0,1}r, solve eHT = s with wt(e) ≤ w

e =

H = s =

-¾
n

6

?

r

Typically w ¿ r < n and we wish to find a few (w) columns of H

which add to some given s.
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Information Set Decoding

eP =

UHP = sUT =

-¾
n

6

?

r

w 0 ← weight profile

1

1

Repeat:

• Pick a permutation matrix P and compute U to obtain the above

systematic form

• If wt(sUT ) ≤ w then e = (sUT ,0)PT is a solution (→ exit)

Success probability:
(

r
w

)
/
(

n
w

)
≈ (r/n)w

Total cost: ≈ r2n(n/r)w
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Information Set Decoding – Generalized

A long story:

• Relax the weight profile: [Lee & Brickell, 88]

• Compute sums on partial columns first: [Leon, 88]

• Use the birthday attack: [Stern, 89]

• First “real” implementation: [Canteaut & Chabaud, 98]

• Initial McEliece parameters broken: [Bernstein, Lange & Peters, 08]

• Asymptotic bounds: [Bernstein et al., 09]

• Lower bounds: [Finiasz & S., 09]

eP =

UHP = sUT =

-¾
n

-¾
k + `

6

?

r − `

6

?
` s′

s′′

H ′
H ′′

e′
w − p p ← weight profile

1

1

0
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Information Set Decoding – Generalized

eP =

UHP = sUT =

-¾
n

-¾
k + `

6

?

r − `

6

?
` s′

s′′

H ′
H ′′

e′
w − p p ← weight profile

1

1

0

Repeat:





1. Pick P and compute U to obtain the systematic form

2. Find many solution of weight p to e′H ′T = s′
3. For all the above e′, test wt(s′′ + e′H ′′T ) ≤ w − p

Success probability:
(
r−`
w

)(
k+`

p

)
/
(

n
w

)

Step 2. is performed by a birthday attack

Total cost is minimized over ` and p
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Information Set Decoding – Generalized

eP =

UHP = sUT =

-¾
n

-¾
k + `

6

?

r − `

6

?
` s′

s′′

H ′
H ′′

e′
w − p p ← weight profile

1

1

0

Step 2

Repeat:




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Success probability:
(
r−`
w

)(
k+`

p

)
/
(

n
w

)
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Information Set Decoding – Generalized

eP =

UHP = sUT =

-¾
n

-¾
k + `

6

?

r − `

6

?
` s′

s′′

H ′
H ′′

e′
w − p p ← weight profile

1

1

0

Step 3

Repeat:





1. Pick P and compute U to obtain the systematic form

2. Find many solution of weight p to e′H ′T = s′
3. For all the above e′, test wt(s′′ + e′H ′′T ) ≤ w − p

Success probability:
(
r−`
w

)(
k+`

p

)
/
(

n
w

)

Step 2. is performed by a birthday attack

Total cost is minimized over ` and p
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Information Set Decoding – Work Factor

eP =

UHP = sUT =

-¾
n

-¾
k + `

6

?

r − `

6

?
` s′

s′′

H ′
H ′′

e′
w − p p ← weight profile

1

1

0

Assuming the Gaussian elimination is free

WFISD = min
p,`

(
n
w

)
(

r−`
w−p

)(
k+`

p

)


2`

√(
k+`

p

)
+ Kw−p

(
k+`

p

)

2`




where Kw−p is the cost for checking wt(s′′ + e′H ′′T ) ≤ w − p. The
value of ` minimizing the formula can be computed and we have

WFISD = min
p

2`
(

n
w

)

(
r−`
w−p

)√(
k+`

p

) with ` = log
(
Kw−p

√(
k+`

p

))
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Key Security

Finding families of codes whose structure cannot be recognized is a

difficult task

Family Proposed by Broken by

Goppa McEliece (78) -

Reed-Solomon Niederreiter (86) Sidelnikov & Chestakov (92)

Concatenated Niederreiter (86) S. (98)

Reed-Muller Sidelnikov (94) Minder & Shokrollahi (07)

AG codes Janwa & Moreno (96) Faure & Minder (08)
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Attacks on Goppa Codes

The only known attacks on binary Goppa codes are exhaustive. Let

Γ(L, g) be the secret code.

• [Gibson, 91] Enumerate all possible supports and compute the

generator polynomial by using g(z)|σ′a(z) for all codeword a

• [Loidreau & S., 01] Enumerate the generators (irreducible poly-

nomials of degree t) build a generator of the the corresponding

Goppa code with any support and test the equivalence with the

support splitting algorithm [S., 00]
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Message Security vs. Key Security

The following table shows the huge gap between the best decoding

attack and best key attack

sizes security

m, t McEliece Niederreiter public key (in bits)

cipher clear cipher clear (syst.) mess. key

10,50 1024 524 500 284 32 kB 60 491

11,32 2048 1696 352 233 73 kB 86 344

12,40 4096 3616 480 320 212 kB 127 471

Can we trade some of the extra key security for a smaller key size?
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Key Size Reduction

Attempts for shorter public key

• Rank metric [Gabidulin et al., 91]

Lot of contributions, finally seriously weakened by [Overbeck ,07]

Still breathing ?

• Codes with structure

• Quasi-cyclic codes [Gaborit, 05], broken by [Otmani et al., 08]

• Quasi-cyclic codes [Berger et al., 09] then Quasi-dyadic Goppa

codes [Misoczki & Barreto, 09]

weakened by [Otmani et al.], unpublished (using Gröbner basis)

Hard open problem, but through the recent works it seems possible

to understand the weaknesses of the existing approaches. . .
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V. Public Key – Conclusions



Other Public Key Systems

• Digital Signature, [Courtois, Finiasz & S., 01]

Same kind security reduction:

Hardness of decoding & Indistinguishability of Goppa codes

• Zero Knowledge identification

[Stern, 93], [Véron, 95], [Gaborit & Girault, 07]

Much stronger security reduction: Hardness of decoding only

• And also. . .

ID based signature [Cayrel, Gaborit & Girault, 07]

Threshold ring signature [Aguilar, Cayrel & Gaborit, 08],
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Conclusion for Public Key Code-based Cryptosystems

• Good security reduction

partly heuristic though:

– nothing proven on the average case complexity of decoding

– indistinguishability of Goppa codes needs more investigations

• The best attacks are decoding attacks

• Attacks on the public key need more attention

• Open problems: mainly related to the key

– find families of secret codes other than Goppa

– find secure ways to reduce the key size (structured codes)
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VI. Symmetric Code-based

Cryptography – “What If We

Don’t Need a Trapdoor”



Average Case Complexity of Decoding

Decoding in random linear code is an old algorithmic problem from

coding theory. It is known to be hard in the worst case (NP-complete).

Though this is not assessed by any theoretical result, it is believed to

be hard in the average case. Coding theorists have tried very hard, for

several decades, to produce efficient generic decoders and have only

found algorithms with an exponential cost on almost all instance.

Improving those algorithms even with limitations would have a strong

impact in the theory but may be also in the practice of error correcting

codes. It is thus relatively safe to assume the average case difficulty

of decoding.

The syndrome mapping e 7→ eHT , when e has a small weight and H

is chosen randomly, provides a very efficient one way function whose

security is reduced to the above assumption.
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Symmetric Code-based Cryptosystems

We will present two applications of code-based one-way functions

• Pseudo-Random Number Generators (PRNG) and stream ciphers

• Cryptographic hash functions
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PRNG with Codes

PRNG
Stream
cipher

IV

?

Init. fct
6

K

Update fct

?

Output fct

?

- State -

?

cleartext - - ciphertext

A stream cipher can be build from a PRNG but adding an initialization

and xoring the keystream (output of the PRNG) to the cleartext

[Fischer & Stern, 96] propose a PRNG where the update function is

a syndrome mapping with a few bits of output at each update

[Gaborit, Lauradoux & S., 07] use a syndrome mapping also for the

output as well as an initialization function (also syndrome-based). In

addition, all the matrix used are quasi-cyclic.
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FSB: Fast Syndrome-Based Hash Function
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The compression function uses a syndrome mapping

f : {0,1}` → Sn(0, w) → {0,1}r
x 7→ ϕ(x) = e 7→ eHT

In order to achieve compression, the error weight must be much higher

than in all other code-based systems (f is surjective)

Difficult: we are not any more in a usual decoding problem. We must

check that syndrome decoding remains hard
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Information Set Decoding for Larger Weight

This plot describes the evolution of the cost (log) of ISD for a fixed

code (of length n and codimension r) when the weight increases

0
0 r

2

6

-

log2(WF )

w
d0

d0 log2

(
n
r

)

one solution many solutions

linear
q

independent of n
)

The maximum is reached for the Gilbert-Varshamov distance, that is

when 2r ≈
(

n
d0

)
. Since we must have

(
n
w

)
> 2r to achieve compression,

we must have w > d0.
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Parameter selection for the FSB hash function

0
0

log2(WF )

error weight

security against collision

security against inversion

2wwd0

f : {0,1}` → Sn(0, w) → {0,1}r
x 7→ ϕ(x) = e 7→ eHT

For inversion resistance, we need the decoding

problem to be hard for w errors

For collision resistance, it must be difficult to find

f(x1) = f(x2), or e1 and e2 of weight w with the

same syndrome, or a word of weight ≤ 2w in the

code

We can formally prove the security reduction
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FSB – Conclusions

When we reach high values of w, another attack has to be considered:

the Generalized Birthday Algorithm (GBA) [Wagner, 02]

It does not change the security reduction, but the parameter selection

process must take GBA into account.

Note also that the constant weight word mapping ϕ encodes only

regular words (for speed) and the codes we use are quasi-cyclic. The

impact on security is acceptable.

The function was submitted to the SHA-3 competition but did not

reach the second round. It was not broken but was 10 to 20 times

slower than ad-hoc designs.
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Thank you for your attention


