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Abstract

Wireless Sensor Networks (WSNs) are rapidly emerging as a new class of distributed

pervasive systems, with applications in a diverse range of domains such as traffic

management, building environment management, target tracking, etc. Most, if not

all, WSN application design is currently performed at the node-level, with develop-

ers manually customizing various protocols to realize their applications. This makes

it difficult for the typical domain-expert application developer (e.g., a building system

designer) to develop applications for them, and is a hindrance to their wide acceptance.

To address this problem, the field of macroprogramming has emerged, which aims to

provide high-level programming abstractions to assist in application development for

WSNs. Although several macroprogramming approaches have been studied, the area

of compilation of these macroprograms to node-level code is still largely unexplored.

This thesis addresses the issues involved in the compilation of sensor network

macroprograms. The emphasis is on data-driven macroprogramming, where the ap-

plication is represented as a set of tasks running on the system’s nodes - producing,

processing and acting on data items or streams to achieve the system’s goals. In addi-

tion to a modular framework for the overall compilation process, formal models for the

task-mapping problem which arises in this context are discussed. Results from optimal

result-producing mixed-integer programming techniques and algorithmic heuristics for

the above problem are presented. We also present the design and implementation of a

graphical toolkit for sensor network macroprogramming.

x



Chapter 1

Introduction

Since time immemorial, human beings have desired to be able to know more about

their surroundings, and to exercise some measure of control over them. The industrial

age has given us a wide range of basic sense-and-respond systems to partly achieve the

above goal, ranging from a simple electric oven controlled by a thermostat to burglar

alarms triggered by a tripwire, and traffic lights driven by speed-loops on the streets.

The next frontier in this quest to know and control our environment involves larger

systems with multiple constituent nodes which act together to perform multiple tasks

at the same time. Owing to the large scale of these systems, ease of programming

remains a hurdle in their wide acceptance. The work in this dissertation broadly aims

to identify and address the issues involved in crossing the above hurdle.

1.1 Networked Sensor Systems

Distributed systems consist of multiple nodes which communicate with each other

to achieve systemwide goals. Networked sensor systems are a class of distributed

systems where some nodes are equipped with devices which can sense the environment

(sensors) as well as affect it (actuators).
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The sensors used in these devices can be of various types. Thermal seasons can be

and to measure, eg, the temperature in a room or the heat given out by an industrial

process. Electromagnetic sensors are used to detect voltages, currents, resistances as

well as the presence of large metallic object, e.g. magnetometers can be used to detect

the presence of tanks in a battle zone or cars on a highway. Chemical sensors can be

used to detect the presence of pollutants in water, air and soil, and mechanical sensors

car be used to measure the fow of liquids in pipelines, the strain in the beams of a

building or a bridge, and the humidity in a room. Sensors can also be used to measure

the light intensity in a room, the ambient noise levels in an area and the speed and

location of moving objects, among others. A class of sensors which have emerged as

an area of recent interest are biometric sensors, which can provide information about

vital signs such as blood pressure and heart rate to personal health-monitoring systems.

Actuators are mechanical devices which can be used to control a mechanism or a

system. Commonly used actuators include motors (which can drive a wide range of

machinery), displays (as seen in buildings or streets), temperature controllers, water

sprinklers, pacemakers and drug delivery devices (for medical applications) etc.

Over the past years, advances in VLSI technology have enabled the constituents of

these networks to be small, battery-powered, untethered devices which communicate

wirelessly with each other, earning them the term Wireless Sensor Networks (WSNs).

We will use the term WSN to refer to all types of networked sensor systems, although

a networked sensor system may contain wired nodes as well as actuators. Since a large

number of nodes in modern WSNs are battery operated, and because the terrain they

are deployed in may make node-replacement hard (e.g. a forest, oil refinery, nuclear

power plant etc.), energy efficiency is a prime goal for WSN researchers.

2



Storage ServerSupervisor Avg Temperaturen
Avg Temperature1 Avg Temperature2

Figure 1.1: Building temperature management using networked sensors

Currently, a wide range of applications are being designed using WSNs, including

environmental monitoring [41], target tracking [1, 45], personal health [18, 38], park-

ing garage management [20], building environment management [24], traffic and road

management [87, 48], and structural health monitoring [16]. For example, Figure 1.1

shows a scenario where the temperature of the rooms in a building is maintained by

interactions between temperature sensors (rectangles marked with a T) and actuators

(ovals marked with an A). The average temperature of each room is also sent for

storage in a central server which the supervisor can access from time to time.

1.1.1 System Structure

Networked sensor systems of today consist of large numbers of nodes of various types,

ranging from the extremely small small TelosB nodes [95] to the more capable Sun

3



Node Processor Speed RAM ROM
TelosB 8 MHz 10 KB 1 MB
Sun SPOT 180 MHz 512 KB 4 KB
GumStix 600 MHz 128 MB 32 MB
BTNodes 8 MHz 244 KB 132 KB
StarGate 400 MHz 64 MB 32 MB
IMote2 13 - 416 MHz 32 MB 32 MB

Table 1.1: Memory and processing power of common networked sensing nodes

SPOTs [93], GumStix [44], and BTNodes [14], to the even larger micros -servers such

as StarGates [92], Imote2 [49] and the ENS Box [67, 32].Table 1.1 lists the capabilities

of some commonly used WSN nodes. Depending on the computation and storage

capability of the node, the OS support could range from TinyOS [46]], µC/OS-II [68],

or Contiki [27] at the lower end to Linux and Windows CE at the higher end. The

programmer can also utilize virtual machines like the Maté [59], SUN Squawk virtual

machine [91] and VM* [56]. To provide system-level services to these nodes, a host

of protocols have been developed by researchers. These include protocols for medium

access [51, 73], localization [89], time synchronization [31] as well as routing [55, 83].

For exploring more about the various aspects of networked sensing, the reader can

consult several excellent books on the subject [13, 58, 50].

Recently, there has also been a thrust in the field of tiered sensor networks [97].

These systems consist of a hierarchy of WSN nodes of differing capabilities. The

lowest tier consists of the small nodes which traditionally run on batteries and are

charged with sampling the environment and sending the data over to the great higher

level of nodes. The higher tiers of the system are responsible for the tasks of collating

the data generated by the sensing nodes, taking decisions based on the data, and the

routing necessary for the functioning of the networked sensor system. Some of these

nodes at the higher tiers may even be connected to wired power sources and high speed

wired networks. A good programming abstraction for such large and complex systems

4



must be able to address the heterogeneity that exists in terms of processing power,

sensing and actuation capability, network bandwidth available gas well as the power

consumption profile of each constituent node.

1.1.2 Comparison with Traditional Distributed Computing

The idea of multiple constituent nodes of a system collaborating to perform a task

is not new, it was first explored in the realm of parallel computing, where several

tightly coupled compute nodes work together to solve large computational problems

such as weather forecasting, molecular-dynamics simulations, seismology, and remote

sensing.

As stated above, parallel computing systems are traditionally tightly-coupled i.e.,

the member processors are located close to each other (same circuit board, room or

building) and there is a dedicated interconnection network for the system. The nodes

in a distributed systems, by contrast, have loose coupling between them, viz., the nodes

can be located far from each other, and may use public networks to communicate

with each other. Examples of large distributed systems include SETI@home [90],

Folding@home [35] and the various eScience Grids used for applications such as drug

design.

One might be inclined to treat sensor networks simply as wireless distributed sys-

tems, acting on nearly the same principles. However, there are several critical aspects

in which sensor networks differ from traditional distributed systems:

Spatial Awareness: The nodes of a sensor network are deployed in the environment

which they are supposed to monitor and control. e.g., in a building environment man-

agement system, each node can be assigned with extra attributes such as the specific

room and floor it is in. The applications developed on such a system should both be

5



aware of such annotations and be able to utilize them to easily achieve system spe-

cific goals. (e.g. compute the average of the temperatures reported by the nodes in

each room, and then compare it with the average temperature in other rooms of the

same floor. By contrast, there is no notion of ”my location” in a traditional distributed

system.

Nature of Input and Output: Traditional distributed systems work on transactions

— they take a well defined set of data as input (e.g. a set of numbers), and perform

an operation on them to return an output (e.g. the sum of these numbers). Although

the processing occurs inside the system, the input and output are both external to it. A

sensor network, by contrast, is a reactive system. The operations inside the system are

triggered by events occurring within the system. e.g. a fire in a room in a building can

trigger the activation of sprinklers in it. This reactive processing leads to the need for

specialized programming abstractions, which we discuss in detail in Chapter 3.

Optimization Goals: Traditional distributed systems are concerned mostly with the

time and space needed to compute the results of their operations on the input data. As

a result, modeling the time it takes to compute a basic operation, as well as time taken

to communicate the data between the nodes of the system assumes importance in tradi-

tional distributed systems. In a sensor network, since a large number of nodes are bat-

tery powered the energy spent during its operations assumes large importance. Since

the nodes of a sensor network communicate using wireless communication, which are

more energy consuming than the processing at the nodes, the focus shifts on devis-

ing smart strategies so as to minimize the energy spent in the communication of data

between the WSN nodes.

6



1.2 Application Development

The early networked sensor systems were programmed by the scientists who designed

their hardware, much like the early computers. However, the intended developer of

sensor network applications is not the computer scientist, but the designer of the system

using the sensor networks which might be a building or a highway. Throughout this

thesis, we will use the term domain expert to mean the class of individuals most

likely to use WSNs — people who may have basic programming skills but lack the

training required to program distributed systems. Examples of domain experts include

architects, civil and environmental engineers, traffic system engineers, medical system

designers etc. We believe that the wide acceptance of networked sensing is dependent

on the ease-of-use experienced by the domain expert in developing applications on

them.

The various approaches of application development currently available to the do-

main expert are discussed next.

1.2.1 State of the Art: Node-level Programming

Since their early days, WSNs have been viewed as a special class of distributed sys-

tems, and have been approached as such from an application development perspective

as well. Consequently, application developers have thus far specified their applications

at the level of the individual node where the they use a language such as nesC, galsC

or Java to write the program, directly interacting with the node-level services stated

earlier, or a middleware [99, 23, 69] that aids in the programming process. The devel-

oper can read the values from local sensing interfaces, maintain application level state

in the local memory, send messages to other nodes addressed by node ID or location,

and process incoming messages from other nodes. However, In all these approaches.
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the application developer is responsible for ensuring that these individual finite state-

machines executing on the individual nodes of the WSN will interact to produce the

desired result.

Owing to the large size and heterogeneity of the systems involved, as well as the

limited distributed programming expertize of the domain experts, the above paradigm

of node-level programming is not easy to use for sensor networks. We believe that this

is a large obstacle holding back the wide-acceptance of WSNs. For example, to de-

velop an environment management application in nesC, a commonly used language in

WSNs, the developer has to specify the functions at each node in terms of the respec-

tive components - one each for sensing the environment, communicating with other

nodes, as well as controlling the actuators attached to each nodes. In addition to the

above, the application developer is also responsible for ensuring that the distributed

application that results from these communicating node-level programs performs the

necessary functions as desired, and is also efficient in terms of the energy spent during

its operations.

1.2.2 Macroprogramming

Sensor network macroprogramming aims to aid the wide adoption of networked sens-

ing by providing the domain expert the ability to specify their applications at a high

level of abstraction. In macroprogramming, abstractions are provided to specify the

high-level collaborative behavior at the system level, while intentionally hiding most

of the low-level details concerning state maintenance or message passing from the

programmer. As a result of this, macroprogramming is emerging as a viable tech-

nique for developing complex embedded applications, as demonstrated by the several

8



Figure 1.2: Comparing node-centric and macro- programming.

efforts [6, 43, 76] currently underway in this field. Our work is focused on the com-

pilation issues encountered in data-driven macroprogramming (discussed in detail in

Chapter 3), which allows the developer to specify the functionality of their applica-

tion in terms of tasks that interact with each other only using the data items that they

produce and consume.

In the context of macroprogramming for WSNs, we define compilation as the

semantics-preserving transformation of a high level application specification into a

distributed software system collaboratively hosted by the individual nodes. In [81],

we summarized the challenges faced by the designers of compilation frameworks for

macroprogramming languages. The process of semantics-preserving transformation

itself involves addressing challenges of correct and efficient conversion of representa-

tion. In addition, developers should be given the ability to express performance goals

for the deployed system (e.g., in terms of expected network lifetime or latency) that

9



the compiler should consider in optimizing the configuration of individual nodes and

the allocation of different functionality to them.

As illustrated in Figure 1.2, the ease of design provided by macroprogramming

comes at a cost when compared to traditional node-centric programming. In the former

approach, application developers reason at a high level of abstraction, while the process

of converting the high level representation to that of the individual nodes is delegated

to a compiler. The higher the level of abstraction, the more work needs to be done by

the compiler. This makes the process of generating the final running code significantly

different from one solved by the node-level compilers currently seen in WSNs.

1.3 Thesis Contributions and Outline

The aim of this work is to address the issues arising while compiling sensor network

macroprograms due to the difference in abstractions of the data-driven macroprogram-

ming language, and the one provided by the runtime systems at the individual nodes.

Chapter 2 discusses related work in supporting high-level application development for

sensor networks. Chapter 3 establishes the necessary background about data-driven

macroprogramming, including details of the Abstract Task Graph (ATaG) macropro-

gramming language, and the Data-driven ATaG Runtime system (DART), which serve

as the input and the output of the compilation process in our work.

Overall, we make the following contributions in this thesis:

1.3.1 Compilation Framework for Data-driven Macroprogramming

In Chapter 4 we propose a general framework for compilation which can be used for

data-driven macroprogramming languages like ATaG. Our framework breaks down the

process of converting the high-level specification to node-level functionality into a set

10



of independent procedures—such as optimizing the placement of functionality on the

real nodes, or predicting communication costs. These different stages are connected

through well-defined interfaces, that allow for plugging in different modules imple-

menting the various steps of compilation.

We demonstrate the flexibility and generality of our framework by describing an

end-to-end solution for compiling ATaG macroprograms. Our proof-of-concept com-

piler, obtained by instantiating the different modules in our framework, provides the

code to be deployed on each node, as well as an estimate of the message passing costs

of the same. Moreover, the resulting code can be deployed on real world nodes as well

as in a simulation environment.

To evaluate our work, we show results from our work in developing two realistic

applications – building environment management (HVAC) [24] and highway traffic

management [48], discussed more in detail in Section 3.3. The functionality of our

compiler is assessed by inspecting and comparing the auto-generated code against a

manually developed version of the same.

1.3.2 Optimization for Task Mapping

The representation of the WSN application as a set of communicating tasks in an im-

portant intermediate stage in the compilation of data-driven macroprograms. The map-

ping of these tasks onto the nodes of the underlying system (details of which are known

at compile time) is an important part of the compilation of the macroprogram, and op-

timizations can be performed at this stage to make the resulting WSN more efficient.

In Chapter 5, we show how task mapping in this context differs from the traditional

task-mapping problems seen in parallel and distributed computing, in a large part due
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to the presence of placement constraints for tasks, as well as different (energy-related)

optimization goals.

We then provide a framework to model the problem of task-mapping for data-

driven sensor network applications, with tasks subject to placement constraints and

channels annotated with data-rates. We propose a mixed integer programming (MIP)

formulation to obtain task mappings in order to optimize for the energy balance and

total-energy minimization goals in the cases where a single route is available between

each pair of nodes. Since the formulation is non-linear, we provide substitution-based

techniques to linearize the MIPs.

Although the MIP formulations give optimal results, they may take inordinately

large times to terminate for large real-world scenarios. To address this issue, we pro-

vide greedy heuristics for the two problem instances, along with their worst-case per-

formance analysis.

Finally, we provide formulations of the above problem instances when there are

multiple routes available between each pair of nodes in the system. We provide (lin-

earized) MIP-based and greedy techniques to solve these generalized problems.

Our experimental results show the performance comparison between the tech-

niques, using realistic applications and deployment scenarios. Our greedy heuristics

are shown to obtain the optimal solution for most of these scenarios, while gaining

significant speedups over the MIP technique.

1.3.3 End-to-end Toolkit for WSN Application Development

The overall goal of this thesis is to contribute towards the adoption of networked sens-

ing by the domain expert. Therefore, to provide the domain expert the ease-of-use of

the compiler, as well as the efficiency provided by the optimizations, we incorporated
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our research in a graphical toolkit for WSN application development using data-driven

macroprogramming. Chapter 6 discusses the details of various components of our

toolkit Srijan (named after the Sanskrit word for creation). Domain experts can use

our toolkit to graphically specify their networked sensing applications. Srijan also al-

lows them to upload a description of the target network to visualize and edit it. Finally,

the toolkit is used to compile the macroprogram to node-level codes, and then deploy it

on the nodes of the target system. Our experiments show that using Srijan, application

developers can specify and deploy their applications in a timely fashion, while having

to write ∼ 2% of total system code (or < 10% of application-specific code).

Chapter 7 concludes with a discussion of future directions of work.
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Chapter 2

Related Work

2.1 WSN Application Specification and Compilation

Initial programmming of WSNs was done by the nesC [37] language on the tinyOS

operating system [46], and other languages such as µC/OS-II [68], and helped a wide

research community build and test applications and system components for networked

sensing [58, 85, 41, 55]. Over time, tools such as SNACK [42] were developed to sup-

port the programmers of such systems, and sensor nodes supporting more traditional

programming languages such as Java have also emerged [93]. However, the compilers

of all these languages are essentially node-level compilers, not very different from the

common C compiler used on larger machines.

Researchers have recently worked on addressing the concerns of the end-user of

such a system, in efforts ranging from enhancing interoperability between sensor and

UMTS networks [88] to macroprogramming approaches for specifying the WSN ap-

plication itself [43, 76, 6]. Our work focuses on ATaG [6, 8], a data-driven macro-

programming paradigm where the application is specified as a set of interacting tasks.

We discuss it more in detail in Chapter 3. Kairos [43] is an imperative, control driven
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macro-programming language where the application designer can write a single pro-

gram in a Python-like language with additional keywords to express parallelism. A

‘centralized’ program describes the activities at all nodes in the system and is trans-

lated into node-level binaries by a dedicated compiler. Since the program is written

in an imperative form, and whether the action will be performed at a particular node

or not is decided by conditions mentioned in the macroprogram itself, the issues faced

by the compiler are very different from ours. For example, there is no channel com-

position to be done and no specific tasks to be allocated. The work in [57] extends the

above idea to the Pleiades language, whose compiler converts the input specification

to a control flow graph (CFG), and computes node-cuts representing a set of related

actions. The node-cuts are then placed on different nodes, with the runtime system

taking care of transferring the flow of control between nodes as needed.

Regiment [76] is a functional programming language, with support for region-

based functions like filtering, aggregation and function-mapping. The Regiment prim-

itives operate on a model of the sensor network as a set of continuous data streams.

In [75], the authors introduced the TML intermediate language to represent the actions

being performed at individual nodes. The authors state that Regiment programs can be

seen as data flow graphs, with primitives such as afold combining functions and data

on actual nodes to produce data. Although the functional programming approach of

Regiment is very different from the data-driven approach of ATaG, the above similarity

(ATaG tasks combine data produced at other nodes to produce more data) might lead

to some re-use of our ideas in the compilation of Regiment macroprograms. The work

in [77] extends this to the WaveScript language which addresses applications working

on live data streams. The operator placement step of their compiler is similar to our

task mapping stage.
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EnviroSuite [63] is an object-based programming system that introduces the en-

vironmentally immersive paradigm. Its abstractions revolve directly around elements

of the environment as opposed to sensor network constructs, such as regions, neigh-

borhoods, or sensor groups. Object instances float across the network following (ge-

ographically) the elements they represent. The EnviroSuite Compiler (EIPLC) is a

translator that takes EnviroSuite code as input and outputs desired environmental mon-

itoring applications in nesC, which then can be compiled by a standard nesC compiler

and uploaded to the motes. In [52], the authors present a programming model that

enables opportunistic application flows in pervasive environments. The clients in their

programming model are very similar to the instantiated tasks encountered during ATaG

compilation. If one were to create a higher level of abstraction that would automat-

ically create clients for a given network, the issues faced will be similar to the ones

addressed in our work. Also related to our work is the MagnetOS [60] system, which

aims at statically partitioning a monolithic program into components that are then dis-

tributed over the sensor network, and then migrating the components at run-time for

energy efficiency. Although the ATaG programming model is different from it, we

indend to keep this system in mind as we add dynamic migration of tasks to the ATaG

runtime system.

2.2 Task-Mapping on Networked Systems

A large body of work exists on the problem of mapping tasks of an application onto the

nodes of a target system both in the parallel and distributed computing as well as the

wireless sensor networking domain. In this section, we present some closely related

work from various domains.
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Parallel and Distributed Computing: The task mapping problem [11] is a well stud-

ied problem is parallel and distributed computing. In [30], the authors have covered

a wide range of mapping problems in such systems and approached to solve them.

However, they are mostly concerned with optimizing for latency, i.e., minimizing the

computation and communication time. In addition, the tasks do not have placement

constraints. In [64], the authors include placement constraints in their problem state-

ment using a task preference matrix. However, they assume that communication costs

are paid only by the end-points, and their optimization goal is the total cost that the

system endures for the application.

Heterogeneous Systems: In [86], the authors present a genetic algorithm for placing

tasks onto a parallel processor. They also provide an extension for the case where

not all tasks can be run on all nodes, by way of assigning each node to a class, and

associating a class number with each task. Their algorithm is designed to work for

a range of metrics, and they focus on the minimize total execution time metric in the

paper. However, unlike our work, they assume full control over the message routing.

In [54], the authors present algorithms based on the best-first A* technique from artifi-

cial intelligence for optimal task placement on heterogeneous systems. The placement

constraint is specified as a placement cost metric for mapping a task to a particular

node. Subject to these costs, the nodes are assumed to be capable of executing any

task in the application. However, unlike our work, their optimization goal is to mini-

mize the turnaround time. Also, they assume a dedicated interconnection network, and

there are no routing overheads for intermediate nodes. Similarly, recent work such as

that in [94] focus on scheduling jobs on grids by a Multi-Resource Scheduling (MRS)

algorithm using virtual maps and resource potentials. However, they also assume a

completely connected network, and no routing costs.
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Wireless Sensor Networks: A wide variety of work exists in sensor networks to max-

imize lifetime by reducing the energy spent, mostly using distributed algorithms for

sleep-wake scheduling [84]. The work in [29] achieves energy-balance during data-

propagation by deciding in each step whether to propagate data one-hop towards the

final destination (the sink), or to send data directly to the sink. This randomized choice

ensures that the average per sensor energy dissipation is the nearly the same for all

sensors in the network. Task placement on sensor networks has also been addressed

recently. One of the early works on this topic is [102], where the authors propose an

energy-balanced task allocation for collaborative processing in WSNs. However, un-

like our work, they focus on single-hop networks only. Further, our system model is

more general than theirs in some respects, since they only consider the case where two

tasks cannot share the same node. In [96], the authors have provided task placement

approaches for unconstrained task graphs with optimization goals such as minimizing

total energy. In addition, they also provide the routes taken by messages. Finally,

efforts such as [61] approach the task-mapping problem for WSNs from a protocol-

centric point of view, whereas we take a high-level perspective of the problem to de-

termine a good initial task mapping.

WSN Macroprogramming: With the advent of macroprogramming, several approa-

ches have addressed this problem as it arises due to the high-level of applications

divided into tasks. [2] proposes a greedy solution to the service placement problem,

which is applicable to our context of compiling macroprograms. Similar to our case,

their application also has task placement constraints, where certain tasks can be placed

only on certain nodes. However, they focus only on task graphs that are trees, and

not general graphs. Further, their algorithm’s goal is to minimize the total energy of

the system, and does not guarantee that a single node will not be over-penalized. The

work in [36] solves the generic role assignment problem, where task placements are
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specified using roles. Their algorithm allows ILP solutions of role assignment onto the

nodes of the target system, based on a global optimization criteria represented in terms

of the number of nodes with a particular role. Unlike their case, our heuristics are

meant for solving an offline version of the problem, and the optimization goals more

tied to the energy-consumption at the nodes.

2.3 Toolkits for WSN Application Development

On the end-to-end application development toolkit front, despite many years of re-

search in the area, application development for WSNs is still largely done by writ-

ing text-based code for individual nodes, be it nesC on the Mica motes, C on the

BTNodes, or Java on the Sun SPOTs. One of the earliest toolkits proposed to re-

duce the programming effort was the Sensor Network Application Construction Kit

(SNACK) [42], which provides a component composition environment that allows de-

velopers to define explicit configurable parameters for application-level components.

The SNACK user develops applications at the node-level using a text-based descrip-

tion of wiring between components, several of which are libraries provided by the

authors. These programs are analyzed by the compiler to generate maximally-shared

nesC expansions, which then have to be deployed just like normal nesC applications.

The Flask language [65] facilitates node-level programming using data-flow graphs

and provide facilities for composing atomic subgraphs across the network using a flow

communication model. The application is specified in a variant of OCaml, and the

behavior of individual processing elements is specified in nesC. The Flask compiler

then generates node-level nesC code from the datagraph. This approach of mixed

imperative-declarative programming is similar to ATaG, but Flask currently allows ap-

plication description only at the node-level. On a different direction of research, the
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Deployment Support Network WSN development toolkit [28] aims to aid the program-

mer by collecting data about the deployed sensor network in an over-the-air fashion.

In addition to the above, some graphical toolkits have also been proposed for WSN

application development. The authors of Viptos [19] allow developers to model and

simulate TinyOS applications in a graphical manner. A similar functionality is pro-

vided by GRATIS [40] where developers can use GME for easy modeling of TinyOS

applications. However, in both these tools, the developer still has to reason at the node

level, while Srijan is geared for enabling developers to think at a much higher level of

abstraction.

At a system-level of abstraction, one stream of research has focused on treating

the WSN as a database, and making it easy for developers to write and deploy data-

querying applications on sensor networks. The Task [15] toolkit makes designing and

deploying TinyDB query-based application easy, where users can query the sensor

data using SQL-like queries, and also provides a visualizer for monitoring the network

health and sensor readings. Semantic streams [100] presents each user with a 3D ren-

dering of the sensors in the testbed as well as all predicates that are queryable. The

work in [101] builds on it by providing a spreadsheet approach to programming and

managing data-querying applications in WSNs. In semantic middleware [12], appli-

cations are represented in a graphical interface as composable data sources and infer-

ence units which can be connected to retrieve required data by composition engines.

jWebDust [17] provides a multi-tier application environment, where different sensor

networks can be visualized as one to query the sensed data in a user-friendly manner.

While these toolkits help WSN developers by allowing them to reason at a high-level,

the developer can specify the application as a query-based system only.
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Another domain-specific system-level project is EnviroSuite [63], which is targeted

at tracking applications. In EnviroSuite, an application contains a list of objects, speci-

fied in a textual manner, which are abstractions of environment elements. Their toolkit

provides keywords and method libraries to define objects and hide the fact that the

execution of object methods may need distributed computing across network from

programmers. The target code is in nesC, and is deployed in the usual fashion. In the

field of environment monitoring, [5] presents a user friendly toolkit, where application

developers can specify their application in an Eclipse-based GUI, as well as properties

of the target network. The compiler-generated code must then be deployed manually

to the target nodes in the system. In contrast, Srijan is a more general-purpose tool,

which can be used to design and deploy a variety of data-driven WSN applications.

Perhaps the closest tool to our work is VisualRDK [98], which enables the develop-

ers of pervasive applications to easily develop applications for heterogeneous systems

using a graphical toolkit, where individual tasks can communicate using simple trig-

gers. Srijan provides a similar, easy-to-use graphical interface specifically geared to-

wards developing complex applications for sensor networks using data-driven macro-

programming.
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Chapter 3

Data-driven Macroprogramming

Macroprogramming of WSNs is an active area of research, with several programming

paradigms currently being investigated [6, 43, 76], allowing the developer to use a

variety of paradigms such as imperative and functional programming to specify their

applications. In our work, we focus on the data-driven macroprogramming paradigm,

where the developers breaks up the functionality of their application into of tasks that

interact with each other only using the data items that they produce and consume, and

do not share any state otherwise. We believe that this technique is especially useful in

specifying a wide range of sense-and-respond applications [79].

3.1 ATaG: Abstract Task Graph

The specific data-driven macroprogramming technique that we focus on in this work is

called the Abstract Task Graph (ATaG) [6, 8]. ATaG includes an extensible, high-level

programming model to specify the application behavior, and a corresponding node-

level run-time support, the data-driven ATaG runtime (DART) [7]. The compilation of
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Sampler Temperature[nodes-per-instance: 1@TemperatureSensor][periodic:10] Cluster-Head[region-per-instance:1/Floor][anydata]local logical-hops:1(Floor)Abstract TaskAbstract Data Abstract ChannelInstantiation RuleChannel Annotations Firing RuleSampler.java Cluster-Head.javaTemperature.javaAssociated Imperative Code
Figure 3.1: ATaG program for data-gathering

ATaG programs consists of mapping the high-level ATaG abstractions to the function-

ality provided by DART. We now provide some background on these topics, as they

represent the inputs and outputs of the transformation process, respectively.

ATaG provides a data driven programming model and a mixed imperative-declarative

program specification. A data driven model provides natural abstractions for specify-

ing reactive behaviors, while declarative specifications are used to express the place-

ment of processing locations and the patterns of interactions.

The declarative portion of an ATaG program – a task graph – consists of the fol-

lowing components (see Figure 3.1 for details).

• Abstract Data Items: The main currency of information in an ATaG program.

They represent the information in its various stages of processing inside a WSN.

• Abstract Tasks: These represent the processing performed on the abstract data

items in the system. Tasks do not share state with other tasks, and can commu-

nicate only by producing and consuming data items. Tasks are annotated with

instantiation rules, specifying where they can be located, as well as firing rules,

specifying whether a task is triggered periodically or due to the production of

certain data item(s).
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• Abstract Channels: These connect tasks to the data items consumed or pro-

duced by them, and are annotated with logical scopes [72], which express the

interest of a task in a data item. In an ATaG program, a data item can only be

produced by one abstract task, but can be consumed by many.

For each ATaG task, the developer also specifies the actions taken by the task using

imperative code such as C or Java. Note that this code is concerned mostly with the

processing of the data that the task has received, and generating the data items that

the task will produce. To interact with the underlying runtime system, each task must

implement a handleDataItemReceived() method for each type of data item

that it is supposed to process. The task can output its data by calling the putData()

method implemented by the underlying runtime system. Additionally, the developer

needs to specify the details of each data item using imperative code.

Figure 3.1 illustrates an example ATaG program specifying a data gathering ap-

plication [21] for building environment monitoring. Sensors within a cluster take pe-

riodic temperature readings, which are then collected by the corresponding cluster-

head. The Sampler task represents the sensing in this application, while the Cluster-

Head task takes care of the collection. The Temperature data item is connected to

both tasks using abstract channels. The Sampler is triggered every 10 seconds accord-

ing to the periodic firing rule. The any-data rule requires Cluster-Head to run

when a data item is ready to be consumed on any of its incoming channels. The no-

des-per-instance:q@Device instantiation rule requires the task to be instan-

tiated once every q nodes equipped with a specific device. According to @Temper-

atureSensor, the Sampler task in our example will be instantiated on every node

equipped with a temperature device. Since the programmer requires a single Cluster-

Head to be instantiated on every floor in the building, the partition-per-ins-

tance:1/Floor instantiation rule is used for this task. Its semantics is to derive
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a system partitioning based on the values of the node attribute provided (Floor). In

this case, the programmer requires only one task to be instantiated in each partition.

As discussed earlier, the channels in our example program are annotated to express

the interest of the producer and consumer tasks. The Sampler task generates data

items of type Temperature kept local to the node where they have been generated.

The Cluster-Head collects data not only from its own partition (floor), but also from

adjacent ones. The logical-hops:1(Floor) annotation specifies a number of

hops counted in terms of how many system partitions can be crossed, independent

of the physical connectivity. Since Temperature data items are to be used within one

partition (floor) from where they generated, they will be delivered to cluster-heads

running on the same floor as the task that produced them, as well as adjacent floors.

3.2 DART: Data-driven ATaG Runtime

The node-level code output by the ATaG compiler is designed to run atop a supporting

runtime hiding the underlying, platform-specific details. Figure 3.2 depicts the archi-

tecture of the Data-driven ATaG Runtime (DART) [7]. The functionality is divided

into a set of modules to facilitate customization to various deployments.

The ATaGManager stores the declarative portion of the user-specified ATaG pro-

gram that is relevant to the particular node. This information includes task annotations

such as firing rule and I/O dependencies, and the annotations of input and output chan-

nels associated with the data items that are produced or consumed by tasks on the

node. The DataPool is responsible for managing all instances of abstract data items

produced or consumed at the node. The NetworkStack module is in charge of deliv-

ering data across nodes. The routing layer in it provides data-delivery across logical

scopes [70, 69] by implementing a dedicated routing scheme. In particular, the inputs
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to this module include the data items and the scope specifications those are addressed

to. A scope identifies, in a logical manner, the nodes an item is addressed to by refer-

ring to the relevant node attributes. For instance, a scope may specify all the nodes run-

ning the Cluster-Head tasks deployed on the first Floor as intended recipients. Other

subsystems of the NetworkStack are in charge of communication with other nodes in

the network, and managing the physical layer protocols. Note that by itself, ATaG does

not deal with fault tolerance. However, the runtime system and compiler developers

are free to provide the user with an implementation that takes desired fault-tolerance

requirements and support them by techniques such as task migration.SENSORS ACTUATORS

TRANSCEIVERSNetworkStackRouting protocol,MAC protocol,physical layer
Task 1 Task niDataPoolhandleDataItemReceived() and putData(),concurrent access, reference counts ATaGManagerTask code, dependencies, annotationsat Node i datacontrol

Figure 3.2: DART: Data-driven ATaG run-time system.

3.3 Reference Applications

To evaluate our work on supporting data-driven macroprogramming of sensor network

applications, we consider two non-trivial real-world applications.
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Temperature SensorsHumidity Sensors
HVAC Actuators

Figure 3.3: Scenario for building environment management (HVAC) application.

3.3.1 Building Environment Management (HVAC)

The first application we discuss is a building environment management system [24],

whose aim of this application is to regulate the humidity and temperature in each room,

based on the current values of those environmental metrics, and achieve a desired

steady state. For this purpose, the temperature and humidity readings from all the

sensors in each room need to be collected and used to determine necessary actuation.

A sample scenario is shown in Figure 3.3 which shows a room in a building equpped

with temperature and humidity sensors, as well as HVAC actuators. Note that unlike

the application shown earlier in Figure 1.1, this application a) does not need to send
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Collector HVAC Control SignalTemperature
Conditions in the Room

SYSTEMENVIRONMENTHumidity
Figure 3.4: Data processing in HVAC application.Humidity SamplerHumidity Collector Actiondomain HVAC Controllerlocallocal domainTemperature Sampler Temperaturelocal domain[nodes-per-instance:1@temperatureSensor][periodic:10] [nodes-per-instance:1@humiditySensor][periodic:10] [nodes-per-instance:1@hvacActuator][anydata]Instantiation RuleFiring RuleAbstract Task Channel AnnotationsAbstract Data[partition-per-instance:1/room][anydata]

Figure 3.5: An ATaG program for building environment management.

data to a central server to handle, and b) is also responsible for controlling the humidity

each room, in addition to ambient temperature.

Figure 3.4 shows the detailes of how the data produced by the sensors is used to

determine the needed actuations. For each room, the temperature and humidity values

are used to compute the actions needed from the actuators.

28



Figure 3.5 shows how the HVAC application can be specified using ATaG’s data-

driven paradigm. The Temperature Sampler and Humidity Sampers tasks fire period-

ically and generate the Temperature and Humidity data items respectively, containing

their sensor readings. The @TemperatureSensor and @HumiditySensor con-

structs are used to distinguish nodes with different types of sensing devices, where

these tasks are placed. The Collector task, instantiated on exactly one node in each

room, collects these data items from its domain, viz. the room it is instantiated in,

to compute the desired Action for the HVAC Controller task, that actually operates

the heating, ventilation, and air conditioner (HVAC) devices in the building. As for

this, the programmer requires the task to be instantiated on nodes with HVAC devices

installed by means of the @hvacActuator construct.

3.3.2 Traffic Management

The HVAC application discussed above is an example of a real-world use of WSN.

However, the communication in it happens only between the sensor and actuator nodes

deployed in the same room. ATaG is also capable of describing significantly more

complex applications, involving interactions between nodes belonging to different sys-

tem partitions.

To showcase the complexity of the scenarios that can be addressed using data-

driven macroprogramming, we consider a highway traffic monitoring and control ap-

plication, a field where WSNs have gained increasing attention from the research com-

munity [48]. Various techniques exist to influence the vehicle movement and improve

traffic efficiency both in metropolitan areas and highways. In the latter case, two of

the most commonly used solutions are speed signaling [4] and ramp metering [53].

The former aims to control the behavior of traffic by suggesting appropriate speeds,
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Figure 3.6: Scenario for the traffic management application (one highway sector).

while the latter influences traffic by controlling access to the highway. In these fields,

different proposals exist to optimize goals such as pollution and fuel consumption [66].

Scenario: Our reference scenario is depicted in Figure 3.6. Usually, this kind of

system is divided into disjoint sectors [66], with each sector usually being controlled

depending on the current status of the same and neighboring sectors. In the highway

scenario of the figure, a sector is identified by a single ramp leading to the highway,

i.e., it spans the portion of highway from a ramp to the following. The system has five

main components: i) speed sensors installed on the lanes of the highway to measure

and report the speeds of vehicles, ii) presence sensors installed on the highway ramps

to report the presence of vehicles, iii) speed limit displays installed one per highway

sector to inform the drivers of the recommended speed limit, iv) ramp signals installed

one per highway ramp to allow or disallow cars onto the highway, and v) forwarding

nodes to enable wireless communication between the various nodes, installed on the

road side at regular intervals.
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Figure 3.7 illustrates, from a high-level perspective, the various stages of data pro-

cessing in the application. Data is first collected from the sensing devices, and a first

processing is performed to derive aggregate measures – the average speed of vehicles

in a highway sector or the average queue length on a ramp. This information is fed as

input to an algorithm determining the actions to achieve the system objectives, e.g., to

maximize the flow of vehicles on the highway. These actions are then communicated

to the ramp signals and to the speed limit displays. The specific algorithms employed

depend on the goals and metrics of interests. Therefore, a modular approach to the

development of this class of applications may be advisable.Ramp Signal CalculatorSpeed Limit Calculator
Ramp Signal Speed LimitAvg Queue Length(s)

HighwaySectori-1HighwaySectoriHighwaySectori+1
SYSTEMENVIRONMENTAvg Speed(s)

Figure 3.7: Data processing in traffic management.

ATaG Program:

In Figure 3.8 illustrates an ATaG implementation of the traffic management appli-

cation. All the application information is represented as ATaG data items. The actual

31



AvgQueueLength RampSignalCalculator RampSignal[partition-per-instance:1/HighwaySector][anydata] RampSignalDisplayer[nodes-per-instance:1@rampSignalActuator][anydata]AvgSpeed
SpeedLimitCalculator SpeedLimitdomain SpeedLimitDisplayer[nodes-per-instance:1@speedLimitActuator][anydata]locallogical-hops: 1 (HighwaySector)RampSampler VehiclePresencedomain

AvgQueueLengthCalculator localSpeedSampler RawSpeed AvgSpeedCalculatorlocal local
[nodes-per-instance:1@presenceSensor][periodic:10][nodes-per-instance:1@speedSensor][periodic:10] domainlocal [partition-per-instance:1/HighwaySector][anydata][partition-per-instance:1/HighwaySector][anydata]

[partition-per-instance:1/HighwaySector][anydata] logical-hops: 1 (HighwaySector)logical-hops: 1 (HighwaySector)logical-hops: 1 (HighwaySector) domain local
Figure 3.8: An ATaG program for highway traffic management.

algorithm determining the actuation part is encapsulated in two tasks: SpeedLimit-

Calculator and RampSignalCalculator, whose inputs are the data produced by tasks

deriving the average measures. Once the actuation is determined, it is given as input

to the tasks operating displays and ramp signals.

This application showcases the various aspects of application specification that

data-driven macroprogamming using ATaG can aid the developer with, namely:

• Instantiating Multiple Tasks in a Scope: The SpeedSampler task is in charge

of gathering the raw data from a speed sensor on a ramp leading to the highway.

Therefore, it must run on a node equipped with the corresponding sensing de-

vice. To express this requirement, the nodes-per-instance:1@speed-

Sensor construct is used, where @speedSensor is a placeholder for a mem-

bership function fspeedSensor(i) ::= hasSpeedSensor(i). Similar constructs are

used for RampSampler, SpeedLimitDisplayer, and RampSignalDisplayer.

• Instantiating a Single Task in a Scope: The AvgSpeedCalculator task takes

as input the raw data coming from the speed sensors in a sector, and derives
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the average speed of vehicles in the same sector. Therefore, we need such a

task to be instantiated once per sector. To express this, the partition-per-

instance:1/HighwaySector construct is used. Again, HighwaySector

is a placeholder for a membership function that identifies all the nodes in a

specific sector. The compiler generates all possible values of the correspond-

ing node attribute —that describes the sector where a node is placed in the

highway— and requires the task to be instantiated on one node in each sector

only.

• Inter-Task Communication: To bind tasks running in the same HighwaySector,

the domain annotation can still be used. However, this time it binds to the sys-

tem partitioning obtained through the partition-per-instance instanti-

ation rule. Differently from area-per-instance, this rule determines the

different partitions at a logical level, by considering the node attributes instead

of the geographical location.

More generally, the construct logical- hops:1(HighwaySector) con-

necting, e.g., the AvgSpeedCalculator to both the SpeedLimitCalculator and the

RampSignalCalculator is used to push a data item to a different highway sector.

It represents a number of hops counted not on the physical network links, but in

terms of how many system partitions (derived from the attribute given in paren-

thesis) can be crossed. Given the partitioning induced by the HighwaySector

attribute, requiring one logical hop on that attribute means, for an AvgSpeedCal-

culator task, to push a data item to the same, immediately preceding and fol-

lowing highway sectors. Notice how the semantics of specifying zero hops is

to not cross any partition, i.e., to push to the same partition where the data item
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originated. In this sense, the domain construct actually constitutes a particular

case of the more general logical-hops construct.

3.3.3 Wide applicability of data-driven macroprogramming

The applications just described encapsulates behaviors and interactions seen in a large

class of networked embedded applications [80].

These characteristics are grounded in the use of heterogeneous nodes, and in the

presence of multiple, concurrent activities collaborating to achieve the application

goals. Developers of these applications must therefore address requirements such as:

• Multi-stage data processing: as the raw sensor data is not useful by itself, the

system needs to compute the average speed and queue length used to compute

the ramp signals and speed limits. This represents a common need in sensor

networks when actuation is involved [3].

• Multiple sub-goals: to achieve the high-level application objective, e.g., maxi-

mize the vehicle throughput on the highway, the system is required to run mul-

tiple parallel activities. In our case, regulating the speed of vehicles on the high-

way and controlling the access to it. This is often required when the system is

designed to react to sensed data. For instance, in a different scenario like build-

ing monitoring and control, the system is normally required to perform at least

three activities [24]: i) indoor environmental monitoring, ii) structural monitor-

ing, and iii) response to extreme events such as fire.

• Localized interactions: each of the aforementioned sub-goals usually involves

only a specific part of the system. For instance, controlling the speed in a specific

highway sector relates to the sensors deployed on the lanes of three neighboring
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sectors only. Keeping the processing close to where data is sensed has been long

recognized as an effective approach to save energy and achieve more efficient

implementations [33, 3].

• Heterogeneity handling: various types of nodes are to be employed, with dif-

ferent characteristics and various devices attached. In our scenario, presence and

speed sensors are employed along with nodes controlling the speed limit displays

and ramp signals. Similarly, in building control and monitoring different kind of

sensors are used as well, e.g., temperature, humidity, and smoke sensors [25],

We chose to focus on data-driven macroprogramming using ATaG for our work

partly because most of the existing WSN programming frameworks cannot meet the

above requirement easily. In first place, they do not provide programming constructs to

enable a clear modularization of different activities or consecutive stages of process-

ing. As a result, breaking the high-level application goal into smaller collaborating

activities becomes hard to achieve. More importantly, they do not provide support for

heterogeneity. It is therefore difficult to identify the portion of the system concerned

with a specific activity. For instance, developers cannot map a specific processing to

the nodes equipped with a given sensing device.
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Chapter 4

Compilation Framework for Data-driven

Macroprogramming

4.1 Compilation Process

In this section, we provide a formal definition of the process of compiling data-driven

macroprograms to node-level code using the data-gathering application given in Fig-

ure 3.1 as example.S C-HTS C-H
Floor 3Floor 2Floor 1ChannelCompositionTask Instantiation

Figure 4.1: An example illustrating the compilation process of our sample program.
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4.1.1 Input

The input to the compilation process consists of the following three components.

Abstract Task Graph (Declarative Part): Formally, an abstract task graph A(AT ,

AD, AC) consists of a set AT of abstract tasks and a set AD of abstract data items.

The set of abstract channels AC can be divided into two subsets – the set of output

channels AOC ⊆ AT × AD and a set of input channels AIC ⊆ AD × AT . In our

example, the Sampler is AT1 and Cluster-Head is AT2, while Temperature is AD1.

AOC is {AT1 → AD1} and AIC is {AD1 → AT2}.

Imperative Code for Each Task: For each task and data item, the developer provides

imperative code, which describes the actions taken at the host node when a task fires,

and the internal details of the data item.

Network Description: For every node in the target network N , the compiler is also

given the following information:

• j: its unique ID.

• Sj: the list of sensors attached to j.

• Aj: the list of actuators attached to j.

• Rj: a set of (RegionLabel, RegionID) attribute-value pairs to denote its mem-

bership in the regions of the network (e.g., {(Floor, 5), (Room, 2)}).

Runtime Library Files: These files contain the code for the basic modules of the

runtime system that are not changed during compilation, including routing protocols

etc.
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4.1.2 Output

The goal of the compilation process is to generate a distributed application for the

target network description commiserate with what the developer specified in the ATaG

program. The output consists of the following parts:

Task Mapping: The compiler must decide on the mapping to allocate the instantiated

copies of the abstract tasks in AT to the nodes in N so as to satisfy all placement

constraints specified by the developer.

Customized Runtime Modules: The compiler must customize the DataPool of each

node to contain a list of the data items produced or consumed by the tasks hosted by it.

It also needs to configure the ATaGManager module with a list of composed channel

annotations, so when a data item is produced, the runtime can compute the constraints

imposed on the nodes which are hosting the recipient tasks for it.

Cost Estimates: The compiler also provides an estimate of the running cost of the

application on the target deployment to provide feedback to the application developer.

Note that the actual nature of the cost estimates returned can vary depending on the

developer’s needs. The costs returned may simply represent a measure of the com-

munication overhead involved, e.g., in terms of messages exchanged per minute on a

system-wide scale. Alternatively, finer-grained information may be computed, such as

the expected per-node lifetime.

4.1.3 Process Overview

The abstract nature of the task graph is precisely what provides the application devel-

oper the desired high-level of abstraction needed to easily develop large and complex

sense-and-respond applications for networked sensing systems. However, converting
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this high level specification to a distributed application while preserving program se-

mantics can be quite challenging. In our approach to the data-driven macroprogram

compilation problem, we envisage the following major steps.

Composition of Abstract Channels: Owing to ATaG’s purely data-driven program-

ming model, the developer only specifies relations between tasks and the data items

they are producing (via AOC) and consuming (via AIC). While this provides a clean

model to the application developer, traditional task allocation techniques work on task

graphs with direct dependency links between tasks. To address the problem of gener-

ating such task graphs, we convert each path ATi → ADk → ATj in the abstract task

graph to an edge ATi → ATj .

Instantiating Abstract Tasks: The annotations of the abstract tasks in AT allow the

developer to design one macroprogram for a variety of deployments. For example, the

developer does not need to worry about the number of floors in the building, because

he can use the region-per-instance:1/Floor instantiation rule. After the

channels are composed, the compiler has the responsibility of expand this compact

representation of the tasks into a full-fledged task graph that truly represents the data-

processing happening in the system.

We introduce the instantiated task graph (ITaG) as the internal representation

used for this stage of the compilation process. It consists of multiple copies of each

abstract task specified in the ATaG program, each ready to be assigned to individual

nodes. The (directed) edges of the ITaG connect each task to the tasks that depend on

it, i.e., the tasks that a) copies of abstract tasks that consume the data item produced

by it, and b) belong to the logical scope specified by the constraints in the connecting

composed channel. Formally, the ITaG I(IT, IC) is a graph whose vertices are in a set

IT of instantiated tasks and whose edges are from the set IC of instantiated channels.

For each task ATi in the abstract task graph from which I is instantiated, there are
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f(ATi, N) elements in IT , where f maps the abstract task to the number of times it

is instantiated in N . IC ⊆ IT × IT connects the instantiated version of the tasks.

The ITaG I can also be represented as a graph G(V,E), where V = IT and E = IC.

Additionally, each ITj in the ITaG has a label indicating the subset of nodes in N it

is to be deployed on. This overlay of communicating tasks over the target deployment

allows us to use modified versions of classical techniques meant for analyzing task

graphs.

For example, for the appliation in Figure 4.1, since there are seven nodes with

attached temperature sensors, f(AT1, N) = 7, following the 1@Temperature-

Sensor instantiation rule of the Sampler task. Similarly, f(AT2, N) = 3, since

the Cluster-Head task is to be instantiated once on each of the three floors. The fig-

ure shows one allocation of the tasks in IT , with arrows representing the instantiated

channels in IC (we have showed channels leading to only one instance of AT2 for

clarity). Note that the although the ITaG notation captures the information stored in

the abstract task graph (including the instantiation rules of the tasks and the scopes of

the connecting channels) it does not capture the firing rules associated with each task.

The compiler’s task involves incorporating the firing rule information while making

decisions about allocating the tasks on the nodes.

Task Mapping: This task graph with composed channels is then instantiated on the

given target network. Figure 4.1 illustrates an example of a target network. The nodes

are on three different floors, and those marked with a thermometer have temperature

sensors attached to them. In this stage, the compiler computes the mapping M : IT →
N , while satisfying the placement constraints on the tasks.

Customization of Runtime Modules: Based on the final mapping of tasks to nodes,

and the composed channels, the Datapool and ATaGManager modules are configured

for each node to handle the tasks and data items associated with it.
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4.1.4 Challenges

The various stages described above each pose their own set of challenges. Since the

channels in ATaG have logical scopes associated with them, the process of composing

channels results in the (composed abstract channel) CACijk being annotated with the

union of three constraints. The first is that the node should have task ATj assigned

to it. The second(third) constraint is obtained by combining the instantiation rule of

ATi(ATj) with the annotation on the abstract channel connecting it to ADk. For in-

stance, in our example, after composition, AC121 is {(Cluster-Head is instantiated)

&& (Floor = Floor of Sampler or ±1)}. Depending on the complexity of scopes used

in the channels, the resultant constraint can be further simplified by set operations to

get a more compact constraint for the composed channel.

During the creation of the ITaG, maintaining the connections between the instan-

tiated tasks in accordance with the placement rules on the tasks and the scope anno-

tations on the channels is of utmost importance, and can be time consuming if not

done efficiently. Finally, an added complexity in the compilation process is brought

by the large space of optimizations possible in the process to meet the user-specified

performance goals (e.g. energy efficiency). Note that although tasks are assigned fixed

locations at the end of the compilation process, task migration can happen later if the

the underlying system supports it. Even in such situations, a good initial task place-

ment by a compiler using global knowledge can go a long way in creating efficient

systems.

In the following section, we describe how the components of the compilation

framework work to produce the outputs from the inputs, using the ITaG notation inter-

nally, and the details of our implementation of the ATaG compiler.
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COMPILER

Imperative PartParserImperative Code Generator ITaG Creator[creates instances of tasks, to be allocated later]Network Description
System Linker[customizes runtime modules and creates output files] Cost EsimatesAssigned Tasks and Customized Runtime Modules

Task Firing Model[based on the imperative code]Task Allocation Module
Declarative PartCommonTemplates Channel Composer

From Libraries Macroprogram From Developer From System Specification

For Deployment on Nodes For Feedback to Developer
Energy ModelEstimatorFault ModelComm. Model

Figure 4.2: The ATaG compilation framework.

4.2 Compilation Framework

ATaG is designed to enable the addition of domain-specific constructs, and customize

the abstractions offered depending on the application requirements. This requires a

flexible and extensible approach to the compilation problem. Ideally, the system de-

signer should be given the ability to add new language constructs by implementing

the required mappings without modifying any of the pre-existing compilation mecha-

nisms. For instance, creating a new instantiation rule should not require modifications

to the algorithms used to map tasks to nodes using an existing rule.

To address this issue, we first identified the different steps involved in the compila-

tion of ATaG programs by factoring out orthogonal concerns and mechanisms. Next,
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considering the decomposition obtained, we designed a modular compilation frame-

work, upon which we based the construction of our ATaG compiler. In this section, we

describe the different modules of our framework (illustrated in Figure 4.2), based on

the problem definition of Section 4.1. We encapsulated the compilation stages identi-

fied by us in separated modules, and defined generic interfaces between them so as to

minimize inter-module dependencies. Our current prototype implementation has 2677

lines of non-commented Java code. The modules are as follows:

Parser: The parser converts text files containing the declarative part of the program

to an internal representation that is then used by the other modules. This process

also involves a syntax check where errors such as duplicate task/data names and the

existence of more than one producer task for one data item are identified and reported

to the programmer.

In our current implementation, the declarative part of the ATaG program is spec-

ified using XML. This will allow an easy integration of tools for the automated gen-

eration of XML specifications from graphical representations. Our parser module is

a simple XML parser that performs the aforementioned checks, assigns unique IDs to

tasks and data items, and populates an internal data structure with the information.

Imperative Code Generator: Based on the parser output, the imperative code genera-

tor creates a set of files containing the basic declaration of the variables associated with

each task and data items. The imperative part of the code provided by the programmer

can then be plugged into these templates.

In our prototype implementation, the imperative part of an ATaG program is ex-

pressed using Java. As such, our current code generator creates Java files with unique

numerical constants for each abstract task and data item corresponding to their id.

Then, it creates a separate class for each abstract task with basic functionality filled in

(e.g., a thread instance with a loop for periodic tasks).
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Channel Composer: Based on the declarative part of the ATaG program returned by

the parser, this module performs the composition of channels to and from each data

item to form edges of the ITaG, as described in Section 4.1.

Depending on the actual channel annotations supported, our prototype implemen-

tation may perform a range of operations, from a simple concatenation to complex

operations that also consider the instantiation rules of the producer/consumer tasks.

ITaG Creator: Based on the network description and the output of the channel trans-

lator, the ITaG creator first computes the number of distinct target regions for each

task, i.e., the set of candidate nodes for hosting a given task. For instance, tasks instan-

tiated with nodes-per

-instance:x as instantiation rule have the entire system as target region. For tasks

assigned by partition-per-instance:x/PLabel, each set of nodes with the

same value for PLabel is a target region (e.g., each node in Floor 5). The ITaG cre-

ator then instantiates the required number of copies of each abstract task, attaching

metadata to each instantiated task signifying its target region. The ITaG creator also

computes the edges in this new graph, based on the composed channels. Note that, at

this stage, tasks are instantiated but not yet assigned to nodes. That is done by the task

allocator module, discussed next.

Our implementation of this module performs the above operations using the net-

work description read from a text file containing basic information on the nodes, e.g.,

their identifier, and set of attributes describing their characteristics, such as sensing

devices installed.

Task Allocation Module: As such, the allocation module is one of the most important

parts of the compilation process, since it is responsible for computing a mapping from

the set of instantiated tasks to the set of nodes. Note the task instantiation rules can be

characterized as either fixed location (e.g., nodes-per-instance:1) or variable
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location (e.g., nodes-per-instance:3), depending on whether or not there is

a unique way of instantiating the copies of a task given the network description. In

this respect, an extremely large problem space exists depending on the annotations

used, metrics to be optimized, and properties of the network. To perform its job, the

allocation module relies on two further modules—the estimator and the task firing

model–described next.

In our implementation, this module performs task allocation in two passes. In the

first pass, it assigns all the tasks with fixed locations. In the second pass, it assigns vari-

able location tasks. For the latter, one of our initial implementations used a random

task-assignment policy, with each node in the target region having an equal probability

of hosting the instances of the task. However, due to the generality of our frame-

work, more sophisticated mechanisms can be plugged in to achieve performance goals

specified by the application designer. We have also developed several task-mapping

algorithms for improved performance [82].

Estimator: Taking as inputs the network description and the task placement returned

by the allocation module, the estimator computes the cost metric returned at the end

of the compilation process. Our framework gives great flexibility in instantiating this

module, as its interface is designed to be generic w.r.t. the nature of information re-

quired. This allows application developers to explore the trade-off between the quality

of the estimate obtained, and the time required to obtain it. For instance, during the

early design stages it is usually helpful to have a quick estimate of the communication

costs, so that many alternative solutions can be explored. In this case, a simple but

fast estimation algorithm can be employed that does not account for message losses.

Conversely, when the application developer is to fine-tune the application, an actual

simulation of the deployed application can be run within the estimator.
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In our prototype system, we implemented both ends of the spectrum. Specifically,

we realized a naive estimator returning communication costs as if all the tasks pro-

duced data when fired and the underlying routing mechanisms were able to identify the

optimal message routes. On the other hand, we also implemented a wrapper around

SWANS/Jist [9]: a simulator able to run unmodified Java code on top of a simulated

network. This plug-and-play capability highlights the power of our framework.

Task Firing Model: It would appear that if we know the exact paths taken by the data

items, we can precisely estimate the cost of running a given task allocation. However,

not all instantiated tasks produce data when they fire. For instance, although a Temper-

ature Sampler task may produce a Temperature data item whenever it fires, an Alarm

task may or may not produce an alarm depending on whether or not the temperature of

the region is high enough. The task firing model’s function is to assign probabilities to

the firing of various tasks in the program. Although this module is not mandatory for

a working compiler, various approaches can be used to obtain the needed information

- ranging from the developer providing profiling data obtained from previous runs of

the system, to static code analysis techniques [22, 10].

System Linker: At the end of the whole process, the linker module combines the

information generated by the various modules of the compiler into the code to be

deployed on the nodes of the target system. More specifically, it configures the ATaG-

Manager and DataPool modules in the node-level run-time depending on the task and

data items handled at each node, and merges the imperative code provided by the ap-

plication developer with the templates generated by the imperative code generator.

In our implementation, the output of this module is a set of Java packages for each

node. Note that these files are not binaries. They still need to be compiled in the

classical sense, but that can be done by any node-level compiler designed for the target

platform.
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4.3 Evaluating the Compilation Framework

To demonstrate the effectiveness of our prototype compiler, we consider the two real

world applications discussed in Section 3.3, and report on the functionality of the code

generated, as well as the performance of the compilation process.

Code Functionality: We hand-coded the logic for both applications described in Sec-

tion 3.3 to perform simulation studies on the underlying routing mechanisms [71]. The

hand-written code also allowed us to verify the functionality of our compiler, by com-

paring the automatically generated code with the one we used in the aforementioned

studies. Indeed, by comparing the simulation logs obtained using the SWANS/Jist [9]

simulator, we confirmed that the compiler-generated code is functionally equivalent to

the hand-written version. The specific code samples can be found at [78].

Settings for Performance Studies: We record the time and memory taken to com-

pile the above ATaG programs. Since our task firing model assumes that all tasks

produce data when fired, the specific imperative code of the tasks does not influence

the complexity of compilation. Rather, the compiler’s performance is mainly dictated

by the declarative part of an ATaG program and the characteristics of the deployment

environment. More specifically, we recognized the following factors are pivotal in

determining the time/memory taken to compile:

1. the number of abstract tasks, data items, and channels,

2. the nature of instantiation rules and channel interests, and

3. the number of nodes specified in the network description.

The complexity of the compilation task comes from different sources. The ef-

fort in composing channels is dependent on the actual channel annotations used, as

well as the number of channels themselves. The ITaG creation stage becomes more
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Building Traffic
Abstract Tasks 4 8

nodes-per-instance:x@PLabel 3 4
partition-per-instance:x/PLabel 1 4

Abstract Data Items 3 6
Abstract Channels 6 14

local 3 6
domain 3 4
logical-hops:1(PLabel) 0 4

Table 4.1: Complexity of the task graphs of sample applications.

complex as the complexity of the network grows. Note that this includes the num-

ber of logical regions the network can be divided into, as well as the variation in

the attributes of the nodes. The size of the problem addressed by the task alloca-

tion module depends both on the network size as well as the constraints used in

the program. For instance, placing a task whose instantiation rule is in the form

partition-per-instance:x/PLabel requires more processing than placing

a task with nodes-per-instance:1. All this in turn affects the performance of

the system linker as it customizes the run-time on each node. Figure 4.1 reports the

values of these factors seen in our sample applications.

In our tests, the compilation framework has been instantiated with the prototype

implementations we described in Sect. 4.2 for each module. In particular, we have

chosen to employ the näive estimator and an always-firing task firing model. For

each test we performed, we repeated the compilation process 500 times to account for

fluctuations due to concurrent processes. The experiments were on a Pentium IV HT

3.2 Ghz running Gentoo Linux 2.16.15, using the DJProf [26] profiler.

Performance Results: Figure 4.3 illustrates the performance of our compiler as a

function of the number of target nodes. As expected, the time taken to compile an

ATaG program grows quadratically as the number of nodes increases. This is due to
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Figure 4.3: Compiler performance.

the naive estimator we used, that computes the all-to-all shortest path with an algorithm

whose time complexity is quadratic w.r.t. the number of vertices. However, fairly large

instances can be compiled in reasonable time. For instance, slightly more than ten
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seconds are needed to compile the traffic application for a target system with > 250

nodes.

In addition, the memory consumed during the compilation process exhibits a lin-

ear increase with respect to the number of nodes in the deployed system. The source

of this behavior is in the data structures we employed in the ITaG creator and alloca-

tion modules, that allocate a fixed amount of data for each target node. The memory

consumed is always well within the limits of standard desktop PCs (< 100 MB).
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Chapter 5

Energy-efficient Task-mapping for Macroprogram

Compilation

5.1 Introduction

As detailed in the previous chapter, mapping of the tasks of the intantiated task graph

onto the nodes of the underlying system (details of which are known at compile time)

is an important part of the compilation of the macroprogram, and optimizations can be

performed at this stage to make the resulting WSN more efficient.

We note that task mapping in this context differs from the traditional task-mapping

problems seen in parallel and distributed computing in several aspects:

1. The task graph here is constrained in the sense that some tasks have a one-to-

one correspondence with the nodes in a system, while the placement constraint

of others may not be as strict. For example, a temperature sampling task can be

placed only on nodes with temperature sensors attached to them, while the task

that computes the average of temperature readings in a room has much relaxed

mapping constraints.
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2. Often in the classical task-mapping scenarios, tasks are assumed to be indepen-

dent of each other and do not communicate. In cases where they do, a point-

to-point link is usually assumed between all nodes. In the case where routing is

involved, the intermediate nodes only introduce delays, but are not affected oth-

erwise. On the other hand, the WSN applications studied by us consist entirely

of communicating tasks. This communication of data between tasks on differ-

ent nodes in a WSN affects other nodes in the system as well, since the nodes

involved in routing also spend energy in the process.

3. In cases where routing is involved, classical task-mapping algorithms either have

full control over routing, or assume a specific routing. Since our goal is for the

macroprogramming framework to be modular, our techniques do not assume a

certain routing protocol. Instead, our modeling framework allows an interface

for developer to specify certain facts about the routing protocol being used.

4. While the most common constraint in traditional parallel and distributed systems

is latency, i.e., the time taken for the tasks to complete execution, most sensor

networking applications are designed to sense-and-respond for long periods of

time. On the other hand, metrics such as system life time and energy spent at

the node and system level are much more important in WSNs. We focus on two

measures of energy-efficiency in this paper.

Additionally, although the initial information (positions, energy levels) about the

target nodes is known, during the lifetime of the WSN, changing conditions, either

external (variations in the environment) or internal (nodes running out of energy) may

change the circumstances. Our algorithms do not address these unpredictable situa-

tions, and instead aim to provide a “good” initial mapping of tasks. We assume that
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during the lifetime of the system, remapping of tasks will occur to face these circum-

stances, for example, a distributed task-remapping algorithm can be triggered when the

energy at any node goes below a certain fraction of its initial energy level. Our work

attempts to utilize the global knowledge available at compile-time to obtain efficient

results.

5.2 Problem Formulation

5.2.1 Motivation

As an example of data-driven macroprogramming representation, consider the follow-

ing (simple) application – A room is instrumented with six wireless nodes, with three

nodes equipped with temperature sensors, and two nodes connected to actuators for

controlling the temperature of the room. We need to periodically determine the av-

erage temperature in the room, compare it with a threshold, and produce the corre-

sponding actuation. One way of designing such an application at a high-level using a

data-driven approach is shown in the top part of Figure 5.1 (Note that the task graph

for complex applications can be an arbitrary directed acyclic graphs). Tasks T1, T2 and

T3 are temperature sampling tasks, which fire at a rates of f1, f2, f3 and generate am-

bient temperature readings of size s14, s24, s34. Task T4 calculates the average of these

readings and feeds it to T5, which determines the action to be taken. Tasks T6 and T7

act upon the data generated by T5, and control the actuators. The system for which this

application is being designed is shown in the lower part of the same figure. The nodes

equipped with temperature sensors are marked with a T, while the ones equipped with

actuators are marked with an A. The mapping of tasks T1 through T7 onto the nodes

of the target network is an instance of the problem faced while compiling data-driven
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Figure 5.1: Temperature management - Task graph and target network description.

macroprograms for WSNs. The placement of the sensing tasks (T1, T2, T3) and the ac-

tuating tasks(T6 and T7) are pre-determined to the nodes with the relevant capabilities.

This fact is shown using curved broken lines in the figure. However, tasks T4 and T5

can be placed on any of the nodes in the floor, thus allowing for optimizations in this

process.

Our aim is to capture the following aspects of the problem in a mathematical for-

mulation:

• The data flow between tasks

• The different firing rates of the tasks

• The placement constraints of tasks onto system nodes

• The heterogeneity between the system nodes, both in terms of their initial energy

capacities, as well as their ability to host certain tasks

• The heterogeneity between the various network links in the target system, in

terms of energy spent per unit of data transmitted
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• The energy spent at the nodes during sensing, computation, and communication.

5.2.2 Application and System Model

A Network Description N represents the target system of physical nodes where the

WSN application is to be deployed. Each node k (k = 1, . . . , n) has the following

properties:

• its initial energy reserve e0
k. We assume that the system operates in rounds, and

denote the energy remaining at node k after t rounds by et
k. A round is defined

as the least time-period after which the system behavior repeats itself.

A Data-driven Task i represents the sensing, processing or actuation activity in a

WSN, with the following properties:

• its firing rate fi, denoting the number of times it is invoked in one round. For

tasks that are not necessarily invoked in a regular manner, developers can deter-

mine the firing rates using probabilistic estimates.

A Data-driven Task Graph D = (DT, DE) is a directed acyclic graph (DAG) con-

sisting of the following:

• A set DT = {1, . . . , i, . . . ,m} of data-driven tasks.

• A set DE ⊆ DT ×DT of edges. Each edge (i, j) is labeled with the size sij of

the data that task i produces for task j upon each invocation.

The Task Execution Energy Matrix T is an m × n matrix, where Tik denotes the

energy spent by node k per invocation of task i, if i is mapped onto node k. T can also

be used to specify placement constraints as in the figure above, by setting the value of

Tik to ∞ in cases where task i cannot be instantiated on node k.
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The Routing Energy Cost MatrixR for N is a n×n×n matrix, withRβγk denoting

the energy consumed per unit of data at node k while routing messages from node β

to γ. Since the task mapping algorithms do not control the routing of data between

nodes, R provides an estimate of the energy spent in routing.

The Task Mapping is a function M : DT → N , designating task i to be placed on

node M(i).

5.2.3 Energy Costs

In a sensor network, the cost that developers are largely concerned with is the energy

spent by the nodes as the system operates. We therefore use the terms cost to mean

the energy spent at a node throughout this chapter, unless otherwise stated. Using the

model defined above, we compute the following costs1.

Computation Cost: At each node k ∈ N , the computation cost in each round is given

by

Ck
comp =

∑

i:M(i)=k

fi · Tik (5.1)

Communication Cost: At each node k ∈ N , the energy spent in communicating

messages in each round is given by

Ck
comm =

∑

(i,j)∈DE

fi · sij · RM(i)M(j)k (5.2)

Using these node-level costs, complex system-level metrics can be represented, as

discussed below.

1Note that the cost of sensing is included in the Tik of the sensing tasks.
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5.2.4 Performance Metrics

In this chapter, we illustrate the use of above modeling framework to optimize two

performance metrics. The first is energy balance, which we consider to be achieved

when the maximum fraction of energy spent by any node in the system is minimized.

In other words,

OPT1 = min
all Mappings M

max
k∈N

1

ek
o

· (Ck
comp + Ck

comm) (5.3)

For systems designed using data-driven macroprogramming, we can assume that

the system undergoes a reconfiguration, resulting in re-computation of the task map-

ping, and migration of tasks, once the current energy et
k of any node k goes below a

fraction α(0 < α < 1) of its initial energy e0
k. The time when this happens is called the

Time to Reconfiguration (TTR) for the task mapping on the sensor network. Since

we assume that the system behavior repeats itself in each round, OPT1 also maximizes

the TTR.

The second performance goal we model using our framework is the more classical

total energy spent in the entire system. Although we believe that energy balance is a

better metric to measure the quality of task placement, we use the goal of minimizing

the total energy spent in the system to illustrate the modeling power of our framework.

In other words,

OPT2 = min
all Mappings M

∑

k∈N

(Ck
comp + Ck

comm) (5.4)

For each of the two metrics, a feasible solution is possible only when all nodes

have non-zero energy left at the end of one round. If there are no mappings possible

for which this holds, the task-mapping algorithms should report failure. In addition to

the above, our framework can be used to model other application scenarios also, e.g.
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when multiple paths between two nodes are possible, or when the nodes are free to

behave differently in each round.

5.2.5 Evaluation Criteria

One area where task graphs describing sensor network applications are different from

those traditionally seen in parallel and distributed computing is their use for sensing the

environment they are placed in, and reacting to it. This leads to certain commonly ob-

served relationships between the data-rates on the edges of the task graphs. Therefore,

while evaluating the algorithms for task mapping the input graph has to be carefully

chosen. The worst-case analysis technique of testing algorithms against randomly gen-

erated task graphs with arbitrarily chosen inter-task data-rates may identify certain task

mapping techniques as inferior, while these techniques may yield very good results in

real-world WSN applications. Consequently, it is important that the task graphs used

to evaluate these techniques are drawn from actual WSN applications.

5.3 Mathematical Formulations for Task Mapping on

WSNs

5.3.1 Mixed Integer Programming Formulation for OPT1

To formulate the problem as a mixed integer programming (MIP) problem, we repre-

sent task mapping M by an assignment matrix X , where xik is 1 if task i is assigned

to node k, and 0 otherwise.

The problem can then be defined as:

Inputs:
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• D = (DT, DE): Data-driven Task Graph

• fi: Firing rate for task i

• sij: Size of data transferred from task i to j on each invocation of i

• N : Network description

• T : Task execution energy matrix

• R: Routing energy cost matrix

Outputs:

• X: Assignment Matrix. xik is binary.

Optimization Goal:

minimize c

Constraints:
n∑

k=1

xik = 1 for i = 1, 2, . . . , m (5.5)

1

e0
k

(
m∑

i=1

fi · Tik · xik +
∑

(i,j)∈DE

n∑

β=1

n∑
γ=1

fi · sij · xiβ · xjγ · Rβγk) ≤ c

for k = 1, 2, . . . , n (5.6)

xik ∈ {0, 1} for (i, k) = (1, 1), . . . , (m,n) (5.7)

0 ≤ c ≤ 1 (5.8)

The summation terms in (5.6) denote Ck
comp and Ck

comm respectively. The final con-

straint ensures that the MIP fails if no feasible solution exists. Note that the above is
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an MIP since c is real whereas xik are binary integers. Also, it is not a linear program

since product terms xiβ · xjγ appear in the constraints.

The above problem can be converted to a linear MIP by replacing each xiβ · xjγ

term with a binary variable yiβjγ , and adding the following constraints:

yiβjγ − xiβ ≤ 0 (5.9)

yiβjγ − xjγ ≤ 0 (5.10)

xiβ + xjγ − yiβjγ ≤ 1 (5.11)

This linearization techniques is derived from [74]. Intuitively, constraint (5.9) de-

notes that if edge (i, j) is mapped to path (β → γ), then task i is mapped to node β.

Similarly, (5.10) denotes the constraint that if (i, j) is mapped to (β → γ), then task j

is mapped to node γ. Finally, (5.11) denotes the condition that if task i is mapped to

node β, and task j is mapped to node γ, then (i, j) is mapped to (β → γ).

5.3.2 MIP Formulation for OPT2

Using our formulation, the objective of solving the problem to minimize the total

energy spent by the system can be formulated as follows:

Inputs:

• D = (DT, DE): Data-driven Task Graph

• fi: Firing rate for task i

• sij: Size of data transferred from task i to j on each invocation of i

• N : Network description
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• T : Task execution energy matrix

• R: Routing energy cost matrix

Outputs:

• X: Assignment Matrix. xik is binary.

Optimization Goal:

minimize
n∑

k=1

(
m∑

i=1

fi · Tik · xik +
∑

(i,j)∈DE

n∑

β=1

n∑
γ=1

fi · sij · xiβ · xjγ · Rβγk)

Constraints:
n∑

k=1

xik = 1 for i = 1, . . . ,m (5.12)

m∑
i=1

fi · Tik · xik +
∑

(i,j)∈DE

n∑

β=1

n∑
γ=1

fi · sij · xiβ · xjγ · Rβγk ≤ ek
0

for k = 1, . . . , n (5.13)

xik ∈ {0, 1} for (i, k) = (1, 1), . . . , (m,n) (5.14)

The above also can be converted to a MIP with linear constraints using the tech-

niques discussed above.

61



5.4 Heuristic for Task Mapping

5.4.1 Greedy Algorithms for Task Mapping

Although the MIP formulation leads to optimal results, solving an MIP can be quite

time consuming in practice. Our greedy heuristic for the goal of minimizing the maxi-

mum fraction of energy spent at a node (OPT1) is detailed in Algorithm 5.2. The main

intuition is that the algorithm sorts the edges in the task graph in non-increasing order

of the traffic going on them, and then tries to map the still unmapped endpoints of each

edge (i, j) so as to achieve the minimum increase in the objective function.

Input: D(= DT, DE), N, T [m][n],R[n][n][n], f [m], s[m][m], eo[n]
Output: M [m]: Task Assignment

1: Initialize M [i] = −1 for i = {1, . . . , m}
2: Sort (i, j) ∈ DE in non-increasing order of f [i] · s[i][j]
3: for all (sorted) (i, j) in DE do
4: minmaxCost = ∞; minPath = (−1,−1) // Initialize minmaxCost and

minPath for this iteration
5: for all (α, β) such that (i, j) can be assigned to them do
6: M [i] = α, M [j] = β // Temporarily assign (i, j) to (α → β)
7: maxCost = maxCost(D, N, T ,R, f, s, e0,M)
8: if maxCost < minmaxCost then
9: minmaxCost = maxCost; minPath = (α, β) // Update minmaxCost

and minPath
10: end if
11: end for
12: if minmaxCost > 1 then
13: declare failure. stop. // Checking for feasibility
14: end if
15: M [i] = minPath.α; M [j] = minPath.β
16: end for
17: return M

Figure 5.2: GreedyMinMax: for OPT1

Computational Complexity: Each invocation of maxCost takes θ(n(m+|DE|)) time.

During Algorithm 5.2, the sorting takes O(|DE| log(|DE|)) time, and the main loops
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Input: D(= DT, DE), N, T [m][n],R[n][n][n], f [m], s[m][m], eo[n],M [m]
Output: maxCost: Maximum fraction of energy spent at any node

1: maxCost = 0 // Initialize max cost
2: for all k ∈ N do
3: cost = 0 // Initialize node cost
4: for all i ∈ DT do
5: if M [i] == k then
6: cost = cost + f [i] · T [i][k] // Increment computation cost
7: end if
8: end for
9: for all (i, j) ∈ DE do

10: if M [i] 6= 1 AND M [j] 6= 1 then
11: cost = cost + f [i] · s[i][j] · R[M [i]][M [j]][k] // Increment communication

cost
12: end if
13: end for
14: if cost/e0[k] > maxCost then
15: maxCost = cost/e0[k]
16: end if
17: end for
18: return maxCost

Figure 5.3: maxCost: determining the maximum fraction of energy spent at a
node

invokes Algorithm 5.3 for evaluating the maxCost O(|DE|n2) times. The total time

complexity of the algorithm is O(|DE|(log(|DE|)+n3(m+|DE|))). Since |DE| > m

in a DAG and |DE| > log(|DE|), this can be simplified to O(n3|DE|2).
Algorithm 5.4 shows our modification to Algorithm 5.2 for mapping tasks for

OPT2. The algorithm calls totalCost subroutine (shown in Algorithm 5.5) repeat-

edly to determine the current total cost of the assignment, and chooses the end points

of the next edge so as to minimize the total cost. Owing to the similarity in structure,

its computational complexity is also O(n3|DE|2).
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Input: D(= DT, DE), N, T [m][n],R[n][n][n], f [m], s[m][m], eo[n]
Output: M [m]: Task Assignment

Initialize M [i] = −1 for i = {1, . . . ,m}
Sort (i, j) ∈ DE in non-increasing order of f [i] · s[i][j]
for all (sorted) (i, j) in DE do

mintotalCost = ∞ // Initialize mintotalCost for this iteration
minPath = (−1,−1)
for all (α, β) such that (i, j) can be assigned to them do

M [i] = α
M [j] = β // Temporarily assign (i, j) to (α → β)
totalCost = totalCost(D,N, T ,R, f, s, e0,M)
if totalCost < mintotalCost then

mintotalCost = totalCost // Update mintotalCost
minPath = (α, β)

end if
end for
maxCost = maxCost(D,N, T ,R, f, s, e0,M)
if maxCost > 1 then

declare failure. stop. // Checking for feasibility
end if
M [i] = minPath.α
M [j] = minPath.β

end for
return M

Figure 5.4: GreedyMinTotal: for OPT2

5.4.2 Worst-case Analysis

Since both GreedyMinMax and GreedyMinTotal are heuristics, we explored the situa-

tions when they can give sub-optimal results. We introduce the notion of the cost of

an algorithm for this purpose – the cost of GreedyMinMax is defined a the maximum

fraction of energy spent in one round at any node in N , and the cost of GreedyMinTotal

is the total energy spent by all the nodes in N in one round, when tasks are mapped

according to the heuristic.

Theorem 1: For any integer υ ≥ 1, there are problem instances for which the cost

of GreedyMinMax (GreedyMinTotal) is arbitrarily close to υ × OPT1 (υ × OPT2).
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Input: D(= DT, DE), N, T [m][n],R[n][n][n], f [m], s[m][m], eo[n],M [m]
Output: totalCost: Total energy spent by nodes in N

totalCost = 0 // Initialize total cost
for all k ∈ N do

cost = 0; // Initialize node cost
for all i ∈ DT do

if M [i] == k then
cost = cost + f [i] · T [i][k] // Increment computation cost

end if
end for
for all (i, j) ∈ DE do

if M [i] 6= 1 AND M [j] 6= 1 then
cost = cost + f [i] · s[i][j] · R[M [i]][M [j]][k] // Increment communication
cost

end if
end for
totalCost = totalCost + cost

end for
return totalCost

Figure 5.5: totalCost: determining the total energy spent in the systemPlacement constraint(other mappings impossible)a b1bυσ b0(σ-ε)(σ-ε)υ copies x y1
Figure 5.6: Worst-case scenario for GreedyMinMax and GreedyMinTotal

Proof: Consider a situation as illustrated in Figure 5.6. Tax = Tay = 0, and

the other tasks can only be placed on the nodes indicated by the arrows. Let us also

assume that fa = 1, ex
0 = ey

0 = e0, and both nodes in N spend one unit of energy per
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unit of data transmitted on the link between them. Finally, e0 À k À ε > 0. The

optimal solution, both for OPT1 and OPT2, is to place a on node x, thereby causing

only the data on the (a, b0) edge in DE to go on the network, costing k units of energy

to be spent by node x (and the entire system) in each round. The greedy algorithms,

however, start with placing the costliest edge (a, b0) in the best possible manner, co-

locating a and b0 on node y. This leads to υ × (k − ε) traffic to go over the y → x

link.

We thus get: OPT1 =
1

e0

σ (5.15)

⇒ cost(GreedyMinMax) =
1

e0

υ × (σ − ε) ≈ υ × OPT1 (5.16)

Similarly, OPT2 = 2σ (5.17)

⇒ cost(GreedyMinTotal) = 2υ × (σ − ε) ≈ υ × OPT2 (5.18)

hence proving the theorem.

Theorem 2: There are problem instances for which GreedyMinMax and GreedyMinTo-

tal will terminate in failure although a feasible solution exists.

Proof: Consider the situation as illustrated in Figure 5.6. However, in this case,

assume that e0 = k À ε > 0. The optimal solution (given by the MIP formulation)

will still place task a on node y, while the Greedy algorithms will try to place it on

node y. Note that for υ ≥ 2, this will lead to an infeasible solution, as the nodes end

up spending > e0 energy. The proof follows.
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5.5 Task Mapping with Multi-Path Routing

In many WSN applications, multiple routes are possible between a pair of nodes. In

this section, we provide generalized versions of our problem formulations to incor-

porate this condition. For this purpose, the following changes are made to the model

proposed in Section 5.2:

• We assume that a constant Φ number of paths are possible to be taken between

any pair of nodes β and γ in N .

• We further assume that for each pair of communicating tasks (i, j) mapped to

nodes β and γ respectively, one of the Φ β → γ paths (say ρ) is chosen. Note

that for another pair of communicating tasks (s, t) mapped to β and γ, another

β → γ path ρ′ can be chosen.

• To incorporate the above, we redefine the routing energy cost matrix R to be a

n × n × n × Φ matrix, with Rβγkρ denoting the energy consumed per unit of

data at node k while routing messages from node β to γ, using the ρth routing

option.

• The task-mapping algorithms, apart from determining the task mapping M , also

need to provide the routing path choice mapping P : DE → {1, 2, . . . , Φ}.

• The communication cost at node k is now given by:

Ck
comm =

∑

e(=(i,j))∈DE

fi · sij · RM(i)M(j)kP (e) (5.19)
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5.5.1 MIP Formulation for OPT1 when Multi-Path Routing is

Possible

The problem of task-mapping and route choice to minimize the maximum fraction of

energy spent at a node can thus be formulated as:

Inputs:

• D = (DT, DE): Data-driven Task Graph

• fi: Firing rate for task i

• sij: Size of data transferred from task i to j on each invocation of i

• N : Network description

• T : Task execution energy matrix

• R: Routing energy cost matrix, as modified above.

Outputs:

• X: Assignment Matrix. xik is binary.

• Z: Routing Path Choice Matrix. zeρ is binary, and is 1 if the traffic over edge e

in DE is routed along the ρth path.

Optimization Goal:

minimize c

Constraints:
n∑

k=1

xik = 1 for i = 1, 2, . . . , m (5.20)
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Φ∑
ρ=1

zeρ = 1 for each e (5.21)

1

e0
k

(
m∑

i=1

fi · Tik · xik +
∑

e=(i,j)∈DE

n∑

β=1

n∑
γ=1

C∑
ρ=1

fi · sij · xiβ · xjγ · zeρ · Rβγkρ) ≤ c

for k = 1, . . . , n

(5.22)

xik ∈ {0, 1} for (i, k) = (1, 1), . . . , (m,n) (5.23)

zeρ ∈ {0, 1} for each combination of (e, ρ) (5.24)

0 ≤ c ≤ 1 (5.25)

Note that the above is an MIP since c is real whereas xik and zeρ are binary integers.

Also, it is not a linear program since product terms xiβ · xjγ · zeρ appear in the con-

straints.

The above problem can be converted to a linear MIP by repeatedly applying the

techniques discussed in the previous section. We first absorb each (xiβ, xjγ) pair

into a variable yiβjγ , and then introduce another set of variables, one to absorb each

(yiβjγ, zeρ) pair, to get the following:

yiβjγ − xiβ ≤ 0 (5.26)

yiβjγ − xjγ ≤ 0 (5.27)

xiβ + xjγ − yiβjγ ≤ 1 (5.28)

uiβjγρ − yiβjγ ≤ 0 (5.29)
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uiβjγρ − zeρ ≤ 0 (5.30)

yiβjγ + zeρ − uiβjγρ ≤ 1 (5.31)

5.5.2 MIP Formulation for OPT2 when Multi-Path Routing is Possible

Using our formulation, the objective of solving the problem to minimize the total

energy spent by the system can be formulated as follows:

Inputs:

• D = (DT, DE): Data-driven Task Graph

• fi: Firing rate for task i

• sij: Size of data transferred from task i to j on each invocation of i

• N : Network description

• T : Task execution energy matrix

• R: Routing energy cost matrix, as modified above.

Outputs:

• X: Assignment Matrix. xik is binary.

• Z: Routing Path Choice Matrix. zeρ is binary.

Optimization Goal:

minimize
n∑

k=1

(
m∑

i=1

fi · Tik · xik +
∑

e=(i,j)∈DE

n∑

β=1

n∑
γ=1

Φ∑
ρ=1

fi · sij · xiβ · xjγ · zeρ · Rβγkρ)
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Constraints:
n∑

k=1

xik = 1 for i = 1, 2, . . . , m (5.32)

Φ∑
ρ=1

zeρ = 1 for each combination of (e, β, γ) (5.33)

m∑
i=1

fi · Tik · xik +
∑

e=(i,j)∈DE

n∑

β=1

n∑
γ=1

Φ∑
ρ=1

fi · sij · xiβ · xjγ · zeρ · Rβγkρ ≤ ek
0

for k = 1, . . . , n (5.34)

xik ∈ {0, 1} for (i, k) = (1, 1), . . . , (m,n) (5.35)

zeρ ∈ {0, 1} for each combination of e, β, γ, ρ (5.36)

Note that the above can be converted to a MIP with linear constraints using the

linearization techniques used by us.

5.5.3 Greedy Heuristics for Task-mapping with Multi-Path Routing

In view of the changed system model, we can modify the algorithms proposed in Sec-

tion 5.4. Our greedy heuristic for the goal of minimizing the maximum fraction of

energy spent at a node (OPT1) is detailed in Algorithm 5.7. The main intuition is that

the algorithm sorts the edges in the task graph in non-increasing order of the traffic

going on them, and then tries to map the still unmapped endpoints of each edge (i, j)

and determine the best route to be taken by the data items transferred between i and j

them, so as to achieve the minimum increase in the objective function.

Computational Complexity: Each invocation of maxCostM takes θ(n(m + |DE|))
time. During Algorithm 5.7, the sorting takes O(|DE| log(|DE|)) time, and the main
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Input: D(= DT, DE), N, T [m][n],R[n][n][n][Φ], f [m], s[m][m], eo[n]
Output: M [m]: Task Assignment, P [|DE|]: Routing Path Choice

Initialize M [i] = −1 for i = {1, . . . ,m}
Initialize all entries P [e] = −1
Sort (i, j) ∈ DE in non-increasing order of f [i] · s[i][j]
for all (sorted) e = (i, j) in DE do

minmaxCost = ∞ // Initialize minmaxCost for this iteration
minPath = (−1,−1)
for all (α, β) such that (i, j) can be assigned to them do

M [i] = α
M [j] = β // Temporarily assign (i, j) to (α → β)
for ρ = 1 to Φ do

P [e] = ρ // Temporarily choose the ρth routing option
maxCost = maxCostM(D, N, T ,R, f, s, e0,M, P )
if maxCost < minmaxCost then

minmaxCost = maxCost // Update mintotalCost
minPath = (α, β, ρ)

end if
end for

end for
if minmaxCost > 1 then

declare failure. stop. // Checking for feasibility
end if
M [i] = minPath.α
M [j] = minPath.β
P [e][M [i]][M [j]] = minPath.ρ

end for
return M, P

Figure 5.7: GreedyMinMaxM: for OPT1 with Multi-Path Routing

loops invokes Algorithm 5.8 for evaluating the maxCost O(|DE|n2Φ) times. The total

time complexity of the algorithm is O(|DE|(log(|DE|) + n3(m + |DE|)Φ)). Since

|DE| > m in a DAG and |DE| > log(|DE|), this can be simplified to O(n3|DE|2Φ).

Algorithm 5.9 shows our modification to Algorithm 5.7 for mapping tasks for

OPT2. The algorithm calls totalCostM subroutine (shown in Algorithm 5.10) repeat-

edly to determine the current total cost of the assignment, and chooses the end points
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Input: D(=
DT, DE), N, T [m][n],R[n][n][n], f [m], s[m][m], eo[n],M [m], P [|DE|][n][n]

Output: maxCostM: Maximum fraction of energy spent at any node
maxCostM = 0 // Initialize max cost
for all k ∈ N do

cost = 0 // Initialize node cost
for all i ∈ DT do

if M [i] == k then
cost = cost + f [i] · T [i][k] // Increment computation cost

end if
end for
for all e = (i, j) ∈ DE do

if M [i] 6= −1 AND M [j] 6= −1 AND P [e] 6= −1 then
cost = cost + f [i] · s[i][j] · R[M [i]][M [j]][k][P [e]] // Increment
communication cost

end if
end for
if cost/e0[k] > maxCostM then

maxCostM = cost/e0[k]
end if

end for
return maxCostM

Figure 5.8: maxCostM: determining the maximum fraction of energy spent at a
node

of the next edge and the path choice so as to minimize the total cost. Owing to the

similarity in structure, its computational complexity is also O(n3|DE|2Φ).

Worst Case Analysis: Since GreedyMinMaxM and GreedyMinTotalM are generalized

versions of the algorithms discussed in Section 5.4, the problem instance discussed

in Section 5.4.2 acts as a special case of the task-mapping problem with multi-path

routing, with the maximum number of routes Φ = 1. Therefore, the same worst-case

bounds hold for the algorithms discussed in this section also.
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Input: D(= DT, DE), N, T [m][n],R[n][n][n], f [m], s[m][m], eo[n]
Output: M [m]: Task Assignment, P [|DE|]: Routing Path Choice

Initialize M [i] = −1 for i = {1, . . . ,m}
Initialize all entries P [e][β][γ] = −1
Sort (i, j) ∈ DE in non-increasing order of f [i] · s[i][j]
for all (sorted) e = (i, j) in DE do

mintotalCost = ∞ // Initialize mintotalCost for this iteration
minPath = (−1,−1)
for all (α, β) such that (i, j) can be assigned to them do

M [i] = α
M [j] = β // Temporarily assign (i, j) to (α → β)
for ρ = 1 to Φ do

P [e] = ρ // Temporarily choose the ρth routing option
totalCost = totalCostM(D, N, T ,R, f, s, e0,M, P )
if totalCost < mintotalCost then

mintotalCost = totalCost // Update mintotalCost
minPath = (α, β, ρ)

end if
end for

end for
maxCost = maxCostM(D,N, T ,R, f, s, e0,M, P )
if maxCost > 1 then

declare failure. stop. // Checking for feasibility
end if
M [i] = minPath.α
M [j] = minPath.β
P [e] = minPath.ρ

end for
return M, P

Figure 5.9: GreedyMinTotalM: for OPT2 with Multi-Path Routing

5.6 Evaluation

5.6.1 Reference Applications

For evaluating our techniques, we use task-graphs derived from the two applications

discussed in Section 3.3. The first is a building environment management application

for monitoring heating, ventilation and air-conditioning (HVAC), similar in spirit to
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Input:
D(= DT, DE), N, T [m][n],R[n][n][n], f [m], s[m][m], eo[n],M [m], P [|DE|]

Output: totalCostM: Total energy spent by nodes in N
totalCostM = 0 // Initialize total cost
for all k ∈ N do

cost = 0; // Initialize node cost
for all i ∈ DT do

if M [i] == k then
cost = cost + f [i] · T [i][k] // Increment computation cost

end if
end for
for all e = (i, j) ∈ DE do

if M [i] 6= −1 AND M [j] 6= −1 AND P [e]! = −1 then
cost = cost + f [i] · s[i][j] · R[M [i]][M [j]][k][P [e]] // Increment comm. cost

end if
end for
totalCostM = totalCostM + cost

end for
return totalCostM

Figure 5.10: totalCostM: determining the total energy spent in the system

other applications in the literature [24]. We consider a set of nodes spread across a

building, with each node possibly attached to a temperature sensor, a humidity sensor

and an actuator that can control the temperature and humidity of a region. The aim of

the system is to maintain desirable temperature and humidity levels in each room of

the building, by correlating the information from the sensor installed in the room, and

using it to drive actuation.

Figure 5.11 describes our application as a data-driven task graph. The Temperature

Sampler and Humidity Sampler tasks – instantiated on the nodes with relevant sensors

– sample their surroundings and generate temperature and humidity readings. This data

is then sent to the Collector task, one of which is placed in each room. Upon processing

the data, the Collector produces a command for the actuating tasks and sends the data

75



Humidity Sampler Collector HVAC ControllerTemperature Sampler Temperature Sampler... Humidity Sampler...

HVAC Controller.
.
.

Figure 5.11: A task graph for HVAC management.

RampSignalCalculator RampSignalDisplayerSpeedLimitCalculator SpeedLimitDisplayerRampSampler AvgQueueLengthCalculator(Sector k)AvgSpeedCalculator(Sector k)RampSampler...SpeedSamplerSpeedSampler.
.
.

AvgSpeedCalculator(Sector k-1)AvgSpeedCalculator(Sector k+1)
AvgQueueLengthCalculator(Sector k-1)AvgQueueLengthCalculator(Sector k+1)

Figure 5.12: An task graph for highway traffic management.

to the HVAC Controller task, which is placed on all nodes with an HVAC Actuator and

responds to the Action data item by adjusting the temperature/humidity controls.

The second application, illustrated in Figure 5.12, describes a highway traffic man-

agement system, similar in spirit to [48]. In this case, two different sub-goals must be

achieved - regulating the speed of vehicles on the highway by controlling speed limit

displays, and controlling the access to the highway by means of red/green signals on

the ramps. The highway is divided into sectors, and sensors are deployed on the high-

way lanes and ramps to sense the speed and presence of vehicles, respectively. The
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sensed data goes through a multi-stage process where it is first aggregated w.r.t. a sin-

gle sector to derive an average measure (AvgSpeedCalculator and AvgQueueLength-

Calculator tasks). The SpeedLimitCalculator and RampSignalCalculator tasks take

the average speeds and queue lengths produced in the neighboring highway sectors (as

shown in the figure), and compute the desired actions to be sent to the SpeedLimitDis-

player and RampSignalDisplayer tasks, which are located on the nodes attached to the

corresponding actuators.

5.6.2 Experiments

For evaluating the relative performance of our heuristics, we applied them on the task

graphs discussed in Section 5.6.1, by using our algorithms to map their tasks onto a

various simulated target deployments (shown in Figure 5.13) to map the tasks onto.

For the HVAC application, we placed an equal number of temperature and humidity

sensors in a grid in a room, and assigned the location of the HVAC actuators randomly.

We also placed extra nodes in the room for maintaining connectivity. For the traffic

application, we placed forwarding nodes uniformly apart at the edge of the highway,

and randomly distributed the speed sensors on the four lanes so that each of them

was in range of at least another speed sensor or a forwarding node. Similarly, the

presence sensors were randomly distributed on the ramp so that each of them was in

range of at least one speed sensor or another presence sensor. The node controlling the

ramp signals and the speed limit displays were placed between different sectors, on

opposite sides of the road. Note that for both the applications, owing to the placement

constraints of the applications, the number of tasks m is O(n) for our experiments,

where n is the number of nodes.
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(a) HVAC Application
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Speed Limit DisplaySLForwarding Node

HIGHWAY SECTOR [HSi+1]Speed Sensors
(b) Traffic Application

Figure 5.13: Node placement in reference applications.

Experimental Results: In our experiments, we assumed that all nodes started with a

sufficiently high initial energy level e0. The routing energy cost matrixRwas obtained

by using a shortest path algorithm on the network, assuming equal energy spent by

all nodes on a route, and all data items were assumed to be of unit size (sij = 1).

The task execution energy matrix T was set up to represent placement constraints:
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Tik = 0 when task i could be placed on node k, ∞ when it could not. The tasks which

performed sensing and actuating were tied to a node with the relevant capabilities.

Finally, the fi for each task was computed as follows: For sensing tasks, fi was set to

10, and for all other tasks j, fj was set to the sum of the firing rates of tasks on the

other ends of the incoming edges. This represented the fact that task j fires whenever

there is data available for it. For the multi-path scenario, we generated the routing

matrix using the generalized Floyd algorithm [34] with Φ = 3.

We ran our experiments on a PC with a dual-core Pentium processor running at

1.6GHz, with 2GB of RAM. We implemented our greedy algorithm in Java, and solved

the MIPS using the lp solve [62] linear programming toolkit. The time taken for com-

puting task placements for both the applications so as to minimize the maximum frac-

tion of energy spent by any node (OPT1) is shown in Figure 5.14. The time taken by

the two techniques for placing tasks so as to minimize the total energy spent in the

system (OPT2) is shown in Figure 5.15.

In our experiments, the Greedy algorithms obtained sub-optimal results only while

computing task-mappings for minimizing total energy in some of the HVAC applica-

tion. For the traffic application, and the for all instances of OPT1 (which we believe is

a better indicator of system lifetime), the solution given by the greedy algorithm was

the same as the one given by the MIP. Our experiments clearly show that the greedy

algorithms take much less time that the MIP formulation in finding the mappings.

This showcases the efficacy of the algorithms in solving the task-mapping problem for

complex real-world WSN applications.

In experiments conducted where multiple paths were possible (shown in Figures 5.16

and 5.17), we see that the time taken by the heuristics still outperforms the MIP solver

in terms of time. Note that the graphs for the traffic management application denote

the fact that the MIP solver did not terminate in a long time for some instances. As
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before, the quality of solution given by our heuristics were found to be as good as that

of the MIP, with the cost of the (few) outliers not being more than 1.5 times the optimal

cost.
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Figure 5.14: Task-mapping time for OPT1
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Figure 5.15: Task-mapping time for OPT2

82



0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100

Number of Nodes

T
im

e 
T

ak
en

 (
s)

  
  

  
.

GreedyMinMaxM

MIP

(a) HVAC Management - Multipath

0

50000

100000

150000

200000

250000

0 5 10 15 20 25 30 35

Number of Nodes

T
im

e 
T

ak
en

 (
s)

  
  

  
  

  
.

GreedyMinMaxM

MIP

(b) Traffic Management - Multipath

Figure 5.16: Task-mapping time for OPT1 (MultiPath)
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Figure 5.17: Task-mapping time for OPT2 (MultiPath)
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Chapter 6

Graphical Toolkit for WSN Application Development

6.1 Srijan: Graphical Toolkit for Data-driven WSN

Macroprogramming

Since the goal of WSN macroprogramming research is to make application develop-

ment easier for the domain expert, we believe that it is absolutely necessary to make

easy-to-use toolkits for macroprogramming available to them in order to both make

their task easier, as well as to gain feedback about the macroprogramming paradigms

themselves. Although various efforts exist in literature for making WSN application

development easier, very few general purpose graphical toolkits for macroprogram-

ming are publicly available for the application developer to choose from. In this sec-

tion, we show how we have incorporated our macroprogram compilation framework

into Srijan, an easy-to-use graphical front-end to the various steps involved in devel-

oping an application using ATaG. Figure 6.1 shows the various components of our

toolkit that the application developer can use. The clear arrows show the inputs, while

the gray arrows show the output of each component. The various components of Srijan

are as follows.
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Task Graph [XML/GME]
Auto-GeneratedImperative Code [Java]

Network Description
Task Graph Specification GUI

Customizable Code Auto-generator
Target System Description GUI
Compilation and Deployment GUIDeployment on Nodes [J2ME bytecode]

Figure 6.1: Overview of application development using Srijan

6.1.1 Abstract Task Graph Description GUI

The ability of specifying a WSN application in a graphical manner as interconnected

task and data items is a major part of ease-of-use provided by ATaG. In Srijan, we have

customized the Generic Modeling Environment (GME) [39] for providing this facility

to the application developer. Figure 6.2 shows the application introduced in Section 3.3

specified using our GUI. The developer can drag and drop parts representing the tasks,

data items, and channels of the application from the parts browser onto the workspace,

and draw connections between them to show their inter-relationships. The annotations

of each component can then be set by clicking on it and editing the attributes in the

attribute editing panel. Once the details of the task graph are specified, Srijan gener-

ates an XML file representing it by invoking the PatternProcessor model interpretor
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Panel for drawing the task graph
Parts browser Panel for editing attributes

Figure 6.2: HVAC application in our task description GUI

of GME. This XML representation of the task graph, parts of which are shown in Fig-

ure 6.3, can then be used by the other components of our toolkit, discussed later in this

section.

Our work towards providing the above facilities to the programmer consisted of

two parts. Firstly, we developed a metamodel in GME for ATaG, describing the pos-

sible attributes of each component of an ATaG program, as well as the relationships

between them. Secondly, we developed a pattern file for ATaG, which is be used by the

GME pattern processor to generate a properly formatted XML file given a particular

ATaG task graph.
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<atagprogram>
<tasklist>
<task name="TemperatureSampler">
<firingrule>
<periodic period="10" />

</firingrule>
<location>

<nodes-per-instance number="1" />
<ability-attribute value="attachedSensors:TemperatureSensor"/>
<region-attribute regionname="none"/>

</location>
</task>

...
<task name="Collector">
<firingrule>
<anydata />

</firingrule>
<location>

<partition-per-instance number="1" />
<ability-attribute value="none"/>
<region-attribute regionname="Room"/>

</location>
</task>

</tasklist>

<dataitemlist>
<dataitem name="Temperature" />
<dataitem name="Humidity" />
<dataitem name="Action" />

</dataitemlist>

<channellist>
<channel direction="TtoD" taskname="TemperatureSampler"

dataname="Temperature" interest="none:0" local="true"/>

<channel direction="DtoT" taskname="Collector" dataname="Temperature"
interest="domain:0" local="true"/>
...
</channellist>

</atagprogram>

Figure 6.3: XML declaration for the program in Figure 6.2.

6.1.2 Customizable Code Auto-generator

As stated previously in Section 3, an ATaG program consists of two parts - the task

graph representing the properties and inter-relationships of the abstract tasks and data

items, and imperative code expressing the details of each task and data item. This

component takes the XML file generated by the GME pattern processor and generates

the following files:
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/*********************/
/** Collector.java */
/*********************/
package atag.apps.mainApp;

import atag.runtime.DataItem;
import atag.runtime.DataPool;
import atag.runtime.NodeInfo;

public class Collector implements Runnable {

private DataPool m_dataPool;

private NodeInfo m_myState;

/** Creates a new instance of Collector */
public Collector(DataPool dp, NodeInfo myconfig) {

m_dataPool = dp;
m_myState = myconfig;

}

public void run() {
/*Checking for each DataItem, to see which one was produced*/
DataItem t_dataItem;
if((t_dataItem = m_dataPool.getData(IDConstants.T_COLLECTOR,

IDConstants.D_TEMPERATURE)) != null){
Temperature recvdTemperature =

(Temperature) t_dataItem.core();
this.handleTemperatureProduced(recvdTemperature);

}else if((t_dataItem =
m_dataPool.getData(IDConstants.T_COLLECTOR,

IDConstants.D_HUMIDITY)) != null){
Humidity recvdHumidity = (Humidity) t_dataItem.core();
this.handleHumidityProduced(recvdHumidity);

}
}

private void handleTemperatureProduced(Temperature r_Temperature) {
/* Sample code - please write your own */
/* You can also use the putData Code Samples below */

int var1 = r_Temperature.getvar1();
m_myState.debugPrint("[Collector]Got a Var1 " + var1);

}
private void handleHumidityProduced(Humidity r_Humidity) {
/* Sample code - please write your own */
/* You can also use the putData Code Samples below */

int var1 = r_Humidity.getvar1();
m_myState.debugPrint("[Collector]Got a Var1 " + var1);

}
/**********************/
/* Sample code to be used for producing data items

Copy-paste and uncomment to use*/
/**********************/

/* Sample code for producing dataItem Action
Action m_Action = new Action();
m_Action.setvar1(this.m_myState.getMyId());
DataItem m_dataitem = new DataItem(IDConstants.D_ACTION,

IDConstants.T_COLLECTOR, m_Action);
m_dataPool.putData(m_dataitem);

*/
}

Figure 6.4: Auto-generated code for the Collector task

89



• IDConstants.java: This contains the declarations mapping each task and data

item’s ID to a static variable to enhance readability.

• [DataName].java: For each data item, Srijan creates a file with the needed Java

headers, and methods for serialization and deserialization of the data item. The

file also contains dummy code for the contents of the data item itself, with guide-

lines on how to edit it.

• [TaskName].java: For each abstract task, Srijan creates a file which describes

the task as a Java class. For periodic tasks, the code for ensuring that the task fires

with the desired frequency is pre-built into the auto-generated code. The user

only needs to edit the handleExpiryOfTimer() method. For tasks that

are fired due to the presence of data item(s), the auto-generated code contains

sample code for methods for handling the data item produced.

In both cases, this component generates sample code for calls to the putData()

method of the runtime system, using which the developers can make the tasks

interact with the DataPool.

• PreBuiltAtagManager.java This file contains the code for determining the log-

ical scope corresponding to each data item, so that the runtime can deliver it

accordingly as it is produced. Note that this file does not need any editing from

the application developer.

The code generated at this stage by Srijan is compatible with the widely used

NetBeansTMJava IDE, and can be easily accessed in it for editing and syntax check.

Figure 6.4 shows the file auto-generated by Srijan for the Collector task of the HVAC
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0 0014:4F01:0000:0B55 40 100 room:0 attachedSensors:TemperatureSensor
| | | | | |
| Physical Address | | Partition Info Hardware Attributes
Node ID X & Y Coordinates

Figure 6.5: Line describing node 0 from the system description file

application. Note that the developer only has to insert code in the handleHumidity-

Produced() and handleTemperatureProduced()methods. Srijan also pro-

vides code samples to copy-paste for generating the Action data item produced by the

Collector.

6.1.3 Target System Description GUI

Although WSN applications are developed for a specific purpose (e.g. HVAC man-

agement), users of ATaG can use the same ATaG programs for a variety of target

deployments (buildings). The ATaG compiler takes the target system description as

input while allocating tasks, and performs optimizations to enhance desired metrics

like system lifetime. This component of Srijan enables the application developer to

specify the structure of the target system in a graphical manner.

The description of the target system can be uploaded into Srijan in the form of a

plain text file. The first line of the file describes the network’s global properties and

each succeeding line describes the attributes of individual nodes. Currently, the global

network information that can be specified includes the total number of nodes, (rectan-

gular) area covered and (common) radio ranges. Supported node attributes include the

node ID, physical ID (MAC address), physical position (coordinates), partition ID and

attached hardware such as sensors and actuators. Figure 6.5 shows the format of one

such line from a network description file.

The top part of Figure 6.6 shows the components of our toolkit used for specifying

the target system structure. The GUI consists of two main components, a display
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Figure 6.6: Network description, compilation and deployment using Srijan
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screen at the left side of the main window and a tabbed control panel which contains

three sub-panels - Editor, Viewer, and Compiler.

In the Editor panel of the GUI, there are buttons enabling the creation, uploading

and saving of a network description file. The network defined by the description file

is shown in the display screen. Further, the developer can add new nodes or edit a

selected node. Unconfigured new nodes are shown dimmed. The selected node is

highlighted and its attributes are listed in the node information area. Node attributes

can be changed by editing values in corresponding text fields. Node locations can be

also adjusted by simply dragging and dropping that node in the screen directly. To

assist network configuration, the viewer panel provides a rich set of options to display

attributes associated with nodes such as radio range, radio links between neighbors etc.

These options can be combined to specify complex constraints to display information

that developers might be interested in. For example, it can be configured to show radio

links in a specific partition/group or between nodes with a specific type of sensor etc.

Generally, the editor and viewer panel aim to provide facilities to give the application

developer an intuitive view of a system’s profile while configuring it.

6.1.4 Compilation and Deployment Module

The lower half of Figure 6.6 depicts the module of our toolkit that provides the applica-

tion developer the ability to tune the compilation parameters and deploy the generated

code to the nodes in the target system. The developer can specify the root directory

of the target code using the Base Directory textfield at the top of the compiler panel.

The Generate Template button below is used to generate the Java imperative code tem-

plates. The Compile button brings up the the compiler configuration dialog shown in
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the figure. The current ATaG compiler supports only the random option for optimiza-

tion and the developer can configure the randomization seed in the textfield. Srijan

can easily support more optimizations as they are developed. After setting the compi-

lation parameters, the developer can click the OK button to initiate compilation. The

integrated ATaG compiler then parses the program files and generates Java2ME code

customized for each node. The generated code of each node is placed in a directory

named by the node’s logical ID in the root directory specified before.

For deploying the code on the Sun SPOTs, our toolkit uses a Sun SPOT basestation

node for uploading it to the nodes via an OTA(over the air) command in the format ant

-DremoteId = nnnn.nnnn.nnnn.nnnn deploywhere nnnn.nnnn.nnnn.

nnnn is the IEEE extended MAC address for Sun SPOTs. As we have associated the

logical ID of the nodes with their MAC addresses in the network description file, when

the Deploy button is clicked, the composition GUI calls the ant deploy command

iteratively to upload node executables to corresponding nodes in the system.

6.2 Evaluation

To evaluate the performance of Srijan, we developed both the applications discussed

in Section 3.3 on it. For each of the applications, we performed the complete end-

to-end development – starting from specifying the ATaG task graph to deployment of

code on the nodes – using Srijan. We used a Pentium-4 2.8 GHz laptop with 1GB of

RAM running Windows XP for our evaluation. The deployment was done onto the

Sun SPOT [93] nodes, with a 180 MHz 32 bit ARM920T processor, 512K RAM and

4M Flash memory. The nodes run the Squawk Java virtual machine directly out of

flash memory, and can run programs written using J2ME libraries. The Sun SPOT
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base station was used to deploy the code over-the-air (OTA) to the SPOTs. We used

the Java hProf profiler [47] for measuring execution time.

During our experiments, we collected a variety of statistics. The first metric was

the time taken by the toolkit to a) create the auto-generated imperative code code tem-

plates, b) allocate tasks to the nodes and generate per-node customized Java files, and

c) generate the Java bytecode for each node and deploy it over the air. In addition to

the above times, we also collected statistics regarding the amount of total code that

was written by the application developer versus the code auto-generated by Srijan. Al-

though the line-of-code metric is more a measure of the power of the ATaG compiler,

we report the numbers because a) these numbers are of our J2ME-targeted implemen-

tation of the ATaG compilation framework, and b) this emphasizes the power of the

ATaG macroprogramming paradigm which is made accessible to the application de-

veloper in a graphical manner by our toolkit.

In addition to the above objective metrics, we also measured the time it took for

an application developer using Srijan to specify the ATaG task graph as well as the

time taken in customizing the imperative code generated by it. We acknowledge that

these timings are variable from person to person, and intend to obtain more such data

following the public release of our software to get a better idea of the burden to the

programmer when using our toolkit.

The data from our experiments is summarized in Table 6.1. Note that the time

taken by Srijan to generate the files are within acceptable limits, and are limited only

by the hardware it is being run on, and in the case of deployment, also on the Java com-

piler used by the Sun SPOT SDK. More importantly, the developer had to write only

a very small fraction of Java source files. The total code deployed on each node con-

sists of three components: a) Base Template Code — containing the DART libraries,
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HVAC Traffic
Imperative Code Gen. Time (ms) 1766 3422
Node-Specific Code Gen. Time (ms) 31967 77089
Per-node Deployment Time (s) 21 23
Source Files Edited by Developer 11 18
Total Number of Source Files 57 64
Lines of Application-specific Auto-generated Code 569 1019
Lines of Application-specific Code Written by Developer 60 81
Total Lines of Code 3433 3904
Task Graph Specification Time (min) 10 25
Imperative Code Editing Time (min) 17 60

Table 6.1: Costs involved in various stages of application development using Srijan

Code Distribution in HVAC Application

81%

17%
2%

Base Template Code

Application Specific

Auto-Generated Code

User Generated Code

Code Distribution in Traffic Application

72%

26%
2%

Base Template Code

Application Specific

Auto-Generated Code

User Generated Code

Figure 6.7: Distribution of coding effort
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b) Application-specific Auto-generated Code — generated by Srijan, and c) User-

generated Code — written by the application developer to specify the details of the

task and data. Figure 6.7 shows that the user-generated code is only around 2% of

the total code. Even if we neglect the library code, Srijan generated > 90% of the

application-specific code in each case. The importance of the time taken by the ap-

plication developer in specifying the task graph and customizing the auto-generated

code is highlighted by the fact that under normal circumstances, Srijan will be used by

domain experts, e.g. civil engineers, who would have taken much more time customiz-

ing the runtime protocols and figuring out the task placements if it was not available

as part of Srijan. We believe that our experiments demonstrate that our toolkit makes

application development for WSNs more convenient for the domain expert, and we

look forward to feedback from developers who download and use our toolkit.
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Chapter 7

Concluding Remarks

WSN macroprogramming holds the promise of getting application development on

sensor networks in the reach of domain experts who may not necessarily be experts

in distributed computing, However ’the ease-of-use provided by macroprogramming

comes at a cost in terms of the effort needed to convert the developer’s specifications

to the intended system. The work in this thesis attempts to identify the issues raised

in this context and address them. Focusing on data-driven macroprogramming, us-

ing which a wide variety of sense and-respond applications can be specified, we have

proposed a compilation framework that clearly demarcates the various steps involved

in the process. Focusing on the crucial task-mapping phase of compilation, we have

provided mathematical formulations for solving the problem optimally using our mod-

eling technique. To compute the task mappings in less time, we have also presented

heuristics, both for the single-path and multipath cases Finally, we have incorporated

our work on macroprogram compilation into a graphical toolkit for WSN application

development.

The work in this thesis is the first step in a long journey. Future work on this topic

can be in the following related areas:
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• Supporting Advanced Primitives for Data-driven Macroprogramming: The

current set of ATaG primitives supported by our compilation framework, al-

though powerful, can be extended upon. As a specific case, the logical scopes

currently supported are static (e.g., all nodes in the 3rd floor with temperature

sensors). However, allowing the application developer to use dynamic scopes

(e.g., all nodes in the 3rd floor with a temperature value > 20 degrees) will help

them specify applications more easily. The issues involved in translating these

annotations are worth exploring.

• Supporting Task Migration: The task-mapping techniques proposed by us as-

sume that this initial good task-mapping will help the WSN stay alive for a long

time. However, since sensor networks operate in a dynamic environment, it is

imperative that the DART runtime be extended to support the migration of tasks

based on the energy situation of the networked sensor system. This will involve

addressing the questions of when to migrate tasks, which tasks to migrate, and

how to migrate them; all while making sure that the semantics of the original

macroprogram are preserved. The work in this area can also lead to the develop-

ment of distributed task mapping algorithms, with clear bounds on the tradeoff

between the quality of the solution (e.g., revised system lifetime) and the range

from which a node has to obtain information due to the absense of a global view

of the system.

• Supporting Compilation of Truly Distributed Primitives: In our work, we

have assumed that the processing of the data in the WSN occurs in discrete lo-

cations (e.g., in a simple temperature monitoring application, a Collector runs

on exactly one node in each room, and computes the average of the readings

received from other nodes in the room). However, we believe that the power of
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the networked sensor system can be utilized to a greater extent if the developer

is able to specify his application using distributed tasks (e.g., “The nodes in the

room collaboratively compute the average temperature”). Note that in this case,

the Collector still produces the same output as before (average temperature in the

room), but the compiler is now free to break the process of average-computation

into smaller tasks, which can be distributed among all nodes in the room for

energy-efficiency. While such abstractions make the programming language

more powerful, they also bring with them added challenges for the compiler

designer. For example, how will the compiler know which way to break such

distributed tasks? What are the best techniques of placing them?

The future of networked sensing is a promising one, with aims including safer

buildings, better flowing highways, and cleaner lakes for all; and the macroprogram

compiler will play a large part in bringing the power of the WSN to the masses.
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