
Yarta: A Middleware for Managing
Mobile Social Ecosystems?

Alessandra Toninelli, Animesh Pathak, and Valérie Issarny

INRIA Paris Rocquencourt, France
{alessandra.toninelli, animesh.pathak, valerie.issarny}@inria.fr

Abstract. With the increased prevalence of advanced mobile devices
(the so-called “smart” phones), interest has grown in mobile social ecosys-
tems, where users not only access traditional Web-based social networks
using their mobile devices, but are also able to use the context infor-
mation provided by these devices to further enrich their interactions.
In complex mobile social ecosystems of the future the heterogeneity of
software platforms on constituent nodes, combined with their intrinsic
distributed nature and heterogeneity of representation of data and con-
text raises the need for middleware support for the development of mobile
social applications.

In this paper, we propose Yarta, a novel middleware designed for mobile
social ecosystems (MSE), which takes into account the heterogeneity of
both deployment nodes and available data, the intrinsic decentralized
nature of mobile social applications, as well as users’ privacy concerns.
To validate our approach, we show how we developed two mobile social
applications over Yarta, and report on both its efficiency and ease-of use
by way of extensive evaluation on smart phones and laptops.

1 Introduction

Social ties such as friendship, common interests, and shared professional activ-
ities are central to humans as these ties bind individuals together. This web of
social bindings is referred to as a social network, and is the focus of so-called
social applications, i.e., applications that support human social interactions and
are characterized by their swarming, transitory, and informal qualities [4,8]. Re-
cent advances in wireless network technologies and the increasing diffusion of
smart phones equipped with sensing capabilities represent a unique chance to
enhance social applications and make them truly pervasive in everyday life [4,14].

A salient feature of these situations is that physical places can also act as so-
cial filters. For example, a conference venue groups together attendees belonging
to different organizations, coming together and socially interacting in a number
of ways, such as listening to and making comments on talks and presentations,
setting up scheduled and spontaneous meetings, exchanging technical knowledge
and extending their professional network. Similarly, people attending a football
match generally share an interest in football and sport, and support the same

? Funded in part by an ERCIM Alain Bensoussan Fellowship Programme project.

2

team, especially if they find themselves in physical proximity. We propose the
term mobile social ecosystem (MSE) to describe this richer set of interactions oc-
curing between the participants in these situations. In MSEs, the heterogeneity
of software platforms on constituent nodes, combined with their intrinsic dis-
tributed nature and heterogeneity of representation of data and context raises
the need to support the development of mobile social applications (MSAs).

As discussed in the next section, several MSAs and supporting middlewares
have emerged recently. However, developing mobile social applications is still a
challenging task for several reasons:

Lack of consistent API for social sensors. Today, application developers
need to directly interface with sources of social information (also known as social
sensors), such as the user’s contacts list or call log on the phone, or his personal
or professional profile in online social networking sites. Although popular social
applications, such as LinkedIn 1 or Facebook 2, have recently allowed to export
the user’s profile in a standard format, a common platform to mediate access to
all social data by different applications is still lacking.

App-specific data silos. Related to the above, the social data collected by to-
day’s MSAs are not designed to be accesible to other MSAs. E.g, Facebook owns
users’ data that might be reused by other applications only if those applications
are integrated into it. Similar considerations hold for most mobile social applica-
tions, such as [12] and [1]. As a result, current mobile social applications produce
and manage their own data, which can be imported to other applications only
with considerable effort, raising issues such as semantic consistency.

Lack of advanced social access control mechanisms. Since MSAs manage
contextual data such as mobility traces, user preferences and activities, which
are sensitive per se and can be further used to infer sensitive information, it
raises critical security issues, particularly in terms of privacy and access control
of users’ data. The task becomes even more difficult given the networked nature
of mobile social applications, where information comes from multiple sources,
moves to multiple destinations (possibly unforeseen at information production
time) and is linked to other information following unpredictable patterns. Recent
solutions have shed light on these issues, and made a relevant, albeit only initial,
effort to tackle the problem [5].

Dependence on centralized solutions. Ubiquitous environments are natu-
rally decentralized, and users must be able to access their social data anywhere
and anytime, regardless of access to the Internet. In addition, a global view of
users’ MSE may not (always) be available, while privacy and portability issues
might discourage approaches based on MSE data replication on each user’s de-
vice [5]. Centralized architectures used by current Web social applications and
platforms, thus, are not appropriate for the mobile setting, nor their extensions
to support access from mobile devices, which always rely on some server to store
data and manage users’ interactions.

1 http://linkedin.com
2 http://facebook.com

3

To address the above challenges, in this paper we propose Yarta, a novel mid-
dleware support platform for mobile social applications (or an MSE management
middleware). In particular, (i) Yarta is based on an expressive and extensible
model to represent MSE and the interactions possible in them, which acts a se-
mantic interoperability platform by enabling different applications to share and
reuse their respective knowledge. This supports interoperability between sepa-
rately developed applications. (ii) It implements a set of components to help
social application developers manage their MSE by allowing social information
storage and retrieval, and provides a set of support tools to generate code based
on the application data model. (iii) It supports access control to the user’s social
data based on socially aware policies, i.e., it allows each user to customize access
to his/her social data based on social information itself, as well as context. (iv) It
provides a versatile support for decentralized mobile social applications, which
enables execution on both computers and smart phones with minimal configu-
ration effort, and seamless communication over heterogenous wireless networks,
allowing users to maintain social data local to their device(s).

The rest of the paper is organized as follows. In Section 2, we highlight the
differences of our work with respect to existing work in the domain. Our contri-
butions are discussed in detail in Section 3, where we discuss the architecture of
Yarta. Section 4 provides the implementation details of our middleware, as well
as an extensive evaluation of the prototypes in terms of performance, scalability,
as well as ease of use in using Yarta to develop applications. Section 5 concludes
with a sketch of our planned research in the near future.

2 Related Work

Current MSAs, such as applications supporting the dissemination of content up-
dates (e.g., news or traffic information) over a mobile social network [12], or ex-
ploiting mobile social networking to enhance group communication [9], are often
designed from scratch by embedding into the application logic all MSE man-
agement functionalities and providing application-specific data representation
models. In this section we focus on existing platforms and middleware architec-
tures for supporting mobile social applications. An overview of related research
regarding MSAs and MSE modeling can be found in [20].

Some authors have recognized the need to externalize social management
functionalities [17], [21], but to the best of our knowledge, only a few middle-
ware frameworks to support MSAs have been proposed. Table 1 summarizes the
main contributions and drawbacks of existing solutions with respect to the chal-
lenges discussed in Section 1. The MobiSoc [10] and MobiClique [16] middleware
provide simple data models compared to Yarta MSE model, while the IYOUIT
application offers a wide set of concepts to model users’ activities and interac-
tions [3]. IYOUIT cannot be considered a middleware since it is provided as a
stand-alone application, while MobiSoc and MobiClique both provide open APIs.
The middleware for Pervasive Social Computing proposed in [1] adopts a similar
model to Yarta (RDF-based), which however lacks in generality. In addition, the

4

Table 1. Comparison of middleware for supporting mobile social applications

Middleware MSE Model Privacy & MSE Mgmt Decentralized Reusability
Access Control Features Architecture

MobiSoc People, Place Authentication, Social Data No Open APIs
People-to-People, Confidentiality Inference,
People-to-Place (Encryption) Event Mgmt.

MobiClique User Profile No Proximity-based Yes Open APIs
(specific format) Social Interaction (Opportunistic

Data Extraction Networks)

Middleware Augmented FOAF No User’s Task Optional N/A
PSC (Tasks, Preferences) Matching

IYOUIT Location, Experience, Permissions Social Data Distributed Proprietary
Pictures, Interests, (identity/group) Inference, Friends
Buddies, ... Network

Prometheus People, type of Privacy (Encryption) Social Inference Yes Open APIs
relation, strength Access Control, Trust over Multiple Sources

PrPl Multi-application Authentication Access to social data, Decentralized Open API,
(OpenID) query SociaLite Language

Yarta Agent, Event, Place AC Policies, MSE Creation, Multi-radio Open APIs
Content, Topic Authentication, Update, Exchange, Multi-platform (LGPL)
(extensible) Confidentiality & Extraction (iBICOOP)

middleware is not available for reuse. Also worth mentioning is Motorola’s soon-
to-be-discontinued MOTOBLUR3 UI, which aggregates updates from a user’s
social networks and allows posting in multiple places. The PrPl architecture,
targeted to decentralized environments, allows users to access (and share) data
stored by different social applications by a special purpose query language [18].
Prometheus is a P2P architecture that collects and manages social information
from multiple sources and implements a set of social inference functions [15].

Yarta differs from all previous approaches since it allows the exchange of so-
cial graphs between users, and between applications, in an interoperable format,
which also allows reasoning. Additionally, to the best of our knowledge, Yarta is
the only MSE middleware that can fully execute on mobile phones. Finally, its
access control model is socially aware and takes advantage of semantic reasoning.

3 The Yarta Middleware

To address the challenges discussed in Section 1, we have developed the Yarta
middleware architecture, consisting of two layers (see Fig. 1): the MSE Man-
agement Middleware layer, managing and allowing access to MSE data, and the
Mobile Middleware layer, handling low level communication/coordination issues.

3.1 Managing Knowledge in Mobile Social Ecosystems

Yarta is based on an expressive and extensible model to represent MSE, which
acts a semantic interoperability platform by enabling different applications to
share and reuse their respective knowledge. We first describe the data model,
and then present features offered by the middleware component in charge of
managing the user’s Knowledge Base.

3 http://www.motorola.com/Consumers/US-EN/Consumer-Product-and-
Services/MOTOBLUR/Meet-MOTOBLUR

5

MSE Management Middleware

Mobile Social Application

Storage &
Access

Manager

Data Extraction
 Manager

MSE
Manager

 Mobile Middleware

Naming & Discovery Manager Communication Manager

Policy Manager

Knowledge
Base

Fig. 1. Yarta Middleware Architecture

MSE Representational Model. Our model is based on the representational
model in [20], to which we have added more details, such as a name, a lati-
tude and a longitude value for each Place, as suggested by most existing geo-
positioning standards4, and unique IDs for resources5. Note that this model
re-uses concepts defined in existing social information and content ontologies
such as Friend-of-a-Friend (FOAF) [7] and the Dublin Core [6].

Both the base model defined in [20] and our augmented model discussed above
are represented using the Resource Description Framework (RDF)6, a base Se-
mantic Web standard. Because all mobile social applications share a common
data model, they rely on a shared platform of common meaning, which they can
further extend based on specific requirements: by means of automated reason-
ing, classes and properties defined in application-specific extensions are put in
clear semantic relation with base classes, thus enabling data interoperability. We
provide a detailed example of this in Section 4.2.

Accessing and Processing Social Data. Data represented according to the
above model are connected to form a uniform graph of social information. This is
well suited to a scenario where each user owns his data locally, and autonomously
manages his graph by possibly adding to it portions of graphs provided by other
users, as well as by other sources of social information (see Section 3.2). The
social graph is managed by the Knowledge Base (KB) middleware component.

The KB offers both low-level (RDF-oriented) as well as high-level APIs to
access, update and remove social data. These functionalities are provided inde-
pendently of the specific implementation chosen for semantic data management.
The KB is also able to handle the merging of MSE graphs coming from different
users. Finally, the KB is wrapped by a Policy Manager to ensure access control
enforcement according to the policies defined in the system, as explained later.

4 http://www.w3.org/2003/01/geo/wgs84_pos#
5 Due to lack of space we refer the refer the reader to [20] for the graph of first-class

entities and relationships.
6 http://www.w3.org/TR/rdf-primer/

6

3.2 Providing MSE Management Functionalities

Yarta supports mobile application developers along three directions:

Knowledge Abstractions for Application Developers. Yarta provides an
access interface to the KB from the user’s perspective. Specifically, it allows the
user application to add and retrieve information to/from the KB by means of
high level queries hiding the details of the internal RDF representation (e.g.,
nodes or triples). It also allows the execution of remote queries, performed over
the KB of another user. This is done via a dedicated component, namely the
Storage & Access Manager. In particular, the task of providing a high-level ab-
straction of the knowledgebase to the application developers is divided into two
parts. Firstly, the developer is provided a ResourceFactory class which he can
use to create new instances of resources. These objects in turn provide the basic
getter and setter methods of a Java Bean for each of its properties, as well as
properties inherited from its superclasses.

Secondly, the Storage and Access Manager also provides the users with meth-
ods to add/delete/query the relationships between resources as defined by the
model (e.g. addMember(Agent,Group), getMembers(Group), getMembers in-

verse(Agent), and isMember(Agent, Group)). Additionally, the StorageAc-
cessManager class also provides an executeRemoteQuery(remotePeer, query)

method which can be used to execute a subset of these queries on the KBs of a
user’s peers, and add the information returned to the user’s KB in accordance
with the access control policies in place.

Automatic Generation of API to Access KB. We have designed a tool
to alleviate the burden of developers who want to extend the core model of
Yarta to develop their own applications. Specifically, this tool takes an RDF
model representing the types of resources in the application and the relationships
between them, and generates source files which provide an object-oriented API
over the knowledgebase. The facility is akin to those provided by toolkits used by
developers interacting with database systems [11]. Note that an essential feature
of an API generator for Yarta is the support for multiple inheritance, a feature
provided by RDF, but not natively supported by languages such as Java.

Extracting Data from Social Sensors. We have designed the Data Extraction
Manager to populate the user’s KB by extracting data from two distinct types
of sources. The first already contain social links such as “friendship” in addition
to general information, while the second do not contain social links, but may
contain information which can be correlated to infer social links. For the former,
adapters can be written in their API to import their data into Yarta; while
for the latter, we need to employ inference algorithms to correlate data and
guess/recommend social links. The structure of the Data Extraction Manager is
modular to allow for plug-and-play behavior of adapters.

3.3 Controlling Access to MSE Knowledge

Yarta provides a flexible and powerful support for access control, which can be
fine-tuned based on the social preferences of the user. In particular, it adopts

7

semantic policies to define access directives. Policies are completely decoupled
from both the application logic and the KB management, to allow fine-grained
and customizable security behavior. Policies allow read/add/remove actions on
triples or graphs (i.e., sets of triples) and are modeled based on the socially aware
policy model presented in [19]. As a key feature, they define access rules to data
based on social information. Policies are currently represented as a combination
of SPARQL queries and RDF statements. For the sake of conciseness we do not
describe the policy model in detail, but refer the reader to [19].

The Yarta middleware includes a dedicated component for the definition,
management, evaluation and enforcement of access control policies over the KB,
called Policy Manager. The Policy Manager intercepts any tentative access ac-
tion on the KB, and performs reasoning on defined policies and the access re-
quest’s context (e.g., relation with the requester, properties of resource, etc.) to
determine whether the action is permitted.

3.4 Supporting Decentralized and Heterogeneous Environments

Yarta is designed to execute in ubiquitous environments, characterized by a high
degree of heterogeneity in both connectivity options and harware platform. In
addition, it does not assume any centralized server to collect and manage the
user’s data, nor to perform any other social functionality, as detailed below.

Communicating over Heterogeneous Networks. Yarta is supported by
a multi-platform communication layer that offers both synchronous and asyn-
chronous messaging support over multi-radio links, and supports data transfer
over heterogeneous network interfaces and connecting technologies, even in case
of temporary disconnections due to user mobility. In addition, it provides support
for network-agnostic service/device naming and discovery. Yarta also implements
base security features via authentication and confidentiality mechanisms.

Execution on Multiple Mobile Platforms. Yarta is developed in Java to
take maximum advantage of portability across mobile platforms. Yarta can exe-
cute on different nodes: smart phones running Android, and laptops/workstations
with different operating systems thanks to the language portability. This applies
to all middleware components and actually allows the deployment of the whole
platform on resource-constrained devices, without the need for an external proxy
handling semantic processing.

4 Implementation and Evaluation

4.1 Implementation Details

The Yarta middleware prototype [22] is written in Java2 SE and has been de-
ployed both on laptops running Windows/Mac OS, and on smart phones running
Android. In the laptop prototype, both the Knowledge Base and the Policy Man-
ager rely on capabilities offered by the Jena Semantic Web Framework [13]. The

8

KB currently uses the filesystem as a backing store. For the Android prototype
we exploit Androjena7, an Android-compatible port of the Jena framework.

As a first implementation of the Data Extraction Manager’s social sensors,
we wrote adapters for Facebook and LinkedIn using their native APIs. For the
data sources which are not intrinsically social, we implemented adapters which
used the data stored in the user’s phone contacts, and correlated it with his
call logs and SMS logs to draw some basic inference about the contacts whom a
user “knows”. This work is at an early stage, but the modular architecture of the
data extraction manager is found to be suitable for easily writing more adapters,
or testing better inference algorithms. To help developers in extending the core
Yarta model to for their application, we have implemented the API generator
discussed in Section 3 by extending the Jastor8 toolkit. For Android phones,
we also provided a wrapper of the storage and access manager in the form of a
ContentProvider, the standard way for Android applications to access data.

Finally, we exploit the iBICOOP middleware [2] as part of our Communica-
tion Manager and Naming/Discovery Manager to provide discovery and messag-
ing abilities. Yarta services residing on mobile devices are accessed through their
iBICOOP URL (iBIURL), created by combining the userID and deviceURI from
our model with the Yarta application name and the specific service needed.

4.2 System Evaluation

To evaluate Yarta, we collected data on both the scalability of the core features
provided by Yarta, as well as the development effort involved in building new
applications on top of it.

Performance and Scalability Evaluation. To evaluate the scalability of
Yarta, we profiled its behavior during several operations, including those for
adding a new person to the KB, adding a KB from a file, retrieving a person
and his aquaintences from the KB, and performing operations on a remote node.

For each of the above methods, we measured the time taken for their execu-
tion on the Google Nexus One mobile phones running Android 2.2 OS, with a
1 GHz processor and 512 MB of RAM. We used KB sizes ranging from 1 to 1001
entries in increments of 100, with 5 applicable access control policies in place,
and averaged the times taken in performing the operations for 10 runs.

We present the observations from our experiments in Figures 2 and 3. Fig-
ure 2(a) illustrates the time taken for adding information in the KB from a file,
and the time taken for reading one person from that KB after that. Note that
although the times increase with the size of the KB, the time taken for the
interactive getPersonByUID method is well within the 5 second interactive UI
response time limit used by the Android OS. The same can be seen for the inter-
active addPerson method profiled in Figure 2(b). Further, Figure 3(a) presents
the amount of time taken for getting the list of persons known by someone (set
to return 50 persons in the KB), which was seen to take inordinately long times

7 http://code.google.com/p/androjena/
8 http://jastor.sourceforge.net

9

(a) (b)

Fig. 2. Time taken for loadKB and then a)getPerson b) addPerson

(a) (b)

Fig. 3. Time taken for a) getPersonsKnownBy and b) remoteGetAllPersons

for the user to wait. Since Android allows lists to be populated in an incremental
manner as data flows in, this may be used to mitigate the slow response time of
this operation. Finally, Figure 3(b) provides the details of the time taken in the
various steps of getting the list of all the persons in the KB of another peer. We
have noted the time taken for reading the remote KB and writing the informa-
tion in the local KB, with the latter being higher since Jena performs duplication
checks at write time. Note also the time taken by Android in garbage collection
during the read and write operations. After inspecting and optimizing our code,
we believe that the next step would be to improve the Androjena library so
that it uses memory more efficiently. The other operations were also seen to
perform within acceptable time bounds with similar profiles. On the laptop,
we observed similar trends in the times taken, but the actual times taken were
much less, owing to better hardware.

Developing mobile social applications on top of Yarta. To showcase the
real-world applicability of our approach and the extensible nature of our mid-
dleware discussed in Section 3, we developed two proof-of-concept applications
that allow mobile users to perform various social activities in different scenar-

10

ios discussed in Section 1 – a Conference Mate app to assist the attendees of a
conference, and a FIFA app to allow the fans attending a football match.
Extending the Data Model. For both applications we extended the Yarta data
model to include concepts specific of each scenario. Extension proceeds by sub-
classing RDF classes/properties and possibly importing other (portions of) on-
tologies, provided that they are compliant with the base model. Extensions in-
cluded subclasses of Event (Talk, Coffee Break and Meeting) for the Conference
Mate app, and Match as a subclass of Event for the FIFA app. For the sake
of brevity, we do not mention all the defined classes and properties here. After
defining the data model, we created access control policies for the MSE data, in-
cluding complex application-specific policies such as “any friend (person I know)
that supports my team is allowed to read the list of my friends who also support
the same team, as well as their affiliation to my fan club” for the FIFA app.
Writing the Application Code. The first step toward the development of an ap-
plication is the extension of the Storage and Access Manager to incorporate the
extensions made to the model. For this purpose, we used the automatic code
generation tool described in Section 3.2. This greatly helped reduce the pro-
grammer’s burden, since the ∼ 5000 lines of code for the new API for the FIFA
app were automatically generated, for example. Overall, this auto-generated code
constituted ∼ 70% of the total code of the apps, with the developer-written code
mostly implementing a user interface over the API provided by Yarta.

In summary, our evaluations show that Yarta performs well in terms of effi-
ciency and expressiveness, the two main desirable properties of middleware.

5 Conclusions and Future Work

In this paper, we presented Yarta, a novel middleware for supporting complex
mobile social ecosystems of the not-so-distant future. Our middleware allows
knowledge exchange between users and between applications, and provides flex-
ible policies controlling access to MSE data based on users’ social preferences.
Yarta implements a set of components that allow social information storage and
retrieval, automatic generation of code for mobile social applications, and extrac-
tion of social data from available social sensors. It can execute on smart phones
and laptops and is able to communicate over heterogenous wireless networks. We
demonstrated the efficacy and usability of our middleware by providing an ex-
tensive evaluation of the middleware and two prototype applications, running on
Android phones, that we developed on top of it. We are currently working on the
Yarta middleware along several directions, including developing more advanced
algorithms to extract MSE from location/context data sets, providing the KB a
database backing store, and improving performance on mobile phones.

References

1. Ben Mokhtar, S., Capra, L.: From pervasive to social computing: algorithms and
deployments. In: ICPS ’09: Proceedings of the 2009 international conference on
Pervasive services. ACM (2009)

11

2. Bennaceur, A., Singh, P., Raverdy, P.G., Issarny, V.: The ibicoop middleware:
Enablers and services for emerging pervasive computing environments. In: PerCom
Workshops. pp. 1–6 (2009)

3. Böhm, S., Koolwaaij, J., Luther, M., Souville, B., Wagner, M., Wibbels, M.: In-
troducing iyouit. In: International Semantic Web Conference. pp. 804–817 (2008)

4. Churchill, E.F., Halverson, C.A.: Guest editors’ introduction: Social networks and
social networking. IEEE Internet Computing (2005)

5. The Diaspora Project (last visited: May 2010), http://www.joindiaspora.com/
6. Dublin Core metadata element set, version 1.1 (last visited: May 2010),

http://dublincore.org/documents/dces/
7. Friend of a Friend (last visited: Mar 2010), http://www.foaf-project.org/
8. Foth, M.: Facilitating social networking in inner-city neighborhoods. IEEE Com-

puter 39(9), 44–50 (2006)
9. Grob, R., Kuhn, M., Wattenhofer, R., Wirz, M.: Cluestr: mobile social networking

for enhanced group communication. In: GROUP ’09: Proceedings of the ACM 2009
international conference on Supporting group work. pp. 81–90 (2009)

10. Gupta, A., Kalra, A., Boston, D., Borcea, C.: MobiSoC: a middleware for mobile
social computing applications. Mob. Netw. Appl. (2009)

11. Hibernate, relational persistence for java and .net. http://www.hibernate.org/
12. Ioannidis, S., Chaintreau, A., Massoulié, L.: Distributing content updates over a

mobile social network. ACM SIGMOBILE Mobile Computing and Communica-
tions Review 13(1), 44–47 (2009)

13. Jena (last visited: May 2010), http://jena.sourceforge.net/
14. Jones, Q., Grandhi, S.A.: P3 systems: Putting the place back into social networks.

IEEE Internet Computing 9(5), 38–46 (2005)
15. Kourtellis, N., Finnis, J., Anderson, P., Blackburn, J., Borcea, C., Iamnitchi., A.:

Prometheus: User-controlled p2p social data management for socially-aware appli-
cations. In: 11th ACM/IFIP/Usenix Middleware Conference (2010)

16. Pietiläinen, A., Oliver, E., LeBrun, J., Varghese, G., Diot, C.: MobiClique: mid-
dleware for mobile social networking. In: Proceedings of the 2nd ACM workshop
on Online social networks. pp. 49–54. ACM (2009)

17. Rana, J., Kristiansson, J., Hallberg, J., Synnes, K.: An architecture for mobile so-
cial networking applications. In: Computational Intelligence, Communication Sys-
tems and Networks. CICSYN ’09. First International Conference on. pp. 241–246
(July 2009)

18. Seong, S.W., Seo, J., Nasielski, M., Sengupta, D., Hangal, S., Teh, S.K., Chu, R.,
Dodson, B., Lam, M.S.: Prpl: a decentralized social networking infrastructure. In:
MCS ’10: Proceedings of the 1st ACM Workshop on Mobile Cloud Computing and
Services. pp. 1–8 (2010)

19. Toninelli, A., Montanari, R., Lassila, O., Khushraj, D.: What’s on users’ minds?
toward a usable smart phone security model. Pervasive Computing, IEEE 8(2),
32–39 (April-June 2009)

20. Toninelli, A., Pathak, A., Seyedi, A., Cardoso, R.S., Issarny, V.: Middleware sup-
port for mse management. In: Proceedings of the 2nd IEEE International Workshop
on Middleware Engineering, to be held with COMPSAC 2010 (2010)

21. Tran, M., Han, J., Colman, A.: Social context: Supporting interaction awareness
in ubiquitous environments. In: Mobile and Ubiquitous Systems: Networking &
Services, MobiQuitous, 2009. MobiQuitous ’09. 6th Annual International. pp. 1–
10 (July 2009)

22. Yarta (last visited: May 2010), https://gforge.inria.fr/projects/yarta/

