
System-level Support for Macroprogramming
of Networked Sensing Applications

Amol Bakshi, Animesh Pathak, and Viktor K. Prasanna
Department of Electrical Engineering,

University of Southern California,
Los Angeles, CA 90089-2562 USA

Email: �amol, animesh, prasanna�@usc.edu

Abstract

Wireless sensor networks (WSNs) provide low-cost, em-
bedded sense-and-respond capability, and are therefore an
integral part of the vision of pervasive computing. Most
research on WSNs to date has focused on the development of
efficient protocols for infrastructure establishment. Application
development for WSNs is still very daunting for the non-expert.
This paper proposes hierarchical layers of abstractions to
categorize the functionality of various WSN protocols from a
programming perspective. We then address the issue of system-
level support for programming models in sensor networks,
and describe the design of the DART runtime system, which
supports a macroprogramming model called the Abstract Task
Graph. DART prototypes for two different target platforms
have been implemented. The modular structure of the runtime
is inspired by our proposed layers of programming abstraction.
The design of DART simplifies software synthesis of ATaG pro-
grams, and enables near plug-and-play integration of different
protocols and services at the lower layers with minimal impact
on the higher layers.

Keywords: Sensor networks, programming model, data driven
computing, software architecture

I. INTRODUCTION

Wireless sensor networks (WSNs) enable low cost, dense
monitoring of the physical environment through collaborative
computation and communication in a network of autonomous
sensor nodes. Most of WSN research to date has focused
on system-level concerns in establishing the infrastructure
required for enabling context-aware processing in WSNs. A
host of protocols have been proposed for localization, time
synchronization, routing, in-network storage, etc., with a view
to extending network lifetime through efficient use of the
limited and, in many cases non-replenishable, energy resources
available to a node [1]. WSNs provide embedded sense-and-
respond capability and context awareness and are therefore an
integral part of the vision of pervasive computing.

Currently, sensor networks are programmed using node-
centric methodologies. The programmer is expected to man-
ually translate a given global behavior specification into a

This work is supported in part by the National Science Foundation, USA,
under grant number CCF-0430061.

set of local actions for each node in the system. A separate
program is then written for each node. This program includes
not just the application level functionality, but also all the
details of system level control and coordination - including
the management of infrastructure protocols and services that
are not directly relevant to the application level. Programming
a sensor network using this approach requires expertise in
the application domain, distributed computing, and wireless
networking. Defining methodologies to ease application de-
velopment for large scale networked sensing is the next step
in WSN research.

Most programming models and frameworks from traditional
distributed computing are not directly applicable to WSNs.
New programming models, representations, compilers, and
software synthesis frameworks are required for two main rea-
sons. First, the nature of applications is significantly different.
Actions of the multiple components in the system have to be
coordinated to accomplish a single objective. There are multi-
ple data sources in the network, the spatio-temporal origin of
data dictates the operations performed on it, data items could
be prioritized, and some data items expire if not consumed
within a specific period. In addition, data sources can be added
or removed, and existing sources could be mobile. It is also
desirable to process data in-network, and as close to its origin
as possible for sake of energy efficiency. Finally, applications
are expressed in phenomenon-centric terms, e.g., “trigger an
alarm if the temperature gradient in any portion of the terrain
exceeds 5 degrees/m”.

Second, the characteristics of the network deployment are
very different compared to traditional parallel and distributed
systems. The system can be heterogeneous with some nodes
connected to the Internet through wired links, others using
high bandwidth, reliable wireless communication infrastruc-
tures, and the edge of the network comprised of resource
constrained nodes with low computation, communication, and
storage capacities. The network topology could be dynamic as
sensor nodes fail and/or new sensor nodes are added. Different
components of the system may run different operating systems
and have different sensing interfaces, but are still expected to
be abstracted in essentially the same manner – as a distributed
substrate for sensing, computation, and actuation.

The non-expert end user will likely be uninterested in the
system-level infrastructure issues of networked sensing. As
long as a convenient and easy to use mechanism is available

Amol
International Conference on Pervasive Systems and Computing (PSC), June 27-30, 2005.

to concisely express the overall sense-and-respond behavior,
the end user will not care how it is translated into node-
level behavior, what the capabilities of each node are, what
operating systems and language support is available, how
failures are managed, which routing protocol is used, etc. Most
of the existing research in the system level aspects of WSNs
has taken a far from holistic view of the concerns of the end
user, instead modeling only on those application characteristics
that are directly relevant to the problem being solved. As
a result, application-level interfaces to many of the existing
protocols for sensor networks are ill-defined and incompatible
with other protocols. There is also no end-to-end methodology
which will allow the developer of a programming framework
to use many of these research results in a practical context.

The role of an application development framework (ADF)
for WSNs is twofold. The first is to package and abstract
the system-level protocols and services and export them in
a form that is understandable to the end user. The second is to
translate the application behavior specified by the user of the
framework (programmer) into a form that is understandable to
the low level system components - such as configuration files,
function parameters, data structures, etc. An ADF consists of:
(i) a programming model (abstract syntax and semantics) for
expressing the collaborative sensing, actuation, computation,
and communication behaviors in the system, (ii) a program
representation (concrete syntax) that is used to input the
description, (iii) a template of the runtime system that will ac-
tually manage the various tasks on a node and the interactions
between the nodes, and (iv) a compiler that analyzes the high
level application representation and accordingly configures the
runtime system template on each node of the target network.
If the ADF is well designed, developers of system-level infras-
tructure services such as networking protocols, communication
libraries, middleware, etc., can focus only on providing the
interface mandated by the ADF and not worry about how the
services will interact with other components of the system.
Also, programming models and languages can be designed
based on the assumption that all the underlying complexity
will be available as a set of well-defined interfaces managed
by some underlying runtime system.

In the first part of this paper (Section II), we propose a
categorization of different protocols and services for WSNs
into a set of layers of abstraction from the programming
perspective. The subsequent sections deal with system-level
support for application development using a macroprogram-
ming model called the Abstract Task Graph (ATaG). We use
‘system-level support’ to refer to the underlying software
infrastructure that manages the control and coordination in
the network, and supports the high-level programming model
used for application development. Specifically, we present the
design of the ATaG runtime system (DART). Section III briefly
describes the key concepts of the ATaG programming model
and uses a simple example to illustrate how an ATaG program
is compiled into node-level behaviors for a particular network
deployment. Section IV discusses the design of DART and
describes the functionality of each of its components in detail.
We conclude in Section V by discussing the implementation
status of DART.

Network deployment

Sensing capabilities

(type, number, location)
Topology management,

medium access control

Routing mechanisms

(geographic, data-centric)

Infrastructure protocols

(localization, time-synch)

Routing protocols

Sensor variables of

application interest

Filtering, correlation,

QoS mgmt, fusion

Node-centric programming models

Library APIs: Creation, management, and operations upon

logical neighborhoods of the host node

System-wide middleware services: Logical namespaces,

 virtual topologies, event-based addressing

Macro-programming models

Fig. 1. Layers of abstraction for application development on WSNs

II. A LAYERED APPROACH TO SENSOR NETWORK

PROGRAMMING

WSN research in the past few years has led to an in-
depth understanding of the issues in hardware design of
sensor nodes and for infrastructure establishment in ad-hoc,
unreliable, and resource-constrained deployments. There is
now an increasing interest in designing higher level services
and abstractions for sensor networks with the objective of
making the computing substrate accessible to the non-expert.
In this section, we take a holistic view of the functionalities
offered by different protocols and services for WSNs from
the non-expert programmers’ perspective. Figure 1 depicts our
proposed categorization of these functionalities.

The bottom layer is the network of possibly heterogeneous
sensor nodes. Each node is assumed to support at least one
operating system and a native compiler. Depending on the
computation and storage capability of the node, the OS support
could range from TinyOS [2], �C/OS-II [3], or Contiki [4] at
the lower end to Linux and WindowsCE at the higher end.

The set of infrastructure protocols can be roughly classified
into two mostly orthogonal stacks - the sensing stack and
the processing stack - as depicted in the figure. The sensing
stack is concerned with the interpretation of readings at one or
more sensing interfaces in terms of the physical phenomena
they represent. The objective of protocols in the sensing stack
is to perform calibration of sensors, detect possible sensor
malfunctions, and to abstract the physical sensing interface
in terms of variables that are interesting and meaningful to
the application. For example, a sensor network application for
personal health monitoring could be interested in knowing the
stress level of the person [5]. This application-level variable
could be calculated by protocols in the sensing stack using
information from a variety of sensors for, say, the pulse rate,
blood pressure, blood oxygen level, etc. A further set of
services could be defined to exploit spatio-temporal correlation
of sensor readings to compress the event information, perform
application-directed filtering of sensor data, provide quality of
service (QoS) guarantees, etc.

The processing stack comprises of the protocols that provide
the infrastructure for distributed computation and communica-

tion of raw and aggregated sensor readings in the network. The
lower layers of the processing stack correspond to the basic
networking protocols at the physical and medium access lay-
ers, which are sufficient to provide the basic support for topol-
ogy management in the network. These protocols provide the
capability of sending messages between neighboring nodes.
Protocols for localization [6] and time synchronization [7]
use this basic communication capability to provide context
awareness to the individual sensor node in terms of its spatio-
temporal location in the network. Localization is especially
important in sensor networks because the mere knowledge
of an event’s occurrence is rarely useful without knowing its
physical location and time of occurrence. Also, a majority of
other node-level services are based on the assumption that the
node knows its own position in a real or virtual coordinate
system imposed on the deployment. Localization information
also supports the geographic routing mechanism, which is the
basis for most of the common routing protocols [8] for various
communication patterns in a WSN.

The protocols in the sensing and processing stacks provide
the basic state information and abstractions for node-centric
programming. At this level of abstraction, the application
developer has to translate the global application behavior in
terms of local actions on each node, and individually program
the sensor nodes using languages such as nesC [9], galsC [10],
C/C++, or Java, depending on the node capability, operating
system, and compiler support. The programmer can read the
values from local sensing interfaces, maintain application level
state in the local memory, send messages to other nodes
addressed by node ID or location, and process incoming
messages from other nodes. While node-centric programming
allows manual cross-layer optimizations and thereby leads to
efficient implementations, the required expertise and effort
makes this approach insufficient for developing sophisticated
application behaviors for large-scale sensor networks.

The concept of a logical neighborhood – defined in terms of
distance, hops, or other attributes – is common in node-centric
programming. Common operations upon the logical neighbor-
hood include gathering data from all neighbors, disseminating
data to all neighbors, applying a computational transform to
specific values stored in the neighbors, etc. The usefulness
and ubiquity of neighborhood creation and maintenance has
motivated the design of node-level libraries [11], [12] that
handle the low level details of control and coordination and
provide a neighborhood API to the programmer.

The next layer of abstraction is provided by a range of
middleware services [5], [13], [14]. We classify as middleware
those protocols that provide system-wide, high level services
and phenomenon-centric abstractions. Middleware services
could create virtual topologies such as meshes and trees in the
network, allow the program to address other nodes in terms
of logical, dynamic relationships such as leader-follower or
parent-child, support state-centric programming models [15],
etc. The middleware protocols themselves will typically be
implemented using node-centric programming models, and
could possibly but not necessarily use communication libraries
as part of their implementation.

At the next higher level of abstraction, and the focus

of much recent research interest [16], [17] are macro-
programming models and languages for sensor networks that
specify aggregate behaviors and are automatically compiled
into node-centric programs for the individual node. Macro-
programming languages are typically supported by an under-
lying runtime system that manages control and coordination at
the node level. The structure of the runtime system will depend
on the structure and semantics of the macroprogramming
model. Ultimately, an even higher level of abstraction will be
defined and individual applications – expressed as macropro-
grams or node-centric programs – will be modeled as services.
The end user’s interaction with a networked sensor system
is likely to be through a purely declarative domain-specific
interface that will be compiled into macroprograms (or node-
centric programs) based on the desired set of services [18].

In the following sections, we describe the design of the
DART runtime system. DART provides system-level support
for macroprogramming with the ATaG model, and has a
modular architecture that is designed to accomodate protocols
and services at the various layers of abstraction described in
the preceding paragraphs, while simultaneously facilitate plug-
and-play integration of different functionalities.

III. MACROPROGRAMMING WITH THE ABSTRACT TASK

GRAPH

The Abstract Task Graph (ATaG) [19] is a data driven
macroprogramming model for architecture-independent devel-
opment of networked sensing applications. Architecture inde-
pendence allows development of the application to proceed
prior to decisions being made about the final configuration of
the nodes and network, and also allows the same application
to be automatically synthesized for different network deploy-
ments.

The term macroprogramming broadly refers to program-
ming of sensor networks as a whole as opposed to configuring
individual node behaviors [16], [17]. For ATaG, we define
(and support) two types of macroprogramming. Macro-ness at
the application level means that the programmer can define
and manipulate information at the desired level of abstraction
without worrying about how the information is created. At
the architecture level, ATaG allows concise specification of
common patterns of in-network distributed processing such as
neighbor-to-neighbor, tree-based, etc.

We now briefly present the key concepts of ATaG, provide
an example to illustrate how global application behavior is
concisely expressed in an ATaG program, and then discuss
the compilation of an ATaG program for a given network
deployment. The ATaG model itself is not the focus of
this paper, but a brief overview of ATaG programming and
compilation is necessary to place in context the design of its
underlying runtime system.

A. Key concepts

ATaG employs a data driven programming model and mixed
imperative-declarative program specification for separation
of concerns. Tasks are defined in terms of their input and
output data objects. An underlying runtime system manages

Global-
Sender

Temperature

local
all-nodes

[nodes-per-instance:1]
[periodic:30]

[one-on-node-ID:0]
[any-data]

Global-
Collector

Monitor

Gradient

[nodes-per-instance:1]

[periodic:1 any-data]

1-hop local local

AlarmEvent

all-nodes

[one-on-node-ID:0]
[any-data]

Alarm-
Actuator

local

Fig. 2. An ATaG program for temperature monitoring

task scheduling and inter-task communication. Availability of
operands triggers task execution, subject to firing rules. This
model is attractive for computing in distributed systems for
programming convenience, and the modularity and extensibil-
ity of the programs [20]. Also, a sensor network can be viewed
as a system for domain-specific transformation of sensor data
and many applications can be naturally expressed as a set of
transformations on raw and processed sensor readings.

The mixed imperative-declarative specification separates the
‘when and where’ of processing from the ‘what’. The same
program can be compiled for a different network size and
topology by interpreting the declarative (‘when and where’)
part in the context of that network architecture, while the
imperative (‘what’) part remains unchanged. The ATaG pro-
grammer, who writes only the task implementations, is free
to focus on application-level design without being concerned
about low level details of the sensor node platform and the
specifics of a particular deployment.

B. Illustrative example

To help the reader get a high level understanding of the
structure and expressiveness of an ATaG program, this section
presents a complete ATaG program for a very simple temper-
ature monitoring application. Much more complex behaviors
such as object tracking and hierarchical data aggregation can
be modeled with ATaG, and the simplistic nature of this
example is meant to quickly illustrate key concepts and not as
a reflection on the limits of ATaG’s expressiveness.

Consider a network of sensor nodes, each equipped with
one temperature sensor. Temperature readings from the entire
network are to be collected every 30 minutes at a designated
root node. The temperature gradient between every pair of
neighboring nodes is to be monitored every minute, and an
alarm notification is to be raised immediately if the gradient
exceeds 5 degree Celsius.

Figure 2 is a complete ATaG program for this application,
which shows the types of tasks (ovals), types of data items
(square rectangles) and their I/O dependencies or channels

(arrows). In addition, each task and channel is annotated
(shaded rectangles). The annotations indicate that Global-
Sender runs with a period of 30 minutes and reads the current
temperature whenever executed. The Monitor runs on each
node with a period of 1 minute, samples and transmits the
current temperature reading to its neighboring nodes, and
calculates the gradients when readings from neighboring nodes
are received. Global-Collector runs on a designated root node,
is executed whenever a reading from a Global-Sender is
received and displays it on the screen. The Alarm-Actuator
also runs on the root node and executes whenever an alarm
notification sent by a Monitor task is received.

The annotations determine how many instances of these
tasks are created in a given network deployment, where
they are placed, when they are invoked, and how the data
objects are to be communicated between task instances on the
same node and across nodes. Task annotations shown in the
figure relate to density of instantiation and firing rules. For
example, Global-Sender and Monitor are to be instantiated on
every node in the network, while Global-Collector and Alarm-
Actuator are to be created only on a single node. The firing rule
for Monitor is ‘periodic�any-data’, which means that the task
should be scheduled for execution when either (i) a reading
from one of the neighbors is received, or (ii) the periodic timer
expires. We now illustrate how this program is compiled onto
a specific architecture, and then discuss in detail the design of
the runtime system on each node that is responsible for the
actual control and coordination.

C. Compilation of an ATaG program

Compiling an ATaG program onto a specified network
means translating the annotations in the context of that specific
deployment, and generating a ‘configuration’ for each node of
the target network. The configuration of a node consists of:

� The set of tasks assigned to that node
� The firing rule of each of the assigned tasks
� The set of data items that are expected to be added to

the node’s data pool, either produced by a locally hosted
task, or sent by another node

� The set of destination nodes for each data item produced
on that node. This set of destinations could be a list
of node IDs known a priori if the network topology
is expected to be static, or the untranslated annotations
themselves, if the translation is expected to be done on
demand in the runtime system for a dynamic topology.

Figure 3 illustrates the compilation of the ATaG program of
Figure 2 onto a network of 5 nodes, where node 5 is designated
as the root. The task and data names are abbreviated in the
figure, but the program corresponds exactly to the illustrative
example discussed earlier. The set of configurations output by
the compiler is shown. Arrows from a data item to one or more
nodes denote the final destination of the data item, and not the
exact route that is followed by that data item in a multi-hop
routing scenario. To reduce the visual clutter, the data items
AlarmEvent (ae) and Temperature (t) are clubbed together
since the destination of both items is always the designated
root node.

t

GS

2 3

5

4

1

ABSTRACT TASK GRAPH

NETWORK GRAPH

Compile

GC

g

M AA

ae
1

3

2 4

5

GS

GS

GS GS

GS

GC

AA M

MM

M

M

tg

g

gg

g

ae

t

ae

t

ae

t

ae
t

ae

root

Fig. 3. Compiling an ATaG program for a particular network topology

In the following sections, we describe the design of the
runtime system that interprets this configuration information,
and manages the application execution in the real system.

IV. SYSTEM-LEVEL SUPPORT FOR DATA DRIVEN

MACRO-PROGRAMMING

As mentioned in the introduction, the job of the developer of
an application development framework is: (i) to understand the
essential characteristics of the target class of applications in
order to define suitable programming abstractions, and (ii) to
understand the details of the underlying network architecture
and protocols in order to synthesize a correct and efficient
distributed program for the target deployment. Even if the
application developer uses a macro-programming model and
language, the application behavior has to be ultimately trans-
lated by the compiler into a set of node-level programs, one
for each node in the network. Macro-programming does not
eliminate this requirement - it merely transfers the responsi-
bility from the programmer to the compiler. This reduces the
cost of application development and, in the case of ATaG,
provides other benefits such as portability and reusability of
application-level code.

For a macro-programming model such as ATaG, the design
of the underlying runtime system is critical for two reasons.
First, a well designed runtime system can simplify the com-
pilation and code generation process. As discussed in the
following subsections, the data-driven ATaG runtime (DART)
clearly separates the application-independent mechanisms for
control and coordination from the application-specific config-
uration information that represents the role of that particular
node in the overall system. Also, the application-specific
configuration is localized within a small fraction of the overall
software architecture, so that the other components of the
runtime system can be integrated without modification into
the final executable for that node. Second, and perhaps equally
important, a well designed runtime system can allow a plug
and play integration of the various protocols and services
discussed in Section II.

A. DART: The Data Driven ATaG Runtime

Figure IV is a high level overview of the modular structure
of the data driven ATaG runtime called DART. The overall
functionality is partitioned into a set of modules; where each
module offers a well-defined interface to other modules in

UserTask1 UserTaskn

Sensors Actuators

...

Application level

System level

Maintain neighborhood

information, virtual

topologies, logical

namespace, etc.

NetworkArchitecture

Store task/channel

annotations and task

code, spawn tasks

ATaGManager

getData() and

putData(),

concurrent access,

reference counts

DataPool

Translate annotations,

dispatch data to other

nodes

Dispatcher

Routing, medium

access, physical layer

protocols

NetworkStack

Transceiver

Fig. 4. The structure of the DART runtime system

the system, and has complete ownership of the data and the
protocols required to provide that functionality. This modular
structure has many advantages. First, it greatly simplifies
the design by reducing interactions and dependencies among
modules. Second, the implementation of a module is hidden
from other modules; which means that an entirely different
set of protocols can be used to provide the same functionality
without affect the rest of the system. This allows for tailoring
the runtime system to various deployment scenarios by select-
ing the suitable protocols based on the hardware and network
characteristics without requiring a complete redesign. Also,
as discussed in greater detail later in this section, it allows
us to use essentially the same runtime system software for
functional simulation and the actual deployment, by replacing
only a subset of the modules and leaving others intact.

Figure 4 is an overview of the DART design. We now
describe each of its components in detail.

NetworkStack: This module is responsible for managing the
network interface of the sensor node. The network stack
provides an asynchronous send() and receive() inter-
face. It implements active messages [21], i.e., tasks register
their interest in specific message types which are accordingly
handed to them by the receiver as and when they arrive.
The network stack effectively represents the routing, medium
access, and physical layer protocols of the WSN. When a
functional simulation of the entire system is to be performed,
the sending and receiving of messages can be performed
through sockets on a single host machine. The rest of the
modules remain unaffected.

Many optimizations are possible in this module. For in-
stance, a protocol such as S-MAC [22] could be used for
medium access. This protocol implements a sleep/wake sched-
ule for the transceiver of each node, with the aim of reducing
overall energy consumption. During the wake cycle, a node
transmits all the outgoing data it has buffered during the sleep
cycle. Since the send() is asynchronous, the NetworkStack

is free to buffer and consolidate the outgoing data items while
the transceiver is asleep, and transmit them in a batch mode
when it is awake. The MAC protocol can even be replaced by
an entirely different protocol to optimize other performance
metrics, without affecting the rest of the system.

NetworkArchitecture: This module maintains the topology
related information for the sensor node. It runs the topol-
ogy construction and maintenance protocols and provides a
logical neighborhood abstraction to the other modules. It is
responsible for translating channel annotations such as ‘all
nodes within 5 m’ into a list of node IDs. The neighborhood
information is made available to user level tasks to provide
context awareness. For each task that is mapped onto the
node, the compiler determines the union of the neighborhoods
specified for each of the input channels, and passes that to the
NetworkArchitecture module. The intuition is that if a task
requires a particular data item from, say, all nodes within 4
hops, it is likely to require information about how many such
nodes actually exist, their IDs, and their locations and nothing
more.

ATaGManager: This module maintains the entire ATaG rep-
resentation, including the task code, the task and channel
annotations, and the I/O dependencies between tasks and data
items. When new data items are added to the data pool, this
module is responsible for determining which of the assigned
tasks are ready to run, based on their firing rule and the
availability of other data items that could be input to the
tasks. Storing the channel annotations as part of the runtime
system is especially important because it allows for dynamic,
on demand disambiguation of the annotations. This allows the
runtime system to adapt to a changing network topology while
still preserving the high level intent of the ATaG program.

DataPool: This module is responsible for maintaining the
local data pool and implementing the getData() and
putData() function calls. Data pool management involves
handling concurrent accesses by more than one user level
or system level task, maintaining reference counts for each
instance of a data item in order to determine if a particular
instance is active (i.e., still waiting to be consumed by one
or more tasks that are scheduled for execution) or inactive
(i.e., it can be overwritten when a new instance of the same
type of data item is produced by a local task or received by the
NetworkStack from another node). The getData() function
returns a copy of the requested data item to the caller and
decrements the reference count of the associated item by one.
putData() adds an instance of a particular abstract data
item to the data pool, unless the existing instance is active, in
which case it returns without changing the data pool. When a
new data item is added to the data pool, the ATaG manager is
notified, resulting in the possible scheduling of one or more
tasks for execution The Dispatcher module is also notified, in
case the data item is to be disseminated to other nodes.

Dispatcher: The task of this module is to handle the dis-
semination of data items produced on the node to other
parts of the network. The Dispatcher supports a notify()
function that is invoked by the DataPool whenever a new
data item is produced locally. The Dispatcher then contacts

the ATaGManager and determines the annotations of the
output channel associated with that data item. The annotations
have to be translated into a list of node IDs, based on the
current state of the network topology, which is the domain
of the NetworkArchitecture module. When the translation is
performed, the Dispatcher then hands off the data item with
the list of destination IDs to the NetworkStack.

UserTask: This represents an application-level task, which is
an instance of the ‘abstract task’ in the ATaG model. There is
one instance of the UserTask module per abstract task assigned
to the node. The programmer (and hence the UserTask) has
access to the getData() and putData() interfaces of the
DataPool, and the interface to the NetworkArchitecture that is
responsible for translating a logical neighborhood into a list of
node IDs (or locations) that constitute the neighborhood at the
time of invocation. The UserTask also has access to the sensor
and actuator interfaces of the node, which are not explicitly
modeled in the current version of DART.

B. Control flow

The control flow can be divided into two parts. The first
part is the set of activities that occur at node initialization.
The second part is the actions that are triggered during the
course of application execution on that node.

Each module of DART is expected to implement a
start() function that performs the basic initialization (if
any) required for that module. The initialization might involve
memory allocation, initialization of variables, spawning of new
threads for different protocols and services, etc. As mentioned
earlier in this section, the Startup module is the first to
run when the node is turned on, and invokes the start()
functions of the other modules in the following order. First,
the Datapool is started, which mainly involves allocating
memory for each entry of the data pool corresponding to
the different data items in the ATAG, and then marking the
entries of the datapool as empty by suitably initializing the
reference counts. Next, the NetworkStack is started, which
spawns the listener thread to accept incoming connections,
and a transmitter thread to handle outgoing messages. The
initialization, if any, needed by the MAC and routing protocols,
and also the localization and time synchronization protocols, is
performed before the start() of the NetworkStack returns
control to Startup. Next, the NetworkArchitecture module is
started. Since the NetworkStack is already initialized and the
send/receive capability is available, NetworkArchitecture can
spawn the protocols required for neighbor discovery, virtual
topology construction, middleware services, etc. The startup of
this module will be deemed complete when some minimum
node state has accumulated; e.g., all the information about
the neighborhood is available. Finally, the ATaGManager is
started. This module traverses the list of user-level tasks
assigned to that node, and spawns all the tasks that are marked
‘run at initialization’ by the programmer. These will typically
be the tasks that (periodically) produce the set of sensor
readings that will then drive the rest of in-network processing.

During the normal course of application execution, there
are three main events that can occur: (i) a getData()

invocation by a user task, (ii) a putData() invocation
by a user task, or (iii) a putData() invocation by the
receiver thread when a data item arrives from another node.
When a getData() invocation occurs, the DataPool merely
decrements the reference count of the data item in question.
When a local task invokes a putData(), the DataPool first
checks if the corresponding data item is inactive before adding
the newly produced data instance to the pool. If the addition
is successful, the DataPool informs ATaGManager about the
production of the data. ATaGManager determines the list of
tasks that depend on this data item, checks their firing rules,
and schedules the eligible tasks for execution. The DataPool
then notifies the Dispatcher and finally returns control to
the user task. The Dispatcher interacts with ATaGManager,
NetworkArchitecture, and NetworkStack to send the data item
to other nodes as indicated by the ATaG program. When the
third type of event - an invocation of putData() by the
receiver thread of the NetworkStack - occurs, it is handled
in much the same way as a local invocation, except that the
Dispatcher is not part of the loop.

V. CONCLUDING REMARKS

The design of DART and the control flow described above
can be implemented on any operating system kernel that
provides: (a) support for multithreaded execution, (b) a pre-
emptive, priority-based scheduler, and (c) mutual exclusion
semaphores, message queues, and similar mechanisms to han-
dle concurrent accesses to critical sections, and to coordinate
interactions between different threads. Most traditional operat-
ing system kernels provide these facilities. A prototype version
of DART has been implemented in Java, and is designed
to run on relatively heavy duty sensor nodes, although Java
Virtual Machines for resource-constrained architectures are
also available [23]. DART is also being implemented on the
�C/OS-II real-time OS kernel [3] which has been ported to
a vast number of devices. A proof of concept programming
and synthesis environment based on ATaG and DART has also
been designed.

DART reflects the categorization of concerns in Section II in
the sense that there is a clear division of functionality among
the different modules in the system, and the implementation of
each module can be completely altered without affecting other
components, as long as the interface remains the same. Proto-
cols and services in various layers that were shown in Figure 1
can be designed in the context of this architecture template. For
instance, the designer of a new routing protocol does not need
to worry about its interaction with other middleware services,
routing protocols, or the application level. The new protocol
can be plugged into the NetworkStack module of DART, which
can select it to send a subset of the data items produced on
that node, based on performance-related annotations specified
in the ATaG program. The performance of DART is likely
to compare unfavorably with hand-optimized runtime systems
where the different functionalities are tightly integrated into
an inflexible, monolithic structure and many cross-layer op-
timizations are incorporated into the design. However, the
tradeoff between usability and flexibility on one hand, and

hand-optimized performance on the other is common in all
methodologies that seek to automate the design of complex
systems. A greater level of experience with implementing
different applications on a real DART-based system will guide
our future design choices for the ATaG runtime.

REFERENCES

[1] D. Ganesan, A. Cerpa, Y. Yu, W. Ye, J. Zhao, and D. Estrin, “Net-
working issues in sensor networks,” Journal of Parallel and Distributed
Computing (JPDC), Special issue on Frontiers in Distributed Sensor
Networks, 2004.

[2] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister,
“System architecture directions for networked sensors,” in 9th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2000.

[3] uC/OS-II RTOS, http://www.ucos-ii.com/,.
[4] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and

flexible operating system for tiny networked sensors,” in 1st IEEE
Workshop on Embedded Networked Sensors, 2004.

[5] W. Heinzelman, A. Murphy, H. Carvalho, and M. Perillo, “Middleware
to support sensor network applications,” IEEE Network, January 2004.

[6] A. Savvides, C.-C. Han, and M. B. Srivastava, “Dynamic fine-grain
localization in ad-hoc networks of sensors,” in Proc. 7th Intl. Conf. on
Mobile Computing and Networking, 2001.

[7] J. Elson and D. Estrin, “Time synchronization in wireless sensor
networks,” in IPDPS Workshop on Parallel and Distributed Computing
Issues in Wireless and Mobile Computing, April 2001.

[8] B. Karp and H. T. Kung, “GPSR: Greedy perimeter stateless routing for
wireless networks,” in Proc. ACM/IEEE MobiCom, August 2000.

[9] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler,
“The nesC language: A holistic approach to networked embedded
systems,” in Proceedings of Programming Language Design and Im-
plementation (PLDI), 2003.

[10] E. Cheong and J. Liu, “galsC: A language for event-driven embedded
systems,” in Proc. Design, Automation and Test in Europe, 2005.

[11] K. Whitehouse, C. Sharp, E. Brewer, and D. Culler, “Hood: a neigh-
borhood abstraction for sensor networks,” in 2nd Intl. Conf. on Mobile
systems, applications, and services, 2004.

[12] M. Welsh and G. Mainland, “Programming sensor networks using
abstract regions,” in First USENIX/ACM Symposium on Networked
Systems Design and Implementation (NSDI), March 2004.

[13] T. Liu and M. Martonosi, “Impala: A middleware system for managing
autonomic, parallel sensor systems,” in ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, 2003.

[14] Y. Yu, B. Krishnamachari, and V. K. Prasanna, “Issues in designing
middleware for wireless sensor networks,” IEEE Network, 18(1), 2004.

[15] J. Liu, M. Chu, J. Liu, J. Reich, and F. Zhao, “State-centric programming
for sensor-actuator network systems,” IEEE Pervasive Computing, 2003.

[16] R. Newton and M. Welsh, “Region streams: Functional macroprogram-
ming for sensor networks,” in 1st Intl. Workshop on Data Management
for Sensor Networks (DMSN), 2004.

[17] R. Gummadi, O. Gnawali, and R. Govindan, “Macro-programming
wireless sensor networks using kairos,” in Intl. Conf. on Distributed
Computing in Sensor Systems (DCOSS), June 2005.

[18] K. Whitehouse, F. Zhao, and J. Liu, “Semantic streams: a framework
for declarative queries and automatic data interpretation,” Microsoft
Research, Tech. Rep. MSR-TR-2005-45, April 2005.

[19] A. Bakshi, V. K. Prasanna, J. Reich, and D. Larner, “The abstract
task graph: A methodology for architecture-independent programming
of networked sensor systems,” in Workshop on End-to-end Sense-and-
respond Systems (EESR), June 2005.

[20] V. D. Tran, L. Hluchy, and G. T. Nguyen, “Data driven graph: A
parallel program model for scheduling,” in Proc. 12th Intl. Workshop
on languages and Compilers for Parallel Computing, 1999.

[21] T. Eicken, D. Culler, S. Goldstein, and K. Schauser, “Active messages:
A mechanism for integrated communication and computation,” in 19th
Intl. Symposium on Computer Architecture, 1992.

[22] W. Ye, J. Heidemann, and D. Estrin, “An energy-efficient MAC protocol
for wireless sensor networks,” USC/ISI, Tech. Rep. ISI-TR-543, 2001.

[23] Real Time Specification for Java, http://www.rtj.org/,.

