End-to-end Toolkit for Developing a Class of
WSN Applicationson Sun SPOT Nodes®

Animesh Pathak Qunzhi Zhot, Luca Mottola,

Amol Bakshi, Viktor K. Prasanng and Gian Pietro Pic¢o
fUniversity of Southern California, USAani nesh, qunzhi zh, anol, prasannaj@sc. edu
tPolitecnico di Milano, ltalynottol a@l et.polim .it
#University of Trento, Italypi cco@li t.unitn.it

ADbstract

Over the past years of research in Wireless Sensor Netwd#&NGs), both the hardware used to
construct WSNs and the languages used to describe theitidnatity have evolved. The Sun Small
Programmable Object Technology (Sun SPOT) nodes are th&t laffering in the former domain, with a
Java virtual machine running on the metal. On the prograngsillle, macroprogramming frameworks
such as the Abstract Task Graph (ATaG) have been developedith to greatly reduce the burden of
the application developer for a wide range of WSN appliaagio

In this work, we present aand-to-end solutiofior macroprogramming WSN applications on Sun
SPOT nodes using ATaG - a data-driven programming paradigva.will demonstrate all the stages
starting from the specification of the application to its golation and deployment on actual sensor
nodes, thus showcasing the power of our toolchain. We leetieat our research will enable wide
adoption of WSNs among a range of end-users who will now hav@narete end-to-end toolkit to
develop WSN applications.

1 Introduction

The Sun Small Programmable Object Technology [8] nodes (@Ts) are the latest hardware
offering for Wireless Sensor Networks (WSNs), with a Javéueil running on the metal, and a small
form factor. In themacroprogrammingf WSNs, the application developer specifies the behavior of
the resultansystem not the individualnodes The various macroprogramming paradigms currently
being developed include imperative programming [4], flor@l programming [5], task graphs [2], and
spreadsheet-based programming [9], among others.

The Abstract Task Graph (ATaG) framework is a data-drivecno@arogramming paradigm in which
the application developer specifies the system behavioniixad declarative-imperative manner. The
interactions between various components of a system aud#fisgeas atask graph while the internal
working of the tasks themselves are specified in an imperdéimguage like Java. The ATaG tasks
are annotated witinstantiationand firing rules, which specify the location (e.gne per flooy and

*This work is partially supported by the European Union urttier IST-004536 RUNES project and by the National
Science Foundation, USA, under grant number CCF-0430061.

1

triggering constraint (e.gwhen the data is availab)®f each task. The channels connecting the tasks to
data items are also annotated to specify the physical rardp@athey are interested in (egpther data
from a 30 m radius More details of ATaG can be found in [2]. The compiled ATa@grams run atop a
runtime system (DART), which abstracts the underlying senstwork as a distributed data store, with
which the tasks interact only withet Dat a() andput Dat a() primitives. DART also takes care of
activities such as task firing, routing and data item managgmMore details of DART can be found
in[1].

In this work, we present ouend-to-endsolution for macroprogramming WSNs consisting of Sun
SPOTs using ATaG’s data-driven programming paradigm. Asmeed in detail in Section 4, the ap-
plication developer needs to providethe description of the WSN application in ATaG, anddetails
about the target system deployment. The toolkit assistsiske in specifying the above, and then our
compiler generates the code to be deployed on each node syskem. Out toolkit also deploys the
resulting customized node-level Java code to each Sun SPOT.

2 Sun SPOTs

A Sun SPOT node [8] has a 180 MHz 32 bit ARM920T processor WitPK6RAM and 4M Flash
memory. Its extensible sensor board also contains a 2G/é&Gs3accelerometer, a temperature sensor,
and a light sensor. The SPOTSs run the Squawk Java virtualimedirectly out of flash memory, and
can run programs written using Java2ME libraries.

Although the SPOTSs are slightly bulkier than the commonlgdusiuch smaller Tmote sky nodes,
their higher processing speed and larger memory make thema capable, at roughly the same cost.
Since users can write programs for these nodes in Java, theywtdhave to learn programming in
nesC/TinyOS. This is greatly beneficial for designers oteyslevel software for SPOT based WSNs,
since they do not need to learn a new language. The Sun SP®&secially of interest to us since the
architecture of our DART [1] runtime system assumes thetence of a pre-emptive scheduler, which
is provided by the use of threads in Java. Finally, althoutjleroWSN platforms exist on which Java
programs can be run, the fact that the JVM runs directly omtéel in the SPOTSs reduces the overheads
involved.

3 Classof Application

Macroprogramming using ATaG is not intended for lower lesks such as routing. ATaG’s data
driven paradigm can be used to develop a wide class of apfipisausing complex interactions patterns
such adierarchical data gatheringocalized interactionandactuation driven by sensing his fact was
illustrated in [7], by giving examples of how ATaG can be usedesign application such as Landslide
Detection, Target Tracking, and HVAC (heating, ventilatend air-conditioning) Management. In the
next section, we discuss how our toolkit can be used to desigrdeploy WSN application, by taking a
sense-and-respond application as an example.

4 Programming SunSPOTs using ATaG: Case Study
4.1 Toolkit and Design Flow

Figure 1 depicts the workflow an application developer walltgrough when developing WSN appli-
cations using our toolkit. The left side of the figure depibesframework, whereas the right side depicts
the implementation details of our current system. Note ttatframework itself is generic, and can be
ported to work with other types of WSN nodes as well.

2

ATaG Task
Graph
Imperative
Code for Tasks

ATaG Compiler

Customized
Code for

Each Node

Deployment

Target System
Description
Y Y

GME

, N
\
| Specified using 1
|
: our Java Tool |
J

| J2ME code
: packages

To specify a WSN application to be deployed on a
network of SunSPOTS, the application developer first
specifies theask graph using the Generic Modeling
Environment (GME) [3], as shown in Figure 2(b). We
have developed a meta-model of ATaG in GME, and
the tasks and data items are both treated as models
in GME. As shown in the figure, the user can draw
the entire task graph, as well as specify attributes of
tasks and channels using our toolkit. Timepera-
tive part of each abstract task is specified as a Java
program. We have provided standard interfaces for
the programmer t@) interface with the sensors and
the LEDs on the SPOTSs, as well as floy reading
and writing data items to the runtime system. Since
ATaG programs are platform-independent, the devel-
oper needs to provide tharget system description

(viz. node locations, radio range, region labels, and
sensing/actuation capabilities) separately. As part of
our toolkit, we have also developed a Java-based ap-
plication into which developers can upload the system
description and visualize/edit it.

Once the user specifies the ATaG program using
our GME metamodel, our program written using the
pattern-based generator-interpretor of GME convertstd an equivalent XML representation. The
ATaG compiler (written in Java) takes this XML and the sys@scription, and computes the task as-
signment for each node in the system. Additionally, it alsmputes estimates of the expected cost of
running the system in terms of the number of messages pagseMere details can be found in [6].
The compiler outputs a set of Java2ME files for each nodeudliey the customized runtime system.
The runtime system includes the protocols for routing datas across nodes. Note that in this case, the
abstraction of the target architecture used by the comigildre Squawk JVM running on the SPOTSs.
Our toolkit also generates the appropriate ant scriptsgivivihen executed, deploys the corresponding
code to each node using standard over-the-air (OTA) meshmemnprovided by Sun SPOTs. Note that
only single-hop OTA deployment is possible in the curremsian of Sun SPOTS.

Running Code at { bytecode on |
Each Node ; i Squawk JVM |
A -

Steps in Application
Development

Implementation
Details

Figure 1. Workflow using Toolkit

Example Application. Figure 2(a) shows the task graph for the HVAC applicationcdbed in [7].
Figure 2(b) depicts the same task graph, as expressed inalkitiand highlights its various panels.

5 Conclusion

Our end-to-end toolkit can be used by developers to createl@nange of WSN applications, start-
ing from a clear idea of the tasks constituting the systerd, earding with an actual working system
comprised of state-of-the art networked sensing nodeboAth we discuss only one application in this
work, we intend to demonstrate the full power and ease of tisardool at the conference.

We believe that our toolkit, by providing an easy to use emd+id platform to develop WSN appli-
cations on the Sun SPOT nodes, will enable the developmeaimplex WSN applications. We intend
to make this tool available for download and use the feedpaakided by the community to further our
research in the area of macroprogramming WSNSs.

[nodes-per-
..........

[nodes-per-
instance:1@temperatureSensor]
[periodic:10]

[nodes-per- ([partition-per-instance:1/floor] W

[periodic:10]

Temperature
Sampler

Humidity Sampler Collector

(a) As ATaG Task Graph

. satag - Roo ¢ - [BuildingMngATaG - / older/BuilldingMngTas Desi - [B[X]
7]
/i d@adx » ¥V A mMEFEEED ?
X T Name:[BuidngMngATaG [ATaG Aspect]Aspect] Base: [N/A Zoom: [100% _
@ Aggregate | Inheritance | Meta |
& BuidinghingAT a6 ‘“Panel for
® =% ool Folder | h K
= ¥ BuilldingMngT askGraphDesign
2 S B EeiT se ectlng.tas S
o feen and data items.
1 Collector
14 HVAC Controller
[Temperature Sampler ~ Humidity Sampler Collector HVAC Controller j Humidity
T4 Humidity S ampler
5 {al Temperature
14l Temperature Sampler =
‘ 14 SensorsDeploymentDesign

Temperature Humidity

Panel for editing
o| attributes of tasks
and data items

Panel for drawing
the task graph.
Tasks and data -

items can be

included and

channels drawn to
connect them

[Ready EDIT /100% atag 04:21 PM

(b) In our Environment

Figure 2. WSN Application for Building HYAC Management

References

[1] A.Bakshi, A. Pathak, and V. K. Prasanna. System-levppsut for macroprogramming of networked sensing

applications. Irint. Conf. on Pervasive Systems and Computing (P3)5.

[2] A.Bakshi, V. K. Prasanna, J. Reich, and D. Larner. Thdrabstask graph: A methodology for architecture-

independent programming of networked sensor systemsWdrkshop on End-to-end Sense-and-respond
Systems (EESR)une 2005.

[3] The Generic Modeling Environment, http://www.isisaerbilt.edu/projects/gme.

[4]
[5]

R. Gummadi, O. Gnawali, and R. Govindan. Macro-progranghwireless sensor networks using Kairos. In
Proc. of thel®! Int. Conf. on Distributed Computing in Sensor Systems (D&Q8ne 2005.

R. Newton and M. Welsh. Region streams: Functional marmgramming for sensor networks. Rroc of
the 1% Int. Workshop on Data Management for Sensor Networks (DMZY.

[6] A. Pathak, L. Mottola, A. Bakshi, G. P. Picco, and V. K. Baana. A compilation framework for macropro-

gramming networked sensors. Proc. of the the3” Int. Conf. on Distributed Computing on Sensor Systems
(DCOSS)2007.

[7] A. Pathak, L. Mottola, A. Bakshi, V. K. Prasanna, and GPRco. Expressing sensor network interaction

[8]
[9]

patterns using data-driven macroprogramming. Ploc. of the3"® Int. Wkshp. on Sensor Networks and
Systems for Pervasive Computing (PerSens - colocated BtE PERCOM)2007.

Sun™ Small Programmable Object Technology (Sun SP@Wy. sunspot wor | d. com

K. Whitehouse, J. Liu, and F. Zhao. Semantic streamsaméwork for composable inference over sensor
data. InThird European Workshop on Wireless Sensor Networks (E\WW&NRjuary 2006.

4

