
End-to-end Toolkit for Developing a Class of
WSN Applications on Sun SPOT Nodes∗

Animesh Pathak†, Qunzhi Zhou†, Luca Mottola‡,
Amol Bakshi†, Viktor K. Prasanna†, and Gian Pietro Picco#

†University of Southern California, USA,{animesh, qunzhizh, amol, prasanna}@usc.edu
‡Politecnico di Milano, Italy,mottola@elet.polimi.it

#University of Trento, Italy,picco@dit.unitn.it

Abstract

Over the past years of research in Wireless Sensor Networks (WSNs), both the hardware used to
construct WSNs and the languages used to describe their functionality have evolved. The Sun Small
Programmable Object Technology (Sun SPOT) nodes are the latest offering in the former domain, with a
Java virtual machine running on the metal. On the programming side, macroprogramming frameworks
such as the Abstract Task Graph (ATaG) have been developed that aim to greatly reduce the burden of
the application developer for a wide range of WSN applications.

In this work, we present anend-to-end solutionfor macroprogramming WSN applications on Sun
SPOT nodes using ATaG - a data-driven programming paradigm.We will demonstrate all the stages
starting from the specification of the application to its compilation and deployment on actual sensor
nodes, thus showcasing the power of our toolchain. We believe that our research will enable wide
adoption of WSNs among a range of end-users who will now have aconcrete end-to-end toolkit to
develop WSN applications.

1 Introduction

The Sun Small Programmable Object Technology [8] nodes (SunSPOTs) are the latest hardware
offering for Wireless Sensor Networks (WSNs), with a Java virtual running on the metal, and a small
form factor. In themacroprogrammingof WSNs, the application developer specifies the behavior of
the resultantsystem, not the individualnodes. The various macroprogramming paradigms currently
being developed include imperative programming [4], functional programming [5], task graphs [2], and
spreadsheet-based programming [9], among others.

The Abstract Task Graph (ATaG) framework is a data-driven macroprogramming paradigm in which
the application developer specifies the system behavior in amixed declarative-imperative manner. The
interactions between various components of a system are specified as atask graph, while the internal
working of the tasks themselves are specified in an imperative language like Java. The ATaG tasks
are annotated withinstantiationandfiring rules, which specify the location (e.g.,one per floor) and

∗This work is partially supported by the European Union underthe IST-004536 RUNES project and by the National
Science Foundation, USA, under grant number CCF-0430061.

1



triggering constraint (e.g.,when the data is available) of each task. The channels connecting the tasks to
data items are also annotated to specify the physical range of data they are interested in (e.g.gather data
from a 30 m radius). More details of ATaG can be found in [2]. The compiled ATaG programs run atop a
runtime system (DART), which abstracts the underlying sensor network as a distributed data store, with
which the tasks interact only withgetData()andputData() primitives. DART also takes care of
activities such as task firing, routing and data item management. More details of DART can be found
in [1].

In this work, we present ourend-to-endsolution for macroprogramming WSNs consisting of Sun
SPOTs using ATaG’s data-driven programming paradigm. As described in detail in Section 4, the ap-
plication developer needs to providea) the description of the WSN application in ATaG, andb) details
about the target system deployment. The toolkit assists theuser in specifying the above, and then our
compiler generates the code to be deployed on each node in thesystem. Out toolkit also deploys the
resulting customized node-level Java code to each Sun SPOT.

2 Sun SPOTs

A Sun SPOT node [8] has a 180 MHz 32 bit ARM920T processor with 512K RAM and 4M Flash
memory. Its extensible sensor board also contains a 2G/6G 3-axis accelerometer, a temperature sensor,
and a light sensor. The SPOTs run the Squawk Java virtual machine directly out of flash memory, and
can run programs written using Java2ME libraries.

Although the SPOTs are slightly bulkier than the commonly used much smaller Tmote sky nodes,
their higher processing speed and larger memory make them more capable, at roughly the same cost.
Since users can write programs for these nodes in Java, they do not have to learn programming in
nesC/TinyOS. This is greatly beneficial for designers of system level software for SPOT based WSNs,
since they do not need to learn a new language. The Sun SPOTs are especially of interest to us since the
architecture of our DART [1] runtime system assumes the existence of a pre-emptive scheduler, which
is provided by the use of threads in Java. Finally, although other WSN platforms exist on which Java
programs can be run, the fact that the JVM runs directly on themetal in the SPOTs reduces the overheads
involved.

3 Class of Application

Macroprogramming using ATaG is not intended for lower leveltasks such as routing. ATaG’s data
driven paradigm can be used to develop a wide class of applications using complex interactions patterns
such ashierarchical data gathering, localized interactionsandactuation driven by sensing. This fact was
illustrated in [7], by giving examples of how ATaG can be usedto design application such as Landslide
Detection, Target Tracking, and HVAC (heating, ventilation and air-conditioning) Management. In the
next section, we discuss how our toolkit can be used to designand deploy WSN application, by taking a
sense-and-respond application as an example.

4 Programming SunSPOTs using ATaG: Case Study

4.1 Toolkit and Design Flow

Figure 1 depicts the workflow an application developer will go through when developing WSN appli-
cations using our toolkit. The left side of the figure depictsthe framework, whereas the right side depicts
the implementation details of our current system. Note thatthe framework itself is generic, and can be
ported to work with other types of WSN nodes as well.

2



���� ���������
���� 	
�����

����������	
�� �
� �����
	���
�����	
�� �
����� �
��

������ ���������������
�
���
������������ 	
�� ������ �
��

��������� �����
 �� !��� "�
����

!��� #���
!$�� �
����������

��������� �����
�� !��� �


��� �" � 
���%���%��� ���
�����&����
�� 
��'��(� !)�*+,-. /0 1--2/34+/506,7,25-8,0+ 98-2,8,0+4+/506,+4/2.

Figure 1. Workflow using Toolkit

To specify a WSN application to be deployed on a
network of SunSPOTs, the application developer first
specifies thetask graph using the Generic Modeling
Environment (GME) [3], as shown in Figure 2(b). We
have developed a meta-model of ATaG in GME, and
the tasks and data items are both treated as models
in GME. As shown in the figure, the user can draw
the entire task graph, as well as specify attributes of
tasks and channels using our toolkit. Theimpera-
tive part of each abstract task is specified as a Java
program. We have provided standard interfaces for
the programmer toa) interface with the sensors and
the LEDs on the SPOTs, as well as forb) reading
and writing data items to the runtime system. Since
ATaG programs are platform-independent, the devel-
oper needs to provide thetarget system description
(viz. node locations, radio range, region labels, and
sensing/actuation capabilities) separately. As part of
our toolkit, we have also developed a Java-based ap-
plication into which developers can upload the system
description and visualize/edit it.

Once the user specifies the ATaG program using
our GME metamodel, our program written using the

pattern-based generator-interpretor of GME converts it into an equivalent XML representation. The
ATaG compiler (written in Java) takes this XML and the systemdescription, and computes the task as-
signment for each node in the system. Additionally, it also computes estimates of the expected cost of
running the system in terms of the number of messages passed etc. More details can be found in [6].
The compiler outputs a set of Java2ME files for each node, including the customized runtime system.
The runtime system includes the protocols for routing data items across nodes. Note that in this case, the
abstraction of the target architecture used by the compileris the Squawk JVM running on the SPOTs.
Our toolkit also generates the appropriate ant scripts, which when executed, deploys the corresponding
code to each node using standard over-the-air (OTA) mechanisms provided by Sun SPOTs. Note that
only single-hop OTA deployment is possible in the current version of Sun SPOTs.

Example Application. Figure 2(a) shows the task graph for the HVAC application described in [7].
Figure 2(b) depicts the same task graph, as expressed in our toolkit, and highlights its various panels.

5 Conclusion
Our end-to-end toolkit can be used by developers to create a wide range of WSN applications, start-

ing from a clear idea of the tasks constituting the system, and ending with an actual working system
comprised of state-of-the art networked sensing nodes. Although we discuss only one application in this
work, we intend to demonstrate the full power and ease of use of our tool at the conference.

We believe that our toolkit, by providing an easy to use end-to-end platform to develop WSN appli-
cations on the Sun SPOT nodes, will enable the development ofcomplex WSN applications. We intend
to make this tool available for download and use the feedbackprovided by the community to further our
research in the area of macroprogramming WSNs.

3



�������� ���	
����������
���������������������������� !�����"����������#" $%

�&�%� '&��%(

������������������������)*+���"�� ����" ������+���+ �,'$ $%(��%

������������������������-��.�������"�� ����"+���++���+ ������/��	����������	
�� /��	�������
��������������������������������!�����"����������#"+���+ ������

(a) As ATaG Task Graph

01234 567 8719 :2;< =3 < 1> ? ; 71 @= AB1> ?> 128 81<1: < 3 C > D 1 2 E 3: 2 D 4 F 8 3 8 1 2 8D=12234> 87192 <6D 6 2 2 3 D < < = 3 C
0 1 2 3 4 5 6 7> 343D< :2; <1> ?>128 81<1 :<3C> A
01234 56 7 38 :< :2;1<< 7:EF<3> 65 <1>?>1 2 8 8 1 < 1 :< 3 C>

(b) In our Environment

Figure 2. WSN Application for Building HVAC Management

References
[1] A. Bakshi, A. Pathak, and V. K. Prasanna. System-level support for macroprogramming of networked sensing

applications. InInt. Conf. on Pervasive Systems and Computing (PSC), 2005.
[2] A. Bakshi, V. K. Prasanna, J. Reich, and D. Larner. The abstract task graph: A methodology for architecture-

independent programming of networked sensor systems. InWorkshop on End-to-end Sense-and-respond
Systems (EESR), June 2005.

[3] The Generic Modeling Environment, http://www.isis.vanderbilt.edu/projects/gme.
[4] R. Gummadi, O. Gnawali, and R. Govindan. Macro-programming wireless sensor networks using Kairos. In

Proc. of the1st Int. Conf. on Distributed Computing in Sensor Systems (DCOSS), June 2005.
[5] R. Newton and M. Welsh. Region streams: Functional macroprogramming for sensor networks. InProc of

the1st Int. Workshop on Data Management for Sensor Networks (DMSN), 2004.
[6] A. Pathak, L. Mottola, A. Bakshi, G. P. Picco, and V. K. Prasanna. A compilation framework for macropro-

gramming networked sensors. InProc. of the the3rd Int. Conf. on Distributed Computing on Sensor Systems
(DCOSS), 2007.

[7] A. Pathak, L. Mottola, A. Bakshi, V. K. Prasanna, and G. P.Picco. Expressing sensor network interaction
patterns using data-driven macroprogramming. InProc. of the3rd Int. Wkshp. on Sensor Networks and
Systems for Pervasive Computing (PerSens - colocated with IEEE PERCOM), 2007.

[8] SunTM Small Programmable Object Technology (Sun SPOT),www.sunspotworld.com.
[9] K. Whitehouse, J. Liu, and F. Zhao. Semantic streams: a framework for composable inference over sensor

data. InThird European Workshop on Wireless Sensor Networks (EWSN), February 2006.

4


