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Hash functions: Overview
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A few Notions

A hash function maps a variable-length input to a fixed-size
output or fingerprint, of length n bits.

Requirements:
I Collision resistance: Can’t find two inputs with a same

fingerprint.
I Pre-image resistance: Given a fingerprint, it is infeasible to

find a corresponding input.
I Second pre-image resistance: Given an input, can’t find a

second input with same fingerprint.
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Requirements (quantified)

Can find collisions by birthday paradox in 2n/2 time and
memory for any hash function if fingerprint size is n bits.

I Collision resistance: Can’t find two inputs with a same
fingerprint in (much) less than 2n/2.

I Pre-image resistance: Given a fingerprint, it is infeasible to
find a corresponding input in less than 2n.

I Second pre-image resistance: Given an input, can’t find a
second input with same fingerprint in less than 2n.
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Applications of hash functions

I Electronic (digital) signatures
I Secure storage of passwords
I Generation of pseudo-random numbers
I Payment schemes
I Commitments
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Hash function constructions

With or without a key.

Keyed constructions:
I Message Authentication Codes (MAC)
I Universal hash functions

Keyless construction:
I Compression function
I Extension method:

I Tree
I Merkle-Damgard
I Sponge
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Compression function

I Input of fixed size
I Processes one message block at a time
I Outputs are inputs for next iteration
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Compression function constructions

No efficient provably secure compression function in sight.

I Based on block cipher, e.g., Davies-Meyer
I Dedicated designs: MD5, SHA-1.

I In worldwide use
I Both broken in 2005 by X. Wang et. al.
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Davies-Meyer mode

Pictures: Wikipedia
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MD5 step function
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MD5 compression function

MD5 has 4 rounds of 16 steps.

Chaining variable of 4 32-bit words.

Message input: 512 bits divided into 16 32-bit words.

Each step processes one message word in prescribed order.

Uses as basic operations:
I xor
I integer addition of 32-bit words
I For each round a Boolean function with 3 inputs

Always acting on 32 bits in parallel. Extension to arbitrary
length messages with Merkle-Damgard.
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Merkle-Damgard construction
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The SHA-3 competition
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SHA-3

I October 2008: NIST received 64 submissions worldwide.
I December 2008: 51 submissions accepted to be in first

round.
I July 2009: 14 candidates to be in round 2.
I Motivated a number of cryptanalytic attempts and breaks

of several candidates.
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Linear differentials
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The principle

I Linearize compression function to find low weight
differential characteristics.

I Find conforming message pair whose differential trail
follows the linear one.

I Initiated by Chabaud-Joux for SHA-0 hash function.
I Main focus: compression functions composed only of

integer addition and linear transforms, AXR
(addition-xor-rotation), e.g. SHA-3 candidates BLAKE,
BMW, CubeHash, Skein.
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Compress and Compress
lin

Compression function H = Compress(M,V ).

Works with n-bit words, and maps m-bit message M and v -bit
initial value V into h-bit output H.

For Compress look for two messages with a difference ∆ that
results in collision with some probability for random V .

Compress AXR-based: Replace all additions by XOR. Get a
linear function Compresslin. Then

Compresslin(M,V )⊕Compresslin(M⊕∆,V ) = Compresslin(∆,0)

is independent of the value of V .

Notation: Compresslin(M) = Compresslin(M,0).
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Let ∆ be an element of the kernel of Compresslin, i.e.
Compresslin(∆) = 0.

Are interested in the probability

Pr{Compress(M,V )⊕ Compress(M ⊕∆,V ) = 0}

for a random M and V .

Present algorithm which computes this probability, called the
raw (or bulk) probability.
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Notations

nadd : number of additions in Compress.

Ai = Ai(M,V ), Bi = Bi(M,V ), 1 ≤ i ≤ nadd : addends of i-th
addition.

In Compresslin(∆): αi(∆), β i(∆): two inputs of i-th (linearized)
addition.

Define four more functions A(M,V ), B(M,V ), α(∆) and β(∆)
with (n − 1)nadd-bit outputs.

Are the concatenation of all nadd relevant words excluding their
MSBs,

e.g., A(M,V ) and α(∆) are respectively the concatenation of
the nadd words

(
A1(M,V ), . . . ,Anadd(M,V )

)
and(

α1(∆), . . . , αnadd(∆)
)

excluding the MSBs.
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Computing raw probability

Assume n-bit integers A and B. Then

Pr{
(
(A⊕α)+(B⊕β)

)
⊕(A+B) = α⊕β} = 2−wt

(
(α∨β)∧(2n−1−1)

)
.

This gives probability that modular addition behaves like XOR
operation.

Compresslin approximates Compress by replacing modular
addition with XOR.

Devise simple algorithm to compute (estimate) the raw
probability

Pr{Compress(M,V )⊕Compress(M⊕∆,V ) = Compresslin(∆)}.
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Raw Probability

For any message difference ∆ and for random values M and V ,

p∆ = 2−wt
(
α(∆)∨β(∆)

)
is an upper bound for

Pr{Compress(M,V )⊕Compress(M⊕∆,V ) = Compresslin(∆)}.

A message M (for a given V ) conforms to (or follows) the trail of
∆ iff(

(Ai ⊕ αi) + (Bi ⊕ β i)
)
⊕ (Ai + Bi) = αi ⊕ β i , for 1 ≤ i ≤ nadd.
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Finding a conforming message pair
efficiently
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Methods

I Message modification
I Neutral bits
I Boomerang attacks
I ....

Reformulate finding of conforming message pairs as finding
preimages of zero of a function, called condition function.

Analyze condition function to see how freedom degrees can be
used in efficient preimage construction.

Measure amount of influence of each input bit to each output bit
of condition function.
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Methods contd.

Dependency table: to distinguish influental bits from those with
marginal influence.

In case the condition function doesn’t mix its inputs well, exploit
neutral bits and even probabilistic neutral bits.

Backtracking search algorithm based on dependency table.
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Methods contd.

Assume that message difference ∆ satisfies
Compresslin(∆) = 0.

Need to try around 1/p∆ random message pairs to find collision
conforming to trail of ∆.

Method for finding conforming message pair sooner?
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Condition function

Assume we found a differential path for message difference ∆,
with prob. p∆ = 2−y , where y = wt

(
α(∆) ∨ β(∆)

)
.

Show that for given initial value V , problem of finding
conforming message pair such that

Compress(M,V )⊕ Compress(M ⊕∆,V ) = 0

can be translated into finding a message M such that

Condition∆(M,V ) = 0.

Here Y = Condition∆(M,V ) is a function which maps m-bit
message M and v -bit initial value V into y -bit output Y .
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In other words, problem is reduced to finding a preimage of
zero under the Condition∆ function.

Depending on difference ∆, it may happen that not every output
bit of the Condition function depends on all the message input
bits.

By taking good strategy, this property enables to find the
preimages of zero under this function more efficiently than
random search.

In order to derive the function Condition from Compress in
AXR-case, need a basic property of integer addition.

Nonlinearity is introduced by the carry word C when two integer
words A and B are added:

C = (A + B)⊕ A⊕ B.
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Let A and B be two n-bit words and C represent their carry
word.

Let δ = 2i for 0 ≤ i ≤ n − 2. Then,(
(A⊕ δ) + (B ⊕ δ)

)
= (A + B)⇔ Ai ⊕ Bi ⊕ 1 = 0 ,(

A + (B ⊕ δ)) = (A + B)⊕ δ ⇔ Ai ⊕ Ci = 0 ,

and similarly(
(A⊕ δ) + B) = (A + B)⊕ δ ⇔ Bi ⊕ Ci = 0 .
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Define the function Y = Condition∆(M,V ) as:

Yj =


Aij ⊕ Bij ⊕ 1 if (αij ,βij ) = (1,1),

Aij ⊕ Cij if (αij ,βij ) = (0,1),

Bij ⊕ Cij if (αij ,βij ) = (1,0),

Then for a given V and ∆, a message M conforms to the trail
of ∆ iff Condition∆(M,V ) = 0.

Notation:
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Dependency table

Notation: F (M,V ) = Condition∆(M,V ).

Given a general function Y = F (M,V ), which maps m
message bits and v initial value bits into y output bits.

Goal: Reconstruct preimages of given output, e.g., zero vector,
efficiently, i.e., find V and M such that F (M,V ) = 0.

If diffusion of highly nonlinear function F is good, expect to try
about 2y random inputs.

In special cases: Not every input bit of F affects every output
bit.
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Ideal situation: Message bits and output bits can be divided into
` and`+ 1 disjoint subsets, resp., as

⋃̀
i=1

Mi and
⋃̀
i=0

Yi

such that the output bits Yj (0 ≤ j ≤ `) only depend on the
input bits

⋃j
i=1Mi and the initial value V .

Once initial value V is known, can determine the output part Y0.

If initial value V and the input portionM1 is known, the output
part Y1 is also known and so on.

This property suggests backtracking search algorithm.

Implemented recursively with tree-based search to avoid
memory requirements: Algorithm 1.
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Algorithm 1 : Preimage finding

Require: q0,q1, . . . ,q`
Ensure: some preimage of zero under F

0: Choose 2q0 initial values at random and keep those 2q′1

candidates which make Y0 part null.
1: For each candidate, choose 2q1−q′1 values forM1 and keep
those 2q′2 ones making Y1 null.
2: For each candidate, choose 2q2−q′2 values forM2 and keep
those 2q′3 ones making Y2 null.
...
i : For each candidate, choose 2qi−q′i values forMi and keep
those 2q′i+1 ones making Yi null.
...
`: For each candidate, choose 2q`−q′` values forM` and keep
those 2q′`+1 final candidates making Y` null.
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Values q0, ..,q`: To be determined in optimal way.

Complexity of algorithm (discussion):

Let |Mi | and |Yi | denote the cardinality ofMi and Yi resp.,
where |Y0| ≥ 0 and |Yi | ≥ 1 for 1 ≤ i ≤ `.

Consider an ideal behavior of F for which each output part
depends in a complex way on all the variables that it depends
on.

Thus, the output segment changes independently and uniformly
at random if we change any part of the relevant input bits.

Analysis of Algo: need to determine optimal values for q0, ...,q`.
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Time complexity of Algo:
∑`

i=0 2qi , as at each step 2qi values
are examined.

Algo successful if at least one candidate left at the end, i.e.
q′`+1 ≥ 0.

Have q′i+1 ≈ qi − |Yi |, coming from the fact that at the i-th step
2qi values are examined each of which makes the portion Yi of
the output null with probability 2−|Yi |.

We have the restrictions qi − q′i ≤ |Mi | and 0 ≤ q′i since we
have |Mi | bits of freedom degree at the i-th step and we
require at least one surviving candidate after each step.

Consequence: Optimal values for qi ’s can be recursively
computed as qi−1 = |Yi−1|+ max(0,qi − |Mi |) for
i = `, `− 1, . . . ,1 with q` = |Y`|.
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How to determine the partitionsMi and Yi for a given function
F?

Heuristic method for determining the message and output
partitions in practice:

First construct a y ×m binary valued table T called
dependency table.

The entry Ti,j , 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ y − 1, is set to one iff
the j-th output bit is highly affected by the i-th message bit.
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To this end: empirically measure the probability that changing
the i-th message bit changes the j-th output bit.

Probability computed over random initial values and messages.

Then set Ti,j to one iff this probability is greater than a threshold
0 ≤ th < 0.5, for example th = 0.3.
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Input/Output partitioning of a Condition function
Dependency table ...

0 0 0 0 0 1 0 1 1 1 0 1 1 1 0 0 1 0 1 1 1 1
1 0 0 1 0 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 1 1 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0
0 0 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 0 0 0 0 1 0 1 0 0 1 0 1 0 0 1 1
1 1 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 1 0 0 1 1 1 1 0 0 1 0 1 1 0 1 0 1
0 0 0 1 1 0 1 0 1 1 0 0 0 1 0 0 1 1 0 1 0 1
1 1 1 1 1 1 0 0 1 1 0 1 0 0 1 1 1 0 0 0 0 1
0 0 1 0 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 0 0 1 0 0 1
0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 1 1 0 1 0 1
1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0
1 1 0 0 0 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 1 1
1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

Y1 = {16, 20, 23, 27, 29, 30} M1 = {1, 2, 3, 4, 5}

Y2 = {3, 4, 6, 8, 9, 24, 25, 26, 28, 32} M2 = {6, 7, 8, 9, 10, 11}

Y3 = {2, 5, 12, 13, 15, 17, 18, 19, 31} M3 = {12, 13, 14}

Y4 = {1, 7, 10, 11, 14, 15, 21, 22} M4 = {15, 16, 17, 18, 19, 20, 21, 22}
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Input/Output partitioning of a Condition function
0 0 0 0 0 1 0 1 1 1 0 1 1 1 0 0 1 0 1 1 1 1
1 0 0 1 0 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 1 1 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0
0 0 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 0 0 0 0 1 0 1 0 0 1 0 1 0 0 1 1
1 1 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 1 0 0 1 1 1 1 0 0 1 0 1 1 0 1 0 1
0 0 0 1 1 0 1 0 1 1 0 0 0 1 0 0 1 1 0 1 0 1
1 1 1 1 1 1 0 0 1 1 0 1 0 0 1 1 1 0 0 0 0 1
0 0 1 0 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 0 0 1 0 0 1
0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 1 1 0 1 0 1
1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0
1 1 0 0 0 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 1 1
1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

Y1 = {16, 20, 23, 27, 29, 30} M1 = {1, 2, 3, 4, 5}

Y2 = {3, 4, 6, 8, 9, 24, 25, 26, 28, 32} M2 = {6, 7, 8, 9, 10, 11}

Y3 = {2, 5, 12, 13, 15, 17, 18, 19, 31} M3 = {12, 13, 14}
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Input/Output partitioning of a Condition function
0 0 0 0 0 1 0 1 1 1 0 1 1 1 0 0 1 0 1 1 1 1
1 0 0 1 0 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 1 1 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0
0 0 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 0 0 0 0 1 0 1 0 0 1 0 1 0 0 1 1
1 1 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 1 0 0 1 1 1 1 0 0 1 0 1 1 0 1 0 1
0 0 0 1 1 0 1 0 1 1 0 0 0 1 0 0 1 1 0 1 0 1
1 1 1 1 1 1 0 0 1 1 0 1 0 0 1 1 1 0 0 0 0 1
0 0 1 0 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 0 0 1 0 0 1
0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 1 1 0 1 0 1
1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0
1 1 0 0 0 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 1 1
1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
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Input/Output partitioning of a Condition function
0 0 0 0 0 1 0 1 1 1 0 1 1 1 0 0 1 0 1 1 1 1
1 0 0 1 0 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 1 1 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0
0 0 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 0 0 0 0 1 0 1 0 0 1 0 1 0 0 1 1
1 1 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 1 0 0 1 1 1 1 0 0 1 0 1 1 0 1 0 1
0 0 0 1 1 0 1 0 1 1 0 0 0 1 0 0 1 1 0 1 0 1
1 1 1 1 1 1 0 0 1 1 0 1 0 0 1 1 1 0 0 0 0 1
0 0 1 0 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 0 0 1 0 0 1
0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 1 1 0 1 0 1
1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0
1 1 0 0 0 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 1 1
1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
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Input/Output partitioning of a Condition function
0 0 0 0 0 1 0 1 1 1 0 1 1 1 0 0 1 0 1 1 1 1
1 0 0 1 0 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 1 1 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0
0 0 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 0 0 0 0 1 0 1 0 0 1 0 1 0 0 1 1
1 1 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 1 0 0 1 1 1 1 0 0 1 0 1 1 0 1 0 1
0 0 0 1 1 0 1 0 1 1 0 0 0 1 0 0 1 1 0 1 0 1
1 1 1 1 1 1 0 0 1 1 0 1 0 0 1 1 1 0 0 0 0 1
0 0 1 0 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 1 0 1 0 1 1 1 0 0 0 0 0 1 0 0 1
0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 1 1 0 1 0 1
1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0
1 1 0 0 0 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 1 1
1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

Y1 = {16, 20, 23, 27, 29, 30} M1 = {1, 2, 3, 4, 5}

Y2 = {3, 4, 6, 8, 9, 24, 25, 26, 28, 32} M2 = {6, 7, 8, 9, 10, 11}

Y3 = {2, 5, 12, 13, 15, 17, 18, 19, 31} M3 = {12, 13, 14}

Y4 = {1, 7, 10, 11, 14, 15, 21, 22} M4 = {15, 16, 17, 18, 19, 20, 21, 22}
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Input/Output partitioning of a Condition function
0 0 0 0 0 1 0 1 1 1 0 1 1 1 0 0 1 0 1 1 1 1
1 0 0 1 0 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0
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Call Algorithm 2, whose output is dependency table T ., i.e., a
number `, message partitionsM1, . . . ,M` and output
partitions Y0, . . . ,Y`.

Preparation: Put all the output bits j in Y0 for which the row j of
T is all-zero, and delete all the all-zero rows from T .
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Algorithm 2 : Message and output partitioning

1: ` := 0;
2: while T is not empty do
3: ` := `+ 1;
4: repeat
5: Determine the column i in T which has the highest num-

ber of 1’s and delete it from T .
6: Put the message bit which corresponds to the deleted

column i into the setM`.
7: until There is at least one all-zero row in T OR T becomes

empty
8: If T is empty set Y` to those output bits which are not in⋃`−1

i=0 Yi and stop.
9: Put all the output bits j in Y` for which the corresponding

row of T is all-zero.
10: Delete all the all-zero rows from T .
11: end while
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In practice, deviation from assumed ideal behaviour:
1. The message segmentsM1, . . . ,Mi do not have full

influence on Yi ,
2. The message segmentsMi+1, . . . ,M` have influence on
Y0, . . . ,Yi .
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First issue:

Would like that all the message segmentsM1,M2, . . . ,Mi as
well as the initial value V have full influence on the output part
Yi .

However, effect of the last few message segments
Mi−di , . . . ,Mi (for some small integer di ) is more important,
though.

Some tweaks on the tree-based (backtracking) search
algorithm allow to overcome this effect in practice, e.g.:

42 / 79



If message segmentMi−1 does have only small influence on
the output segment Yi , we may decide to backtrack two steps at
depth i , instead of one (the default value).

Reason is as follows: Imagine that we are at depth i of the tree
and are trying to adjust the i-th message segmentMi , to make
the output segment Yi null.

If after trying about 2min(|Mi |,|Yi |) choices for the i-th message
block, we don’t find an appropriate one, go one step backward
and choose another choice for the (i − 1)-st message segment
Mi−1;

Then go one step forward once we have successfully adjusted
the (i − 1)-st message segment.
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IfMi−1 has no effect on Yi , this would be useless and increase
our search cost at this node.

Hence appropriate to backtrack two steps at this depth.

In general: Tweak tree-based search by setting the number of
steps which we want to backtrack at each depth.
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Second issue:

Ideally, we would like that the message segmentsMi , . . . ,M`

have no influence on the output segments Y0, . . . ,Yi−1.

The smaller the threshold value th is chosen, the less the
influence would be.

Let 2−pi , 1 ≤ i ≤ `, denote the probability that changing the
message segmentMi does not change any bit from the output
segments Y0, . . . ,Yi−1.

The probability is computed over random initial values and
messages, and a random non-zero difference in the message
segmentMi .
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Algorithm 1 must be reanalyzed in order to recompute the
optimal values for q0, . . . ,q`.

Algorithm 1 also needs to be slightly changed by reassuring
that at step i , all the output segments Y0, . . . ,Yi−1 remain null.

The time complexity of the algorithm is still
∑`

i=0 2qi and it is
successful if at least one surviving candidate is left at the end,
i.e. q`+1 ≥ 0.

However, here we set q′i+1 ≈ qi − |Yi | − pi .
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This comes from the fact that:

1. at the i-th step 2qi values are examined each of which
makes the portion Yi of the output null with probability
2−|Yi |

2. keeping the previously set output segments Y0, . . . ,Yi−1
null with probability 2−pi (we assume these two events are
independent).

Here, our restrictions are again 0 ≤ q′i and qi − q′i ≤ |Mi |.

Hence, the optimal values for qi ’s can be recursively computed
as qi−1 = pi−1 + |Yi−1|+ max(0,qi − |Mi |) for i = `, `− 1, . . . ,1
with q` = |Y`|.
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Remark

When working with functions with a huge number of input bits, it
might be appropriate to consider the m-bit message M as a
string of u-bit units instead of bits.

For example one can take u = 8 and work with bytes. We then
use the notation M = (M[0], . . . ,M[m/u − 1]) (assuming u
divides m) where M[i] = (Miu, . . . ,Miu+u−1).

In this case the dependency table must be constructed
according to the probability that changing every message unit
changes each output bit.
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Application: Collisions in reduced-round
CubeHash
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Cubehash: Description

CubeHash: Proposed by Dan Bernstein.

One of the 14 2nd-round SHA-3 candidates.

CubeHash variants: Denoted by CubeHash-r /b. Parametrized
by r and b.

At each iteration, b message bytes are processed in r rounds.

CubeHash-8/1 was the original official submission.

Later the designer proposed the tweak CubeHash-16/32, which
is almost 16 times faster than the initial proposal.

Nevertheless, the author has encouraged cryptanalysis of
CubeHash-r /b variants for smaller r ’s and bigger b’s.
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CubeHash works with 32-bit words.

Uses only XOR, bitwise rotations of words, and addition mod
232.

Internal state S = (S0,S1, . . . ,S31) of 32 words.

Parameters in CubeHash-r /b: r ∈ {1,2, . . . } and
b ∈ {1,2, . . . ,128}.

Internal state S is set to a specified value which depends on
the digest length (limited to 512 bits) and parameters r and b.

Message to be hashed is appropriately padded and divided into
b-byte message blocks.

At each iteration one message block is processed as follows.
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The 32-word internal state S is considered as a 128-byte value.

The message block is XORed into the first b bytes of the
internal state:

- 1st message byte is XORed into the least significant byte
of S0,

- 2nd byte into the second least significant byte of S0,
- 3d byte into the third least significant byte of S0,
- 4th byte into the most significant byte of S0,
- 5th byte into the least significant byte of S1, and so forth

until all b message bytes have been exhausted.

Then, the following fixed permutation is applied r times to the
internal state to prepare it for the next iteration.
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Permutation of CubeHash

1. Add Si into Si⊕16, for 0 ≤ i ≤ 15.
2. Rotate Si to the left by seven bits, for 0 ≤ i ≤ 15.
3. Swap Si and Si⊕8, for 0 ≤ i ≤ 7.
4. XOR Si⊕16 into Si , for 0 ≤ i ≤ 15.
5. Swap Si and Si⊕2, for i ∈ {16,17,20,21,24,25,28,29}.
6. Add Si into Si⊕16, for 0 ≤ i ≤ 15.
7. Rotate Si to the left by eleven bits, for 0 ≤ i ≤ 15.
8. Swap Si and Si⊕4, for i ∈ {0,1,2,3,8,9,10,11}.
9. XOR Si⊕16 into Si , for 0 ≤ i ≤ 15.

10. Swap Si and Si⊕1, for i ∈ {16,18,20,22,24,26,28,30}.
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Having processed all message blocks, a fixed transformation is
applied to the final internal state to extract the hash value as
follows.

First, the last state word S31 is ORed with integer 1 and then
the above permutation is applied 10× r times to the resulting
internal state.

Finally, the internal state is truncated to produce the message
digest of desired hash length.
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Permutation of CubeHash
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Compression function of CubeHash

To conform with our general method, need to deal with
fixed-size input compression function
textcolormyblueCompress.

Consider t (t ≥ 1) consecutive iterations of CubeHash.

Define the function H = Compress(M,V ) with an 8bt-bit
message M = M0|| . . . ||M t−1, a 1024-bit initial value V and a
(1024− 8b)-bit output H.

The initial value V is used to initialize the 32-word internal state
of CubeHash.

Each M i is a b-byte message block.
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Start from the initialized internal state and update it in t
iterations, i.e.,

in t iterations the t message blocks M0, . . . ,M t−1 are
sequentially processed in order to transform the internal state
into a final value.

The output H is then the last 128− b bytes of the final internal
state value which is ready to absorb the (t + 1)-st message
block (the 32-word internal state is interpreted as a 128-byte
vector).

Goal: Find collisions for this Compress function.
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Collision construction

Plan to construct collision pairs (M ′,M ′′) for CubeHash-r /b
which are of the form

M ′ = Mpre||M||M t ||Msuf

and
M ′′ = Mpre||M ⊕∆||M t ⊕∆t ||Msuf .

Here,
- Mpre is the common prefix of the colliding pairs whose

length in bytes is a multiple of b,
- M t is one message block of b bytes, and
- Msuf is the common suffix of the colliding pairs whose

length is arbitrary.
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The message prefix Mpre is chosen for randomizing the initial
value V .

More precisely, V is the contents of the internal state after
processing the message prefix Mpre.

For this value of V , (M,M ⊕∆) is a collision pair for the
compression function, i.e.

Compress(M,V ) = Compress(M ⊕∆,V ).

Recall that a collision for the Compress indicates collision over
the last 128− b bytes of the internal state.

The message blocks M t and M t ⊕∆t are used to get rid of the
difference in the first b bytes of the internal state.
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The difference ∆t is called the erasing block difference and is
computed as follows.

When Compress is evaluated with inputs (M,V ) and
(M ⊕∆,V ):

∆t is the difference in the first b bytes of the final internal state
values.

Once we find message prefix Mpre, message M and difference
∆, any message pairs (M ′,M ′′) of the above-mentioned form is
a collision for CubeHash for any message block M t and any
message suffix Msuf .

Find the difference ∆ using the previous linearization method to
be applied to CubeHash.

Then, Mpre and M are found by determining a preimage of zero
under the Condition function.
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Linear differentials for CubeHash

As previously seen, the linear transformation Compresslin can
be described by a matrix Hh×m.

Are interested in ∆’s such that H∆ = 0 and such that the
differential trails have high probability.

For CubeHash-r /b with t iterations:

∆ = ∆0|| . . . ||∆t−1

and H has size (1024− 8b)× 8bt .

Fact: This matrix suffers from having low rank.

Enables to find low weight vectors of the kernel.
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Hope that low weight vectors are also good candidates for
providing highly probable trails.

Assume that matrix Hh×m has rank (8bt − τ), τ ≥ 0.

Implies existence of 2τ − 1 nonzero solutions to H∆ = 0.

To find a low weight nonzero ∆, we use the following method.

The rank of H being (8bt − τ):

Shows that the solutions can be expressed by identifying τ
variables as free and expressing the rest in terms of them.

Any choice for the free variables uniquely determines the
remaining 8bt − τ variables, hence providing a unique member
of the kernel.
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Choose a set of τ free variables at random.

Thereafter, assign bit value 1 to one, two, or three of the τ free
variables, and the other τ − 1, or τ − 2 or τ − 3 variables to bit
value

Hope to get a ∆ providing a high-probability differential path.

Exhaustive search over all τ +
(
τ
2

)
+
(
τ
3

)
possible choices for all

b ∈ {1,2,3,4,8,16,32,48,64} and r ∈ {1,2,3,4,5,6,7,8} in
order to find the best characteristics.

Next Table includes the ordered pair (t , y), i.e. the
corresponding number of iterations and the − log2 probability
(number of bit conditions) of the best raw probability path we
found.
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Table: Values of (t , y) for the differential path with the best found raw
probability: Part I

r \ b 1 2 3 4 8
1 (14, 1225) (8, 221)? (4, 46) (4, 32) (4, 32)
2 (7, 1225) (4, 221)? (2, 46) (2, 32) (2, 32)
3 (16, 4238)? (6, 1881) (4, 798) (4, 478)? (4, 478)?

4 (8, 2614) (3, 964) (2, 195) (2, 189) (2, 189)
5 (18, 10221)? (8, 4579) (4, 2433) (4, 1517) (4, 1517)
6 (10, 4238) (3, 1881) (2, 798) (2, 478) (2, 478)
7 (14, 13365) (8, 5820) (4, 3028) (4, 2124) (4, 2124)
8 (4, 2614) (4, 2614) (2, 1022) (2, 1009) (2, 1009)
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Table: Values of (t , y) for the differential path with the best found raw
probability: Part II

r \ b 12 16 32 48 64
1 – – – – –
2 – – – – –
3 (4, 400)? (4, 400)? (4, 400)? (3, 364)? (2, 65)
4 (2, 156) (2, 156) (2, 156) (2, 130) (2, 130)
5 (4, 1244) (4, 1244) (4, 1244) (4, 1244)? (2, 205)
6 (2, 400) (2, 400) (2, 400) (2, 351) (2, 351)
7 (4, 1748) (4, 1748) (4, 1748) (4, 1748)? (2, 447)
8 (2, 830) (2, 830) (2, 830) (2, 637) (2, 637)
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Comments:

In most cases, best characteristic belongs to the minimum
value of t for which τ > 0.

There are a few exceptions though, which are starred in
previous Table, e.g.,

in the CubeHash3/4 case, while for t = 2 we have τ = 4 and
y = 675, by increasing the number of iterations to t = 4, we get
τ = 40 and a better characteristic with y = 478.

This may hold for other cases as well since we only increased t
until our program terminated in a reasonable time.

Emphasize that since we are using linear differentials, the
erasing block difference ∆t only depends on the difference ∆.
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Second preimage attacks on CubeHash

Any differential path with raw probability greater than 2−512 can
be considered as a (theoretical) second preimage attack on
CubeHash with 512-bit digest size.

In previous Table, the entries which correspond to such cases
have been highlighted.

For example, the differential path found for CubeHash-6/4 with
raw probability 2−478 indicates that by only one hash evaluation
we can produce a second preimage with probability 2−478.

Alternatively, it can be stated that for a fraction of 2−478

messages we can easily provide a second preimage.
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Collision attacks on CubeHash variants

Aim: Find collisions using dependency table and condition
function regarding a good differential.

Analyze condition function at byte level.

Reveals degrees of freedom that can be exploited in
accelerated search of preimage of 0 of condition function.

Results in (much) improved collision search.
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Best found differential path regarding raw probability does not
always conform to best differential, when freedom degrees are
used (optimized differential).

Next Table shows reduced time complexities of collision attack
using these methods and optimized differentials regarding
freedom degrees.

Successful instances, i.e., those with probability higher than
2−256, are highlighted.
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Table: Theoretical log2 complexities of improved collision attacks with
freedom degrees use for optimized differential paths, Part I .

r \ b 1 2 3 4 8
1 1121.0 135.1 24.0 15.0 7.6
2 1177.0 179.1 27.0 17.0 7.9
3 4214.0 1793.0 720.0 380.1 292.6
4 2598.0 924.0 163.0 138.4 105.3
5 10085.0 4460.0 2345.0 1397.0 1286.0
6 4230.0 1841.0 760.6 422.1 374.4
7 13261.0 5709.0 2940.0 2004.0 1892.0
8 2606.0 2590.0 982.0 953.0 889.0
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Table: Theoretical log2 complexities of improved collision attacks with
freedom degrees use for optimized differential paths, Part II .

r \ b 12 16 32 48 64
1 – – – – –
2 – – – – –
3 153.5 102.0 55.6 53.3 9.4
4 67.5 60.7 54.7 30.7 28.8
5 946.0 868.0 588.2 425.0 71.7
6 260.4 222.6 182.1 147.7 144.0
7 1423.0 1323.0 978.0 706.0 203.0
8 699.0 662.0 524.3 313.0 304.4

Complexities given correspond to optimally chosen threshold
value for computing the dependency table.
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Real collisions

Use a 2-iteration message difference for CubeHash-3/64 and
CubeHash-4/48.

For CubeHash-3/64 use relation (1) and for CubeHash-4/48
relation (2).

Include the erasing block difference ∆2, required for collision
construction.
Collisions with 512-bit digest size.

72 / 79



Differential path for CubeHash-3/64, y = 65:

∆0 = 400000000000000000000000000000000000000000000000

000000000000000000000080000000000000008000000000

00000000000000000000000000000000

∆1 = 000000000004100000000000000010000000000000000000

800020800000008008000208080000000000000000000000

41000010000000000140000000000000

∆2 = 000000000000000000000000000000000000000000002000

000000000000200000000000000000000000000000000000

00000000000000000000000000000010

(1)
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Differential path for CubeHash-4/48, y = 134:

∆0 = 000000080000000000000008000000000000000000000000

000000000000000004000000

∆1 = 880080000000000088008000000000000000000000000000

000000000000000000440040

∆2 = 080000000000000008000000000000000000000000000000

000000000000000000040000

(2)
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Collision for CubeHash-3/64:

Mpre = 9B91E97363511AC3AF950F54DBCFD5DF91BC26BDD759104D

F15B37847A4F7015E15A8844ABA3075A3816AE13E583F276

40193317724464649F9BE819EB582ECC

M0 = B22A98139CC0C8606525818EE6DD7775CF25B34196DC51F4

641E56ACB918296BBD082AD01D7481EECC950B6C176C45B6

23CFE1E2638B16255F61E806F34DE91C

M1 = 4D9E9CD62ED12CBDBA1E0B631856DCFE5BD996571CFF6E94

A52242382E154FA6AEB44AC0A247CB298550C7B82BDCA924

E81D5E51E997CA67FBDD86FF15D04A0D

Includes value of Mpre and M = M0||M1 for collision.
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Collision for CubeHash-4/48:

Mpre = 741B87597F94FF1CC01761CA0D80B07CC2E6E760C95DF9A5

08FFCBABDA11474E2CCEA7AC62A7C822BE29EDCBA99D476C

M0 = 1D30F8022F4AE8DBD477FA1F7DE37C1AF2516BC6FA4657F9

E51539C10EC114DA3B8264DD9361FE07C3D56E88E8512201

M1 = 014A11BFE2FF346FC306D1E430EE80268785A9F841562C9A

88A6BF5858E95362F541ACF41C2FDCC1C49470DF1DFAEFDC

Includes value of Mpre and M = M0||M1 for collision.
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Here Condition∆(M,V ) = 0 does hold for corresponding
condition functions.

V is the content of the internal state after processing the
message prefix Mpre.

The pair M ′ and M ′′ where

M ′ = Mpre||M0||M1||M2||Msuf ,

M ′′ = Mpre||(M0 ⊕∆0)||(M1 ⊕∆1)||(M2 ⊕∆2)||Msuf ,

collides for any message block M2 and any message suffix
Msuf of arbitrary length.
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Note: A collision pair for a given r and b can be easily
transformed to a collision pair for the same r and bigger b’s by
appending enough zeros to each message block.

Attack method generalizes to other hash functions, e.g., to
practical collisions of 16-round MD6 (out of 80 rounds).
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