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Introduction

Coding theory has many applications in cryptology.
• PART I: Authentication codes
• PART II: Correlation attacks on stream ciphers
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Unconditionally secure authentication

An unconditionally secure solution
• Simmons’ model (Gilbert, MacWilliams, Sloane 1974)
• The transmitted information is a source message, s from S.
• mapped into a (channel) message, m ∈M.
• the secret key, e and taken from the set E .
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Unconditionally secure authentication

• Encoding
f : S × E →M, (s, e) 7→ m.

If f (s, e) = m and f (s ′, e) = m, then s = s ′ (injective for each
e ∈ E).

• The mapping f together with S, M and E define an
authentication code (A-code).

• The receiver must check whether a source message s exists,
such that f (s, e) = m.

• If such an s exists, m is accepted (m is called valid).
• Otherwise, m is not authentic and thus rejected.
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Attacks

The opponent has two possible attacks at his disposal:
• The impersonation attack: Inserting a message m and hoping

for it to be accepted as authentic.
• substitution attack: opponent observes the message m and

replaces this with another message m′, m 6= m′, hoping for m′

to be valid.
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Definitions of attack success

The opponent chooses the message that maximizes his chances of
success when performing an attack.
• Success in impersonation attack:

PI = max
m

P(m is valid)

• Success in substitution attack:

PS = max
m,m′

m 6=m′

P(m′ is valid|m is valid).

Probability of deception PD as PD = max(PI , PS).
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Basic bounds

Theorem
For any authentication code,

PI ≥ |S|
|M|

,

PS ≥ |S| − 1
|M| − 1

.

|M| must be chosen much larger than |S|.
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Simmons’ bounds

Theorem (Simmons’ bounds)
For any authentication code,

PI ≥ 2−I (M;E),

PS ≥ 2−H(E |M), if |S| ≥ 2.

For a good protection, i.e., PI small, we must give away a lot of
information about the key.
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The square root bound

Multiply the two bounds together and get

PIPS ≥ 2−I (M;E)−H(E |M) = 2−H(E).

From H(E ) ≤ log |E| we obtain the square root bound.

Theorem (Square root bound)
For any authentication code,

PD ≥ 1√
|E|

.
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On the square root bound

Theorem
The square root bound can be tight only if

|S| ≤
√
|E|+ 1.

a large source size demands a twice as large key size. This is not
very practical.
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Systematic authentication codes

• An A-code for which the map f : S × E →M can be written
in the form

f : S × E → S × Z, (s, e) 7→ (s, z),

where s ∈ S, z ∈ Z, is called a systematic (or Cartesian)
A-code.

• The second part z in the message is called the tag (or
authenticator) and is taken from the tag alphabet Z.
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Systematic authentication codes

Theorem
For any systematic A-code

PS ≥ PI .
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Constructing authentication codes

Define E(m) as the set of keys for which a message m is valid,

E(m) = {e ∈ E ;∃s ∈ S, f (s, e) = m}.

The probability of success in a substitution attack can be written as

PS = max
m,m′

m 6=m′

|E(m) ∩ E(m′)|
|E(m)|

,

provided that the keys are uniformly distributed.
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The vector space construction:

• Let |S| = q, |Z| = q, and |E| = q2, q prime power.
• Decompose the key as e = (e1, e2), where s, z , e1, e2 ∈ Fq.
• For transmission of source message s, generate a message

m = (s, z), where
z = e1 + se2.

Theorem
The above construction provides PI = PS = 1/q. Moreover, it has
parameters |S| = q, |Z| = q, and |E| = q2.
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Proof

PS = max
m,m′

m 6=m′

|E(m) ∩ E(m′)|
|E(m)|

= max
m,m′

m 6=m′

|{e ∈ E ; m = (s, e1 + se2), m′ = (s ′, e1 + s ′e2)}|
|{e ∈ E ; m = (s, e1 + se2)}|

= max
m,m′

m 6=m′

|{e ∈ E ; m = (s, e1 + se2), m −m′ = (s − s ′, (s − s ′)e2)}|
|{e ∈ E ; m = (s, e1 + se2)}|

=
1
q
.
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Polynomial evaluation construction

• Let S = {s = (s1, . . . , sk) ; si ∈ Fq}. Define the source
message polynomial to be

s(x) = s1x + s2x2 + · · ·+ skxk .

• Let E = {e = (e1, e2) ; e1, e2 ∈ Fq} and Z = Fq.
• For the transmission of source message s, the transmitter

sends s together with the tag

z = e1 + s(e2).

Theorem
The construction gives systematic A-codes with parameters

|S| = qk , |E| = q2, |Z| = q, PI = 1/q, PS = k/q.
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Proof

PS = max
m,m′

m 6=m′

|E(m) ∩ E(m′)|
|E(m)|

= max
s,s′,z,z ′
s 6=s′

|{e ∈ E ; z = e1 + s(e2), z ′ = e1 + s ′(e2)}|
|{e ∈ E ; z = e1 + s(e2)}|

= max
s,s′,z,z ′
s 6=s′

|{e ∈ E ; z = e1 + s(e2), z − z ′ = s(e2)− s ′(e2)}|
|{e ∈ E ; z = e1 + se2)}|

=
k
q

.
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Authentication codes using coding theory

• Let m = (s, z) and write

z = e(s),

i.e., every key describes a map S → Z.
• Let n = |E|, M = |S| and q = |Z|.
• Write E(s, z) = {e ∈ E : e(s) = z}.
• We restrict to A-codes for which

E(m) = |E| / |Z| = n/q, ∀m ∈M.

or PI = 1/q.
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Interpret the A-code as a code

• S = {s1, s2, . . . sM}.
• A q-ary code C of length |E| with |S| codewords by

c(i) = (c(i)
1 , c(i)

2 , . . . c(i)
n )

where
c(i)
j = ej(si ).

e1 e2 e3 . . . en

s1 ( c(1)
1 c(1)

2 c(1)
3 . . . c(1)

n )
s2 ( c(2)

1 c(2)
2 c(2)

3 . . . c(2)
n )

...
...

...
. . .

...
sM ( c(M)

1 c(M)
2 c(M)

3 . . . c(M)
n )
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Interpret the A-code as a code

•
C = {c(i); i = 1, 2, . . . , M}.

• Define
γ(c, c′) = max

α,β∈Z

∣∣{j ; cj = α, c ′j = β}
∣∣

• Define the a-distance

D(c, c′) = n − qγ(c, c′).

• Define the minimum a-distance

D(C ) = min
c,c′∈C ;c6=c′

D(c, c′).

• Triangle inequality does not hold!
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Interpret the A-code as a code

PS = max
s,z,s′,z ′

s 6=s′

|E(s, z) ∩ E(s ′, z ′)|
|E(s, z)|

= max
c,c′
c6=c′

max
α,β∈Z

∣∣∣{j ; cj = α, c ′j = β}
∣∣∣

|{j ; cj = α}|

• Relation
D(C ) = n(1− PS).

Trivially, we have D(C ) ≤ dH(C ), where dH(C ) is the minimum
(Hamming) distance of C .
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Bounds on authentication codes

• m(n, ε, q) maximal number of source messages in an A-code
with n keys, PS ≤ ε, tag size q.

• Aq(n, d) maximal number of codewords in a q-ary code of
length n and minimum Hamming distance d

• A∗
q(n, d) the same but assuming equal symbol composition.

Theorem
We have

q(q − 1)m(n, ε, q) ≤ A∗
q(n, (1− ε)n),

and
q(q − 1)m(n, ε, q) + q ≤ Aq(n, (1− ε)n).
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Bounds on authentication codes

We prove
q(q − 1)m(n, ε, q) = A∗

q(n, (1− ε)n),

by constructing

C ′ = {c′; c′ = ac + b1, c ∈ C , a 6= 0, b ∈ Fq}.

and then argue that dH(C ′) ≥ D(C ).
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Bounds on authentication codes

Theorem
Any systematic A-code for which PI = PS = 1/q satisfies

(q − 1) |S| ≤ n − 1.

• The code will have parameters

(n, M, d) = (n, q(q − 1) |S|+ q, θ · n),

where θ = 1− PS = (q − 1)/q.
• The Plotkin bound gives

Aq(n, θn) ≤ qAq(n − 1, θn) ≤ q
θn

θn − θ(n − 1)
= qn.
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Bounds on authentication codes

Theorem
Any systematic A-code satisfies

PS ≥
logq((q − 1) |S|+ 1)

n
.

• Apply the Singleton bound n ≥ d + k − 1, k = logq M.
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Bounds on authentication codes

The previous result can be strengthened.

Theorem
Any systematic A-code satisfies

PS ≥
qblogq |S|c

n
,

provided logq |S| <
√

(2n(1− 1/q)/q)− 1/2.

• The proof is more complicated and involves the Johnson
bound on binary constant weight codes.
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Going the other way: Constructing A-codes from codes

Theorem
Let a code C with parameters (n, M, d) be given, with the special
property that if c ∈ C then c + λ1 ∈ C, for all λ ∈ Fq. Then there
exists an A-code with parameters

|S| = Mq−1, |E| = nq, PI = 1/q, PS = 1− d/n.

• 1. Form a “quotient code” C/1 with parameters (n, M/q, d).
• 2. Expand c to length nq by

c 7→ (c, c + α11, c + α21, . . . , c + αq−11).
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Going the other way: Constructing A-codes from codes

• For a linear code the condition if c ∈ C then c + λ1 ∈ C , for
all λ ∈ Fq simply means

1 ∈ C

.
• Finding such codes we can now construct A-codes...
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Existence bounds on A-codes

• A•
q(n, d) maximal number of codewords in a q-ary code of

length n and minimum Hamming distance d such that if
c ∈ C then c + λ1 ∈ C , for all λ ∈ Fq.

• Modified Gilbert bound:

A•
q(n, d) ≥ qn

Vq(n, d − 1)
,

where Vq(n, d − 1) =
∑d−1

i=0
(n

i

)
(q − 1)i is the size of a

Hamming sphere.

Theorem
The maximal number of source messages satisfies

m(nq, ε, q) ≥ qn−1

Vq(n, (1− ε)n − 1)
,

where PS ≤ ε.
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Constructions of A-codes

• An [n = q, k + 1, d ] Reed-Solomon code C over Fq can be
described as

C = {(f (0), f (α1), f (α2), . . . , f (αq−1)}; f ∈ L},

where L is the set of all polynomials of degree < k + 1 in
Fq[x ] and Fq = {0, α1, . . . , αq−1}.

• 1 ∈ C so apply the construction. We get:
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Polynomial evaluation construction

Let S = {s = (s1, . . . , sk) ; si ∈ Fq}. Define the source message
polynomial to be s(x) = s1x + s2x2 + · · ·+ skxk . Let
E = {e = (e1, e2) ; e1, e2 ∈ Fq} and Z = Fq. For the transmission
of source message s, the transmitter sends s together with the tag

z = e1 + s(e2).

Theorem
The construction gives systematic A-codes with parameters

|S| = qk , |E| = q2, |Z| = q, PI = 1/q, PS = k/q.
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More on the polynomial evaluation construction

• An A-code is weakly optimal if for fixed |S| , |E| , |Z| , PI we
have PS at its lowest value.

Theorem
The polynomial evaluation construction gives weakly optimal
A-codes.
Recall

PS ≥
qblogq |S|c

n
,
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Constructions through concatenation of codes

• Very large source sizes (log |S| = 230) requires very large
codes.

• We can get that by concatenating codes, for example RS
codes.

Construction: Let Q = 2r+s and q = 2r . The source message is a
polynomial s(x) ∈ FQ [x ] of degree ≤ 2s . Let e1, e2 ∈ FQ and
e3 ∈ Fq. The tag is

z = e3 + [s(e1)e2],

where [x ] returns the last r bits of x .
Parameters:

log |S| = (r + s)(1 + 2s), log |E| = 3r + 2s, PS < 2/2r .
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More recent developments

Focus on efficient impementation rather than minimum key size.
• LFSR-based Hashing and Authentication (Krawczyk)
• Bucket hashing (Rogaway)
• UMAC (Black, Halevi, Krawczyk, Krovetz, Rogaway)
• The Poly1305 MAC (Bernstein)
• and others...

In standards we have
• NISTs GCM mode
• ETSI (3GPP) UIA2 mode.
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PART II: Correlation attacks on stream ciphers

j- -
?

keystream
generator

m1, m2, . . . c1, c2, . . .

z1, z2, . . .

• The keystream generator contains one or several LFSRs.
• Observed keystream sequence z1, z2, . . . , zN .
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Correlation attacks

LFSR n

LFSR 2

LFSR 1

&%
'$

f
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-

x (n)
i

x (2)
i

x (1)
i

zi

...
...

A nonlinear combining generator

Siegenthaler introduced correlation attacks.
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Correlation attacks

KEY GENERATOR

LFSR

-

-

zi

ui

• A correlation attack is possible if P(zi = ui ) 6= 0.5.

g(x) - -

-

-

HHH
HHHj�

���
��*ui ziU Z

0

1

0

1

p
p

1− p

1− p

LFSR BSC
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A coding theory problem

• l is the length of the LFSR.
• The set of all 2l possible LFSR sequences u = u1, u2, . . . , uN

form a linear [N, l ] code, call it C .
• Assume that we know N binary keystream symbols

z = z1, z2, . . . , zN .

• Then z corresponds to a received word, obtained by sending an
unknown codeword through the BSC.

• Our problem is to decode z to the correct codeword.
• Typical characteristics:

• Code length N is very large.
• The noise is very strong (p close to 1/2).
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Meier-Staffelbach original approach

• Better than exhaustively searching LFSR – fast correlation
attacks.

• Assume a low weight of g(x).

Finding parity checks:
• The feedback polynomial

g(x) = 1 + g1x1 + g2x2 + . . . + glx l .

• t = the number of taps, i.e., the weight of g(x) is t + 1.
• Recurrence relation

un = g1un−1 + g2un−2 + . . . + glun−l .

• We get in this way t + 1 different parity check equations for un.
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Fast correlation attacks

• g(x)j = g(x j) for j = 2i , low degree multiples of g(x).
• We create new weight t + 1 parity checks by

gk+1(x) = gk(x)2.

• This squaring is continued until the degree of gk(x) is greater
than the length N of the observed keystream.

• Each gk(x) gives t + 1 new parity check equations for a fixed
position un.
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Fast correlation attacks

• Write m equations for position un as,

un + b1 = 0,
un + b2 = 0,

...
un + bm = 0,

where each bi is the sum of t different positions of u.
• Applying the same to the keystream

zn + y1 = L1
zn + y2 = L2

...
zn + ym = Lm.

where yi is the sum of the positions in the keystream
corresponding to the positions in bi .

Thomas Johansson Coding theory as a tool in crypto
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Fast correlation attacks

• Assume that h out of the m equations hold, i.e.,
h = |{i : Li = 0, 1 ≤ i ≤ m}|.

• Then it is possible to calculate the probability

p∗ = P(un = zn|h equations hold)

as

p∗ =
psh(1− s)m−h

psh(1− s)m−h + (1− p)(1− s)hsm−h ,

where p = P(un = zn), and s = P(bi = yi ).
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Fast correlation attacks

Algorithm B: the probabilities are calculated iteratively.
Two parameters pthr and Nthr .

1. For all symbols in the keystream, calculate p∗ and determine
the number of positions Nw with p∗ < pthr .

2. If Nw < Nthr repeat step 1 with P(ui = zi ) = p replaced by
P(ui = zi ) = p∗.

3. Complement the bits with p∗ < pthr and reset the probabilities
to p.

4. If not all equations are satisfied go to step 1.
Resembles iterative decoding a lot.

Thomas Johansson Coding theory as a tool in crypto



Authentication codes
Correlation attacks

Correlation attacks

g(x) - -

-

-

HHH
HHHj�

���
��*ui ziU Z

0

1

0

1

p
p

1− p

1− p

LFSR BSC

• General case: g(x) is not of low weight.
• How to efficiently decode the “LFSR code” when transmitted

over a very noisy BSC?
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Correlation attacks using convolutional codes

(Johansson, Jönsson, Eurocrypt’99)
• Transform a part of C into a convolutional code.
• A rate R = 1/(m + 1) convolutional code with memory B has

codeword symbols

vn = (v (0)
n , v (1)

n , . . . , v (m)
n )

where
vn = unG0 + un−1G1 + . . . un−BGB ,

and each Gi is a vector of length (m + 1).
• Generator matrix

G =


. . . . . . . . .

G0 G1 . . . Gm
G0 G1 . . . Gm

. . . . . . . . .

 ,
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Correlation attacks using convolutional codes

• Idea: Find parity checks that include un, an arbitrary linear
combination of un−1, . . . , un−B , together with at most t other
symbols. say t = 2.

•
un +

∑B
i=1 ci1un−i + b1 = 0,

un +
∑B

i=1 ci2un−i + b2 = 0,
...

un +
∑B

i=1 cimun−i + bm = 0,

where bk =
∑≤t

i=1 ujik , 1 ≤ k ≤ m is the sum of (at most) t
positions in u.

Thomas Johansson Coding theory as a tool in crypto
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Correlation attacks using convolutional codes

• We get a rate R = 1
m+1 bi-infinite convolutional code V .

• For v (i)
n we create an estimate from z.

• v (0)
n = un and P(v (0)

n = zn) = 1− p. Otherwise, if
v (i)
n = uj1 + uj2 then

P(v (i)
n = zj1 + zj2) = (1− p)2 + p2.

• Using these estimates we can construct a sequence

r = . . . r (0)
n r (1)

n . . . r (m)
n r (0)

n+1r
(1)
n+1 . . . r (m)

n+1 . . . ,

where r (0)
n = zn and r (i)

n = zj1i + zj2i , 1 ≤ i ≤ m, that plays
the role of a received sequence for the convolutional code.

Thomas Johansson Coding theory as a tool in crypto
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Correlation attacks using convolutional codes

• To recover the initial state of the LFSR we need to decode l
consecutive information bits correctly.

• Optimal decoding (ML decoding) of convolutional codes uses
the Viterbi algorithm.

• There is neither a starting state, nor an ending state. Start by
assigning the metrics log P(s = z1, z2, . . . , zB) to each state s
in the trellis. We then proceed to decode from n = B as usual.
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Another coding based approach

(Chepychov, Johansson, Smeets, FSE 2000)

g(x) - -

-

-

H
HHH

HHj���
���*ui ziU Z

0

1

0

1

p
p

1− p

1− p

LFSR BSC

• The LFSR code C has the (N × l)-generator matrix

G =


h1
1 h1

2 · · · h1
N

h2
1 h2

2 · · · h2
N

... · · ·
hl
1 hl

2 · · · hl
N

 .
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Another coding based approach

• Fix a k < l . Look for pairs of columns of G such that,

hk+1
i = hk+1

j , . . . , hl
i = hl

j , 1 ≤ i 6= j ≤ N.

• The indices of all such pairs: {i1, j1}, . . . , {in2 , jn2}.
• The sum ci + cj is independent of uk+1, uk+2, . . . , ul ,

ci + cj =
(
h1
i + h1

j
)
u1 + . . . +

(
hk
i + hk

j

)
uk .

• This means that the words

(C1, C2, . . . Cn2) = (ci1 + cj1 , ci2 + cj2 , . . . , cin2
+ cjn2

)

form an [n2, k]-code, referred to as C2.
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Another coding based approach

• Calculate

Z1 = zi1 + zj1 , . . . , Zn2 = zin2
+ zjn2

,

a word acting as a received word for C2.

• Decode the code C2 using exhaustive search through all the 2k

codewords of C2.
• New much worse error probability

p2 = P(Ci 6= Zi ) = 2p(1− p), but dimension is smaller.
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The general attack

Precomputation.
• Choose a k < l and a t ≥ 2. Construct generator matrix G .
• Find all sets of t indices {i(1), i(2), . . . , i(t)} that satisfy

t∑
j=1

hm
i(j) = 0, for m = k + 1, k + 2, . . . , l .

Store the indices i(1), i(2), . . . , i(t) together with the value of t∑
j=1

h1
i(j),

t∑
j=1

h2
i(j), . . . ,

t∑
j=1

hk
i(j)

 .

(Parity checks for the code Ct)
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The general attack

Decoding.
Input: The received vector (z1, z2, . . . , zN).

Step 1. Compute

(Z1 =
t∑

j=1

zi1(j), . . . , Zn =
t∑

j=1

zin(j)).

Step 2. Decode the code Ct using exhaustive search through the all 2k

codewords of Ct .
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Theoretical results

Theorem
With given k , l , t, p = 1/2− ε, the required length N of the
observed sequence z for the attack to succeed is

N ≈ 1/4 · (2kt! ln 2)1/t · ε−2 · 2
l−k
t ,

assuming N >> nt .
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Correlation attacks: more recent attacks

• Canteaut and Trabbia: Use parity check equations of weight 4
and 5, decode with Gallager iterative decoding algorithm.

• Johansson, Jönsson: reconstruction of linear polynomials
• Mihaljevic, Fossorier and Imai: combine exhaustive search over

the first B bits with list decoding algorithm.
• Chose, Joux and Mitton: new methods for efficient

implementations, better decoding algorithm.
• Golic: vectorial approach to fast correlation attacks
• and many more
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Conclusions

• We saw two examples of coding in crypto:
• authentication codes
• correlation attacks

• Many other: Boolean functions/S-boxes; McEliece PKC etc.;
• New application areas may come...
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