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Abstract. Data-driven macroprogramming of wireless sensor networks (WSNs)
provides an easy to use high-level task graph representation to the application
developer. However, determining an energy-efficient initial placement of these
tasks onto the nodes of the target network poses a set of interesting problems. We
present a framework to model this task-mapping problem arising in WSN macro-
programming. Our model can capture task placement constraints, and supports
easy specification of energy-based optimization goals. Using our framework, we
provide mathematical formulations for the task-mapping problem for two differ-
ent metrics — energy balance and total energy spent. Due to the complex na-
ture of the problems, these formulations are not linear. We provide linearization
heuristics for the same, resulting in mixed-integer programming (MIP) formula-
tions. We also provide efficient heuristics for the above. Our experiments show
that the our heuristics give the same results as the MIP for real-world sensor net-
work macroprograms, and show a speedup of up to several orders of magnitude.

1 Introduction

Various high-level programming abstractions have been proposed recently to assist in
application development for Wireless Sensor Networks (WSNs). Specifically, Data-
driven macroprogramming [1] refers to the general technique of specifying the WSN
application from the point of view of data-flow. In sense-and-respond applications such
as traffic management [2], building environment management [3], target tracking etc.,
the system can be represented as a set of tasks running on the system’s nodes – produc-
ing, processing and acting on data items or streams to achieve the system’s goals. The
mapping of these tasks onto the nodes of the underlying system (details of which are
known at compile time) is an important part of the compilation of the macroprogram,
and optimizations can be performed at this stage for energy-efficiency.

Although the initial information (positions, energy levels) about the target nodes is
known, during the lifetime of the WSN, changing conditions, either external or inter-
nal may alter the circumstances. We do not address these unpredictable situations, and
instead aim to provide a “good” initial mapping of tasks. We assume that during the
lifetime of the system, remapping of tasks will occur to face these circumstances, for
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example, a distributed task-remapping algorithm can be triggered when the energy at
any node goes below a certain fraction of its initial energy level. Our work attempts to
utilize the global knowledge available at compile-time to obtain efficient results.

In this paper, we make three contributions. In Sect. 2 we provide a modeling frame-
work for the problem of task-mapping for data-driven sensor network applications. In
Sect. 3 we propose a mixed integer programming (MIP) formulation to obtain task
mappings in order to optimize for the energy balance and total-energy minimization
goals. Since the formulation is non-linear, we provide substitution-based techniques
to linearize the MIPs. Although the MIP formulations give optimal results, they may
take inordinately large times to terminate for large real-world scenarios. In Sect. 4, we
provide greedy heuristics for the two problem instances.

Our experimental results, discussed in Sect. 5, show the performance comparison
between the techniques, using realistic applications and deployment scenarios. Our
heuristics are shown to obtain the optimal solution for these scenarios, while gaining
significant speedups over the MIP technique. Section 6 discusses the differences of our
work from other closely related work in parallel and distributed systems and sensor
networks. Section 7 concludes.

2 Problem Formulation

As an example of data-driven macropro-

?

T1, 

f1

T2, 

f2

T5, 

f5

T6, 

f6

T7, 

f7
T3, 

f3

s
14

s24

s34

s56

s
57

T4, 

f4
s45

T

T
A A

T

Data-driven 

Task Graph

Target Network 

Description

?

Fig. 1. Temperature mgmt. application

gramming representation, consider the fol-
lowing (simple) application – A room is
instrumented with six wireless nodes, with
three nodes equipped with temperature sen-
sors, and two nodes connected to actuators
for controlling the temperature of the room.
We need to periodically determine the av-
erage temperature in the room, compare it
with a threshold, and produce the corres-
ponding actuation. One way of designing
such an application at a high-level using a
data-driven approach is shown in the top part
of Fig. 1. Tasks T1, T2 and T3 are tempera-

ture sampling tasks, which fire at a rates of f1, f2, f3 and generate ambient temperature
readings of size s14, s24, s34. Task T4 calculates the average of these readings and feeds
it to T5, which determines the action to be taken. Tasks T6 and T7 act upon the data
generated by T5, and control the actuators. The system for which this application is
being designed is shown in the lower part of the same figure. The nodes equipped with
temperature sensors and actuators are marked with a T and A respectively.

The mapping of tasks T1 through T7 onto the nodes of the target network is an
instance of the problem faced while compiling data-driven macroprograms for WSNs.
The placement of the sensing tasks (T1, T2, T3) and the actuating tasks(T6 and T7)
are pre-determined to the nodes with the relevant capabilities. This fact is shown using
curved broken lines in the figure. However, tasks T4 and T5 can be placed on any of the
nodes in the floor, thus allowing for optimizations in this process.
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Our aim is to capture the various aspects of systems like the one above, including
the placement constraints and firing rates of the tasks, the data-flow between them, the
heterogeneity in the nodes and links of the system, and the energy spent in sensing,
computation and communication.

Application and System Model

A Network Description N represents the target system of nodes where the WSN ap-
plication is to be deployed. Each node k (k = 1, . . . , n) has an initial energy reserve
e0

k. We assume that the system operates in rounds, and denote the energy remaining at
node k after t rounds by et

k. A round is defined as the least time-period after which the
system behavior repeats itself.

A Data-driven Task i represents the sensing, processing or actuation activity in a WSN.
Its firing rate fi, denotes the number of times it is invoked in one round.

A Data-driven Task Graph D = (DT, DE) is a directed acyclic graph (DAG) con-
sisting a) A set DT = {1, . . . , i, . . . , m} of data-driven tasks, and b) A set DE ⊆
DT × DT of edges. Each edge (i, j) is labeled with the size sij of the data that task i
produces for task j upon each invocation.

The Task Execution Energy Matrix T is an m × n matrix, where Tik denotes the
energy spent by node k per invocation of task i, if i is mapped onto node k.

The Routing Energy Cost Matrix R for N is a n×n×n matrix, with Rβγk denoting
the energy consumed at node k while routing one unit of data from node β to γ.

The Task Mapping is a function M : DT → N , placing task i on node M(i).

Energy Costs: In a sensor network, the cost that developers are largely concerned with
is the energy spent by the nodes as the system operates. We therefore use the terms cost
to mean the energy spent at a node throughout this paper, unless otherwise stated. Using
the model defined above, we compute the following costs1. At each node k ∈ N , the
computation cost in each round is given by

Ck
comp =

∑

i:M(i)=k

fi · Tik (1)

and the energy cost of communicating messages in each round is given by

Ck
comm =

∑

(i,j)∈DE

fi · sij · RM(i)M(j)k (2)

Performance Metrics: The above modeling framework can be used to easily model
two common optimization goals. The first is energy balance, which we consider to be
achieved when the maximum fraction of energy spent by any node in the system is
minimized.

OPT1 = min
all Mappings M

max
k∈N

1
ek

o

· (Ck
comp + Ck

comm) (3)

The second performance goal we model using our framework is the more commonly
used total energy spent in the entire system. Although we believe that energy balance is

1 Note that the cost of sensing is included in the Tik of the sensing tasks.
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a better metric to measure the quality of task placement, we use the goal of minimizing
the total energy spent in the system to illustrate the modeling power of our framework.

OPT2 = min
all Mappings M

∑

k∈N

(Ck
comp + Ck

comm) (4)

For each of the two metrics, a feasible solution is possible only when all nodes have
non-zero energy left at the end of one round. If there are no mappings possible for
which this holds, the task-mapping algorithms should report failure. In addition to the
above, our framework can be used to model other application scenarios also, e.g. when
multiple paths between two nodes are possible.

3 Mathematical Formulations for Task Mapping on WSNs

3.1 Mixed Integer Programming Formulation for OPT1

To formulate the problem as a mixed integer programming (MIP) problem, we represent
task mapping M by an m × n assignment matrix X , where xik is 1 if task i is assigned
to node k, and 0 otherwise. The problem can then be defined as:

Inputs:

– D = (DT, DE): Data-driven Task Graph, fi: Firing rate for task i, and sij : Size
of data transferred from task i to j on each invocation of i

– N : Network description, T : Task execution energy matrix, R: Routing energy cost
matrix

Output: X : Assignment Matrix. xik is binary.
Optimization Goal:

minimize c

Constraints:
n∑

k=1

xik = 1 for i = 1, 2, . . . , m (5)

1
e0

k

(
m∑

i=1

fi · Tik · xik+
∑

(i,j)∈DE

n∑

β=1

n∑

γ=1

fi · sij · xiβ · xjγ · Rβγk) ≤ c, ∀k∈ {1,. . . , n}

(6)

xik ∈ {0, 1} for (i, k) = (1, 1), . . . , (m, n) (7)

0 ≤ c < 1 (8)

The summation terms in (6) denote Ck
comp and Ck

comm respectively. The final con-
straint ensures that the MIP fails if no feasible solution exists. Note that the above is
an MIP since c is real whereas xik are binary integers. Also, it is not a linear program
since product terms xiβ · xjγ appear in the constraints.
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The above problem can be converted to a linear MIP by replacing each xiβ ·xjγ term
with a binary variable yiβjγ , and adding the following constraints:

yiβjγ − xiβ ≤ 0 (9)

yiβjγ − xjγ ≤ 0 (10)

xiβ + xjγ − yiβjγ ≤ 1 (11)

Using techniques similar to the ones above, we also designed a linear MIP to solve
the task-mapping problem for OPT2, i.e., minimizing the total energy spent by the
system. Owing to the space limitations, it is not discussed in detail here.

4 Heuristic for Task Mapping

4.1 Greedy Algorithms for Task Mapping

Although the MIP formulation leads to optimal results, solving an MIP can be quite
time consuming in practice. Our greedy heuristic for the goal of minimizing the max-
imum fraction of energy spent at a node (OPT1) is detailed in Algorithm 1. The main
intuition is that the algorithm sorts the edges in the task graph in non-increasing order
of the traffic going on them, and then tries to map the still unmapped endpoints of each
edge (i, j) so as to achieve the minimum increase in the objective function. We also
appropriately modified this algorithm to obtain GreedyMinTotal() for OPT2.

Algorithm 1. GreedyMinMax: for OPT1

Input: D(= DT, DE), N, T [m][n], R[n][n][n], f [m], s[m][m], eo[n]
Output: M [m]: Task Assignment
1: Initialize M [i] = −1 for i = {1, . . . , m}
2: Sort (i, j) ∈ DE in non-increasing order of f [i] · s[i][j]
3: for all (sorted) (i, j) in DE do
4: minmaxCost = ∞; minPath = (−1, −1) // Initialize minmaxCost and minPath

for this iteration
5: for all (α, β) such that (i, j) can be assigned to them do
6: M [i] = α, M [j] = β // Temporarily assign (i, j) to (α → β)
7: maxCost = maxCost(D, N, T , R, f, s, e0, M)
8: if maxCost < minmaxCost then
9: minmaxCost = maxCost; minPath = (α, β) // Update minmaxCost and

minPath
10: if minmaxCost > 1 then
11: declare failure. stop. // Checking for feasibility
12: M [i] = minPath.α; M [j] = minPath.β
13: return M

Computational Complexity: Each invocation of maxCost takes θ(n(m+ |DE|)) time.
During Algorithm 1, the sorting takes O(|DE| log(|DE|)) time, and the main loops
invokes Algorithm 2 for evaluating the maxCost O(|DE|n2) times. The total time com-
plexity of the algorithm is O(|DE|(log(|DE|) + n3(m + |DE|))).
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Algorithm 2. maxCost: for determining the maximum fraction of energy spent at a node
Input: D(= DT, DE), N, T [m][n], R[n][n][n], f [m], s[m][m], eo[n], M [m]
Output: maxCost: Maximum fraction of energy spent at any node
1: maxCost = 0 // Initialize max cost
2: for all k ∈ N do
3: cost = 0 // Initialize node cost
4: for all i ∈ DT do
5: if M [i] == k then
6: cost = cost + f [i] · T [i][k] // Increment computation cost
7: for all (i, j) ∈ DE such that M [i] �= 1 AND M [j] �= 1 do
8: cost = cost + f [i] · s[i][j] · R[M [i]][M [j]][k] // Increment communication cost
9: if cost/e0[k] > maxCost then

10: maxCost = cost/e0[k]
11: return maxCost

4.2 Worst-Case Analysis

Since both GreedyMinMax and GreedyMinTotal are heuristics, we explored the situa-
tions when they can give sub-optimal results. We introduce the notion of the cost of an
algorithm for this purpose – the cost of GreedyMinMax is defined a the maximum frac-
tion of energy spent in one round at any node in N , while the cost of GreedyMinTotal
is the total energy spent by all the nodes in N in one round.

Theorem 1. For any integer υ ≥ 1, there are problem instances for which the cost of
GreedyMinMax (GreedyMinTotal) is arbitrarily close to υ × OPT1 (υ × OPT2).

Proof. Consider a situation as illustrated in Fig. 2. Tax = Tay = 0, and the other tasks
can only be placed on the nodes indicated by the arrows. Let us also assume that fa = 1,
ex
0 = ey

0 = e0, and both nodes in N spend one unit of energy per unit of data transmitted
on the link between them. Finally, e0 � σ � ε > 0. The optimal solution, both for
OPT1 and OPT2, is to place a on node x, thereby causing only the data on the (a, b0)
edge in DE to go on the network, costing σ units of energy to be spent by node x (and
the entire system) in each round. The greedy algorithms, however, start with placing the
costliest edge (a, b0) in the best possible manner, co-locating a and b0 on node y. This
leads to υ × (σ − ε) traffic to go over the y → x link. We thus get:

OPT1 =
1
e0

σ (12)

⇒ cost(GreedyMinMax) =
1
e0

υ × (σ − ε) ≈ υ × OPT1 (13)

Similarly, OPT2 = 2σ (14)

⇒ cost(GreedyMinTotal) = 2υ × (σ − ε) ≈ υ × OPT2 (15)

hence proving the theorem ��

Theorem 2. There are problem instances for which GreedyMinMax and
GreedyMinTotal will terminate in failure although a feasible solution exists.



522 A. Pathak and V.K. Prasanna

Proof. Consider the situation as illustrated in Fig. 2. However, in this case, assume that
e0 = σ � ε > 0. The optimal solution (given by the MIP formulation) will still place
task a on node y, while the greedy algorithms will try to place it on node y. Note that
for υ ≥ 2, this will lead to an infeasible solution, as the nodes end up spending > e0
energy and the heuristics will declare failure. ��

Placement constraint

(other mappings impossible)

a
b1

bυ

σ

b0

(σ-ε)

(σ-ε)

υ copies x

y
1

Fig. 2. Scenario for worst case performance of GreedyMinMax and GreedyMinTotal

5 Evaluation

The worst-case performance bounds discussed above apply to cases where arbitrary
task graphs and constraints are permitted. However, for realistic sensor network appli-
cations, the relationships between the tasks are not completely arbitrary. For evaluating
the relative performance of our heuristics in realistic applications, we applied them on
the task graphs of the building environment management (HVAC) and traffic manage-
ment applications discussed in [4]. We used our algorithms to map their tasks onto
various simulated target deployments based on real-world scenarios.

In our experiments, we assumed that all nodes started with a sufficiently high initial
energy level e0. The routing energy cost matrix R was obtained by using a shortest path
algorithm on the network, assuming equal energy spent by all nodes on a route, and all
data items were assumed to be of unit size (sij = 1). The task execution energy matrix
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T was set up to represent placement constraints: Tik = 0 when task i could be placed
on node k, ∞ when it could not. The tasks which performed sensing and actuating were
tied to a node with the relevant capabilities. Finally, the fi for each task was computed
as follows: For sensing tasks, fi was set to 10, and for all other tasks j, fj was set to the
sum of the firing rates of tasks on the other ends of the incoming edges. This represented
the fact that task j fires whenever there is data available for it.

We ran our experiments on a PC with dual quad-core Xeon processors running at
2GHz, with 16GB of RAM. We implemented our greedy algorithm in Java, and solved
the MIPS using the lp solve linear programming toolkit. We recorded the average
time taken for task placement over 500 runs for each data point. The time taken for
computing task placements for both the applications for OPT1 is shown in Fig. 3. For
all instances of the traffic application, and the for all experiments with OPT1, the so-
lution given by the greedy algorithm was the same as the one given by the MIP. Our
experiments clearly show that the greedy algorithms take much less time that the MIP
formulation to determine the mappings. The speedups were similar with OPT2. This
showcases the efficacy of the algorithms in solving the task-mapping problem for com-
plex real-world WSN applications.

6 Related Work

Parallel and Distributed Computing: The task mapping problem [5] is a well stud-
ied problem is parallel and distributed computing. In [6], the authors have covered a
wide range of mapping problems in such systems and approaches to solve them to min-
imize system latency in cases where tasks do not have placement constraints. In [7], the
authors present a genetic algorithm for placing tasks on a parallel processor, with an
extension for the case where not all tasks can be run on all nodes, by way of assigning
each node to a class, and associating a class number with each task. Their algorithm is
designed to work for a range of metrics, and they focus on the minimize total execution
time metric in the paper. However, unlike us, they assume full control over routing.

Wireless Sensor Networks: Task placement on sensor networks has also been ad-
dressed recently. Efforts such as [8] approach the task-mapping problem for WSNs
from a protocol-centric point of view, whereas we take a high-level perspective of the
problem. [9] proposes a greedy solution to the service placement problem, which is
applicable to our context of compiling macroprograms. Similar to our case, their appli-
cation also has task placement constraints, where certain tasks can be placed only on
certain nodes. However, they focus only on the specific goal of minimizing the total
energy spent for trees. The work in [10] solves the generic role assignment problem,
where task placements are specified using roles. Their algorithm allows ILP solutions
of role assignment onto the nodes of the target system, based on a global optimization
criteria represented in terms of the number of nodes with a particular role. Unlike their
case, our heuristics are meant for solving an offline version of the problem, and the
optimization goals more tied to the energy-consumption at the nodes.
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7 Concluding Remarks

In this paper, we formalized the task-mapping problem as it arises in the context of
designing applications for wireless sensor networks using data-driven macroprogram-
ming. We provided mathematical formulations for two energy-related optimization
goals – minimizing the maximum fraction of energy consumed in a node and minimiz-
ing the total energy consumed in the sensor network. We used our modeling framework
to provide mathematical formulations to solve these two problem instances, and demon-
strated linearization techniques to convert them into mixed-integer programs (MIP). We
also provided greedy heuristics for the above problem scenarios, and provided worst-
case performance bounds for the same. In spite of the worst-case performance possible
for specially crafted problem instances, our heuristics were shown to out-perform the
MIP formulation by several orders of magnitudes of time for real-world WSN applica-
tions, while not compromising in the quality of the solutions. We acknowledge that later
in the life of the WSN applications, distributed protocols will be needed to re-assign the
tasks in view of changing operating circumstances. However, our techniques (and other
technique based on our models) will provide good initial task placements. Our imme-
diate future work is to reduce the complexity of the greedy approaches, as well as to
explore better polynomial time approximation algorithms. Additionally, we are work-
ing on integrating our algorithms into the compiler [4] of a pre-existing data-driven
macroprogramming framework.
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