Some Facts about Binary Goppa Codes

Indocrypt 2009 tutorial
\qquad

Nicolas Sendrier

$$
\overparen{R} I N R I A
$$

December 13, 2009, New Delhi, India

Irreducible Binary Goppa Codes

Parameters: m, t and $n \leq 2^{m}$
Let $\left\{\begin{array}{l}L=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \text { distinct in } \mathbf{F}_{2^{m}} \\ g(z) \in \mathbf{F}_{2^{m}}[z] \text { monic irreducible of degree } t\end{array}\right.$
The binary irreducible Goppa code $\Gamma(L, g)$ of support L and generator $g(z)$ is defined as the following subspace of $\{0,1\}^{n}$

$$
a=\left(a_{1}, \ldots, a_{n}\right) \in \Gamma(L, g) \Leftrightarrow R_{a}(z)=\sum_{j=1}^{n} \frac{a_{i}}{z-\alpha_{j}}=0 \bmod g(z)
$$

- the dimension of $\Gamma(L, g)$ is $k \geq n-t m$
- the minimum distance of $\Gamma(L, g)$ is $d \geq 2 t+1$
- there exists a t-bounded polynomial time decoder for $\Gamma(L, g)$

Alternative Definition of Binary Goppa Codes

We have

$$
\Gamma(L, g)=\left\{a \in\{0,1\}^{n} \mid a H^{T}=0\right\}
$$

where

$$
H=\left(\begin{array}{ccc}
1 & \cdots & 1 \\
\alpha_{1} & \cdots & \alpha_{n} \\
\vdots & & \vdots \\
\alpha_{1}^{t-1} & \cdots & \alpha_{n}^{t-1}
\end{array}\right)\left(\begin{array}{ccc}
g\left(\alpha_{1}\right)^{-1} & & \\
& \ddots & \\
& & g\left(\alpha_{n}\right)^{-1}
\end{array}\right)
$$

Properties of Binary Goppa Codes

For all $b=\left(b_{1}, \ldots, b_{n}\right) \in\{0,1\}^{n}$, its locator polynomial is defined as

$$
\sigma_{b}(z)=\prod_{j=1}^{n}\left(z-\alpha_{j}\right)^{b_{j}}
$$

(we denote $\sigma_{b}^{\prime}(z)$ its derivative) and its syndrome is defined as

$$
R_{b}(z)=\sum_{j=1}^{n} \frac{b_{j}}{z-\alpha_{j}}
$$

Proposition 1 For all $b \in\{0,1\}^{n}$, we have $R_{b}(z) \sigma_{b}(z)=\sigma_{b}^{\prime}(z)$
Proposition $2 a \in \Gamma(L, g) \Leftrightarrow g(z) \mid \sigma_{a}^{\prime}(z)$
Proof: $a \in \Gamma(L, g) \Leftrightarrow R_{a}(z)=0 \bmod g(z) \Leftrightarrow \sigma_{a}^{\prime}(z)=0 \bmod g(z) \Leftrightarrow g(z) \mid \sigma_{a}^{\prime}(z)$

Main Parameters of Goppa Codes

Dimension: $k \geq n-m t$
there are t parity check equations with coefficients in \mathbf{F}_{2}, thus at most $m t$ independent parity check equations with binary coefficients \rightarrow the codimension is at most $m t$

Minimum distance: $\operatorname{dmin}(\Gamma(L, g)) \geq 2 t+1$
$\Gamma(L, g)$ is an alternant code of designed distance $t+1$

$$
a \in \Gamma(L, g) \Leftrightarrow g(z)\left|\sigma_{a}^{\prime}(z) \Leftrightarrow g(z)^{2}\right| \sigma_{a}^{\prime}(z) \Leftrightarrow a \in \Gamma\left(L, g^{2}\right)
$$

because in charateristic 2 the derivative $\sigma_{a}^{\prime}(z)$ is a square This implies that $\Gamma(L, g)=\Gamma\left(L, g^{2}\right)$ is an alternant code of designed distance $2 t+1$. Its minimum distance is thus $\geq 2 t+1$

Decoding Binary Goppa Codes

Let $b=a+e \in\{0,1\}^{n}$ be the received word with $a \in \Gamma(L, g)$ and $\mathrm{wt}(e) \leq t$

We have $R_{b}(z)=R_{a}(z)+R_{e}(z)=R_{e}(z) \bmod g(z)^{2}$ and thus

$$
R_{e}(z) \sigma_{e}(z)=\sigma_{e}^{\prime}(z) \bmod g(z)^{2}
$$

This key equation can be solved with the extended Euclidean algorithm and provides the locator polynomial $\sigma_{e}(z)$ of the error After computing the roots of $\sigma_{e}(z)$ we obtain the error e and the codeword a

Decoding Complexity

Counting the operations in the field $\mathbf{F}_{2^{m}}$, we get

1. Computing the syndrome $R_{b}(z)$
2. Solving the key equation
$\rightarrow O(n t)$
$\rightarrow O\left(t^{2}\right)$
3. Computing the roots of the locator polynomial $\rightarrow O\left(m t^{2}\right)$

Step 3 uses the Berlekamp trace algorithm
In practice, for sizes used in cryptosystems, the Step 3 is the most expensive

Berlekamp Trace Algorithm

Problem: Find the roots of $\sigma(z) \in \mathbf{F}_{2^{m}}[z]$ assuming $\sigma(z) \mid z+z^{2^{m}}$
Trace polynomial $\left(\operatorname{Tr}(\cdot)\right.$ is the trace in $\mathbf{F}_{2^{m}}$ over $\left.\mathbf{F}_{2}\right)$:

$$
\begin{aligned}
T(z) & =z+z^{2}+z^{4}+\cdots+z^{2^{m-1}}=\prod_{\operatorname{Tr}(\gamma)=0}(z-\gamma) \\
1+T(z) & =\prod_{\operatorname{Tr}(\gamma)=1}(z-\gamma) \text { and } T(z)(T(z)+1)=z+z^{2^{m}}
\end{aligned}
$$

We compute $\left\{\begin{array}{l}\sigma_{0}(z)=\operatorname{gcd}(\sigma(z), T(z)) \\ \sigma_{1}(z)=\operatorname{gcd}(\sigma(z), T(z)+1)=\sigma(z) / \sigma_{0}(z)\end{array}\right.$
We can repeat this recursively with $T(\beta z)$ instead of $T(z)$ with some $\beta \in \mathbf{F}_{2^{m}}$, hopefully splitting the polynomials again

Doing this with $T(\beta z)$ when $\beta \in\left\{\beta_{0}, \ldots, \beta_{m-1}\right.$) runs through a basis of \mathbf{F}_{2} over \mathbf{F}_{2} will separate all the roots of (z)
and here lives the dragons...

