

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. SCI. COMPUT. c\bigcirc 2019 Society for Industrial and Applied Mathematics
Vol. 41, No. 5, pp. C522--C547

SCALABLE LINEAR SOLVERS BASED ON ENLARGED KRYLOV
SUBSPACES WITH DYNAMIC REDUCTION OF SEARCH

DIRECTIONS\ast

LAURA GRIGORI\dagger AND OLIVIER TISSOT\dagger

Abstract. Krylov methods are widely used for solving large sparse linear systems of equations.
On distributed architectures, their performance is limited by the communication needed at each
iteration of the algorithm. In this paper, we study the use of so-called enlarged Krylov subspaces
for reducing the number of iterations, and therefore the overall communication, of Krylov methods.
In particular, we consider a reformulation of the conjugate gradient method using these enlarged
Krylov subspaces: the enlarged conjugate gradient method. We present the parallel design of two
variants of the enlarged conjugate gradient method, as well as their corresponding dynamic versions,
where the number of search directions is dynamically reduced during the iterations. For a linear
elasticity problem with heterogeneous coefficients, using a block Jacobi preconditioner, we show
that this implementation scales up to 16, 384 cores and is up to 6.9 times faster than the PETSc
implementation of PCG.

Key words. Krylov subspace methods, conjugate gradient, communication reducing algorithms

AMS subject classifications. 65F10, 68W10

DOI. 10.1137/18M1196285

1. Introduction. The discretization of partial differential equations, used to
model physical phenomena, or optimization problems leads to linear systems of the
form Ax = b, where A is a sparse matrix. When A becomes very large, iterative
methods based on Krylov subspaces are the method of choice [32]. In this paper, we
consider the case where A \in \BbbR n\times n is symmetric (A\top = A) positive definite (x\top Ax > 0
for all x \not = 0). The conjugate gradient method [19], and its preconditioned form, is a
well-known method for solving such linear systems.

However, solving these linear systems efficiently on large scale computers remains
a challenging problem. One difficulty is the high cost of communication compared
to the computation on these machines [7, 6]. Recently, a lot of effort has been put
into enhancing the performance of Krylov methods by avoiding global communication
[4, 3], overlapping communication with computation [13], or decreasing the number
of iterations by searching in multiple directions at once [33, 14]. In this paper, we
focus on the third approach, more precisely on the enlarged conjugate gradient (ECG)
method [14, 16].

After recalling Orthodir and Orthomin variants of ECG, we show the explicit
link between the two methods. This gives a rigorous justification of an observation
already made concerning the robustness of Orthodir compared to Orthomin in [16]
in the case when the search directions are A-orthogonalized as in formula (2.8) given

\ast Submitted to the journal's Software and High-Performance Computing section July 3, 2018;
accepted for publication (in revised form) June 7, 2019; published electronically October 11, 2019.

https://doi.org/10.1137/18M1196285
Funding: This work was supported by the NLAFET project as part of the European Union's

Horizon 2020 research and innovation program under grant agreement 6716334. The computational
resources were provided by the High Performance Computing Center North (HPC2N) at Ume\r a
(Sweden) and the National Energy Research Scientific Computing Center (NERSC) at Berkeley
(U.S.), which is supported by the Office of Science of the U.S. Department of Energy under contract
DE-AC02-05CH11231.

\dagger INRIA Paris, Sorbonne Universit\'e, Universit\'e Paris-Diderot SPC, CNRS, Laboratoire Jacques-
Louis Lions, ALPINES team (laura.grigori@inria.fr, olivier.tissot@inria.fr).

C522

D
ow

nl
oa

de
d

01
/2

3/
20

 to
 1

28
.9

3.
65

.2
16

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1137/18M1196285
mailto:laura.grigori@inria.fr
mailto:olivier.tissot@inria.fr

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SCALABLE ENLARGED KRYLOV SOLVERS C523

in the following section. However, we note that we do not study here the maximum
attainable accuracy of the two variants. In [22], the authors consider the GMRES
method and they show that Orthomin is better from this point of view in this case.
We, however, study theoretically the convergence behavior of ECG, assuming exact
arithmetic. We greatly improve the previous result in [14] and show that ECG acts
as if the smallest eigenvalues were somehow deflated. Then we present the parallel
design of ECG. We consider both Orthodir and Orthomin variants, as well as dynamic
versions of these variants that reduce dynamically the number of search directions
in order to reduce the extra arithmetic cost in ECG compared to standard CG. In
practice, we observe that enlarging the Krylov subspaces can drastically reduce the
number of iterations. Indeed, in the numerical experiments it is used with a block
Jacobi preconditioner and acts as a second level that, in a way, deflates the smallest
eigenvalues; this is in accordance with the theory. This leads to a significant speed-up
over standard PCG. For instance, for a 3D linear elasticity problem with heterogeneous
coefficients with 4.5 million unknowns and 165 million nonzero entries, we observe that
ECG is up to 5.7 times faster than the PETSc implementation of PCG, both using
a block Jacobi preconditioner. This test case is known to be difficult because the
standard one-level preconditioners are not expected to be very effective [34]. As it
increases the arithmetic intensity and reduces the communication, it is well suited for
modern and future architectures that exhibit massive parallelism. For the previous
elasticity problem, we show that the method can scale up to 16, 384 threads, each
one being bound to one physical core, which means that each core owns nearly 280
unknowns.

In summary, the contributions of the paper are the following. We provide a
rigorous justification of the lack of robustness of Orthomin compared to Orthodir
observed experimentally in [16]. We give a proof of the speed of convergence of ECG
which greatly improves the previous existing result presented in [14]. This shows that
ECG acts as a second-level preconditioner that mitigates the effect of the smallest
eigenvalues on the convergence of the iterative method. Hence it is sufficient to
use as preconditioner a highly parallel method such as block Jacobi which bounds
the largest eigenvalue of the preconditioned matrix. Finally, we introduce a parallel
design embedding several variations of ECG whose scalability is assessed on different
matrices and up to 16, 384 cores. We want to point out that our aim is not to
design a specific solver for elliptic partial differential equations such as GenEO [34]
or multigrid preconditioners with some tuning. For a detailed comparison of such
solvers, we refer the reader to Jolivet's thesis [23]. It is very likely that for these test
cases, these solvers are more effective than ECG with a block Jacobi preconditioner.
Nevertheless, unlike these methods, ECG is an algebraic method. It does not require
any information from the underlying partial differential equation and does not rely on
any assumption, except that the matrix is symmetric positive definite (SPD). Hence
it can be seen as a black-box solver and integrated very easily in any existing code.

2. Enlarged Krylov conjugate gradients.

2.1. Block Krylov methods. In 1980, O'Leary introduced the block CG
method [29] for solving SPD systems with several right-hand sides. In this semi-
nal paper, she proved that block CG can converge significantly faster than CG. This
idea was then generalized and extended to other standard Krylov methods, such as
GMRES [30, 27] or BiCGSTAB [12]. Later, Gutknecht [17] introduced a general
framework for defining block Krylov subspaces.

Recently, block Krylov methods have received increasing attention in the HPC

D
ow

nl
oa

de
d

01
/2

3/
20

 to
 1

28
.9

3.
65

.2
16

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C524 LAURA GRIGORI AND OLIVIER TISSOT

Fig. 1. Illustration of the ordering of A into eight subdomains obtained with METIS [25] and
several admissible splittings of r0 into three vectors.

field [24, 33, 26]. They appear to be well suited for modern computers' architectures
with a high level of parallelism because they allow one to reduce the number of global
synchronizations, while also featuring a higher arithmetic intensity at the cost of some
extra computations.

2.2. Enlarged Krylov subspaces. In [14], the authors define so-called en-
larged Krylov subspaces. First, the matrix A is reordered by partitioning its graph
into \scrN subdomains (using METIS [25], for example). Then the initial residual r0 is

split into t vectors denoted by Re
0
(i), 1 \leq i \leq t. In the original paper, the authors

use t = \scrN . It is important to note that the case t < \scrN can be dealt with many
ways as long as r0 =

\sum t
i=1 R

e
0
(i) (Figure 1). This is of particular interest in practice

because typically \scrN will correspond to the number of MPI processes. The parameter
t is called the enlarging factor. In practice, for a given t, we have performed numerical
experiments which show that the splitting of r0 does not have any significant impact
on the convergence of the method. The intuition behind this observation is that all
the admissible splittings that we considered are equivalent up to a renumbering of
the domains. In the numerical experiments, we construct the initial enlarged residual
Re

0 = [Re
0
(1), . . . , Re

0
(t)] as the leftmost example in Figure 1.

Then the enlarged Krylov subspace of order k denoted by \scrK k,t(A, r0) is defined
as the block Krylov subspace of order k associated to A and the enlarged residual Re

0.
More precisely, and following the notation introduced in [17],

\scrK k,t(A, r0) = \scrK \square
k (A,Re

0)(2.1)

= span\square
\bigl\{
Re

0, ARe
0, . . . , A

k - 1Re
0

\bigr\}
.(2.2)

Using this definition and following [16], it is possible to derive two variants (Or-
thomin and Orthodir) of the enlarged conjugate gradient (ECG) algorithm (Algorithm
2.1). More precisely, the enlarged approximate solution is a matrix of size n \times t de-
noted by Xk, and the sum of its columns gives the approximate solution of the original
system. We denote by Rk the enlarged approximate residual, and similarly we obtain
the approximate residual of the original system by summing its columns. Pk is a ma-
trix of size n\times t called search directions; it corresponds to the A-orthonormalization

D
ow

nl
oa

de
d

01
/2

3/
20

 to
 1

28
.9

3.
65

.2
16

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SCALABLE ENLARGED KRYLOV SOLVERS C525

of another matrix of size n \times t that we denote by Zk. In fact, the algorithms first
construct Zk and then Pk, which is used for updating both the approximated solution
and the residual. We denote by \alpha k the optimal step; unlike in the CG algorithm, it
is not a scalar but a matrix of size t\times t. Depending on the method for constructing
Zk+1, it is possible to derive two variants of ECG: Orthomin and Orthodir.

Orthomin (Omin) corresponds to block CG [29]:

\beta k = (APk)
\top Rk,(2.3)

Zk+1 = Rk - Pk\beta k.(2.4)

This method is very similar to the one originally proposed by Hestenes and Stiefel
[19] because it constructs the new descent directions Zk+1 using Rk and Pk.

Orthodir (Odir) corresponds to the block Lanczos algorithm but with the inner
product induced by A:

\gamma k = (APk)
\top (APk),(2.5)

\rho k = (APk - 1)
\top (APk),(2.6)

Zk+1 = APk - Pk\gamma k - Pk - 1\rho k.(2.7)

It is the block equivalent of the homonym method defined in [1]. Unlike the previous
variant, Zk+1 is constructed using Pk and Pk - 1.

Both Orthodir and Orthomin produce Zk+1, which is A-orthogonal to Pi for i \leq k.
Then the search directions Pk+1 are defined as

(2.8) Pk+1 = Zk+1(Z
\top
k+1AZk+1)

 - 1/2.

Unlike the CG algorithm, a breakdown occurs if Z\top
k+1AZk+1 is singular, i.e., Zk+1

is not full rank. Although rare, this situation can happen in practice, and several
variants have been developed in order to handle this case [21, 16, 11, 29]. Overall,
both Orthomin and Orthodir generate Pk+1 such that

P\top
k+1APi = 0 \forall i \leq k,(2.9)

P\top
k+1APk+1 = I.(2.10)

Consequently, the ECG method can be summarized in Algorithm 2.1. Another
difference with the original block CG algorithm is that the search directions are A-
orthonormalized at each iteration: Pk is used as search directions instead of Zk. It has
been shown numerically that using this variant can increase the numerical stability
of the method [11].

Given a preconditioner M - 1, the idea for applying left preconditioning to the
(block) CG method is to remark that M - 1A is self-adjoint with respect to the M -
inner product [32]. Then, by replacing the occurrences of A by M - 1A and the occur-
rences of the transpose sign \top by \top M in the algorithm (Algorithm 2.1), it follows the
preconditioned ECG method. In fact, some simplifications occur and the algorithm
remains exactly the same, except the definition of Zk, which is slightly different. More
precisely, it follows that the preconditioned Orthomin method corresponds to

\beta k = (APk)
\top M - 1Rk,(2.11)

Zk+1 = M - 1Rk - Pk\beta k(2.12)

D
ow

nl
oa

de
d

01
/2

3/
20

 to
 1

28
.9

3.
65

.2
16

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C526 LAURA GRIGORI AND OLIVIER TISSOT

and the preconditioned Orthodir method corresponds to

\gamma k = (APk)
\top (M - 1APk),(2.13)

\rho k = (APk - 1)
\top (M - 1APk),(2.14)

Zk+1 = M - 1APk - Pk\gamma k - Pk - 1\rho k.(2.15)

In both cases, the initialization also slightly differs because Z1 = M - 1Re
0. Overall,

the preconditioner is applied once per iteration, as in the standard CG method.

Algorithm 2.1. Preconditioned ECG algorithm.

1: P0 = 0, R0 = Re
0, Z1 = M - 1R0

2: for k = 1, . . . , kmax do
3: Pk = Zk(Z

\top
k AZk)

 - 1/2

4: \alpha k = P\top
k Rk - 1

5: Xk = Xk - 1 + Pk\alpha k

6: Rk = Rk - 1 - APk\alpha k

7: if | |
\sum t

i=1 R
(i)
k | | 2 < \varepsilon then

8: stop
9: end if

10: construct Zk+1 using (2.11)--(2.12) (Orthomin) or (2.13)--(2.15) (Orthodir)
11: end for
12: xk =

\sum t
i=1 X

(i)
k

2.3. Equivalence between Orthodir and Orthomin. In what follows, we
assume exact arithmetic and we study the connection between these two methods
with the aim of deriving formulas that link the approximate quantities of both vari-
ants. Indeed, by construction the approximate solutions computed by Orthodir and
Orthomin are equal. Hence the approximate residuals are also equal. But this does
not imply that the search directions generated are equal even if they belong to the
same space. We denote with a tilde the variables related to Orthomin and with a hat
the variables related to Orthodir; e.g., \widehat Pk are the A-orthonormalized search directions
generated during Orthodir.

For the sake of brevity, we only consider the case where no breakdowns occur so
that \widehat Zk, \widehat Pk and \widetilde Zk, \widetilde Pk are all well-defined.

Since Orthomin and Orthodir rely on the same projection process [16] (they
both search an approximate solution in \scrK t,k, such that the corresponding residual

is orthogonal to \scrK t,k), we know that \widehat Xk = \widetilde Xk. It follows that\widehat Pk\widehat \alpha k = \widetilde Pk\widetilde \alpha k,(2.16) \widehat Pk
\widehat P\top
k = \widetilde Pk

\widetilde P\top
k .(2.17)

Hence there exists \delta k \in \BbbR t\times t orthogonal and such that \widetilde Pk = \widehat Pk\delta k.
A simple computation using the previous relationships gives\widehat Zk+1\delta k\widetilde \alpha k = A \widetilde Pk\widetilde \alpha k - \widehat Pk

\widehat P\top
k AA \widetilde Pk\widetilde \alpha k - \widehat Pk - 1

\widehat P\top
k - 1AA \widetilde Pk\widetilde \alpha k,(2.18)

= A \widetilde Pk\widetilde \alpha k - \widetilde Pk
\widetilde P\top
k AA \widetilde Pk\widetilde \alpha k - \widetilde Pk - 1

\widetilde P\top
k - 1AA \widetilde Pk\widetilde \alpha k.(2.19)

On the other hand, by the definition of ECG we have

(2.20) Rk - Rk - 1 = - A \widetilde Pk\widetilde \alpha k

D
ow

nl
oa

de
d

01
/2

3/
20

 to
 1

28
.9

3.
65

.2
16

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SCALABLE ENLARGED KRYLOV SOLVERS C527

and

(2.21) \widetilde P\top
k - 1ARk = 0.

Hence it follows that

 - \widehat Zk+1\delta k\widetilde \alpha k = Rk - \widetilde Pk
\widetilde P\top
k ARk - Rk - 1 + \widetilde Pk - 1

\widetilde P\top
k - 1ARk - 1 + \widetilde Pk

\widetilde P\top
k ARk - 1(2.22)

= Rk - \widetilde Pk
\widetilde \beta k - \widetilde Zk + \widetilde Pk

\widetilde P\top
k ARk - 1(2.23)

and, furthermore,

\widetilde Pk
\widetilde P\top
k ARk - 1 = \widetilde Zk(\widetilde Z\top

k A \widetilde Zk)
 - 1 \widetilde Z\top

k ARk - 1(2.24)

= \widetilde Zk(\widetilde Z\top
k A \widetilde Zk)

 - 1 \widetilde Z\top
k A \widetilde Zk(2.25)

= \widetilde Zk.(2.26)

Indeed, a direct computation gives

\widetilde Z\top
k A \widetilde Zk = \widetilde Z\top

k A(Rk - 1 - \widetilde Pk - 1
\widetilde P\top
k - 1ARk - 1)(2.27)

= \widetilde Z\top
k ARk - 1(2.28)

because by construction \widetilde Z\top
k A \widetilde Pk - 1 = 0. Thus, we have

(2.29) \widetilde Zk+1 = - \widehat Zk+1\delta k\widetilde \alpha k.

This result is a generalization of a previous result presented by Ashby, Man-
teuffel, and Saylor [1, p. 1550] for standard CG. In fact, the authors show that\widetilde zk = \Pi k

i=0(- \widetilde \alpha k)\widehat zk, but they never consider explicitly the A-orthonormalized search
directions. In particular, they define zk+1 using zk (for Omin) and zk - 1 (for Odir).
This explains the slight difference between our generalization and their result.

When k becomes large, \widetilde \alpha k = \widetilde P\top
k Rk - 1 and | | \widetilde \alpha k| | 2 is more likely to be small

because Rk - 1 is supposed to converge to 0 and \widetilde Pk is A-orthonormalized---the same
reasoning applies for \widehat \alpha k. This result is very interesting because it shows that, since \delta k
is an orthogonal matrix, when k becomes large, | | \widetilde Zk+1| | 2 can be significantly smaller

than | | \widehat Zk+1| | 2. Hence the conditioning of \widetilde Z\top
k+1A

\widetilde Zk+1 could be much worse than

that of \widehat Z\top
k+1A

\widehat Zk+1, possibly leading to a breakdown when computing its Cholesky
factorization (line 5 in Algorithm 2.1). It is remarkable to notice that even for the
standard CG method, this has already been noticed by Ashby, Manteuffel, and Saylor
in [1, pp. 1551--1552]: ``If BCA1 is indefinite, Omin may still be used, but the previous
direction vector, \^pi - 1, should be stored. Then, if \widehat \alpha i = 0 (or is nearly zero), control can
switch to the 3-term recursion of Odir to get pi+1."" In practice, this phenomenon is
indeed observed: there are cases where Orthomin breaks down while Orthodir does not
[16]. In conclusion, Orthodir is expected to be more reliable than Orthomin. However,
Orthodir is also more costly than Orthomin: the construction of Zk+1 requires twice
as many flops and memory as for Orthomin.

1B denotes the SPD matrix that represents the scalar product, i.e., A. C denotes the precondi-
tioner, i.e., M - 1. And A denotes the SPD matrix associated to the system.

D
ow

nl
oa

de
d

01
/2

3/
20

 to
 1

28
.9

3.
65

.2
16

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C528 LAURA GRIGORI AND OLIVIER TISSOT

2.4. Convergence study. As previously mentioned, O'Leary [29] proved that
block CG can converge significantly faster than standard CG. In [14], it is proved
that ECG converges at least as fast as CG, but there is no further information on the
speed of convergence of ECG.

In what follows, we derive a much sharper bound for ECG's convergence. It
is, however, very likely that this new bound is still too pessimistic compared to the
real convergence of the method. In particular, it is well known that the correspond-
ing bound for the CG method derived using a Chebyshev polynomial does not take
into account the nonlinear behavior of the convergence of the method [28]. In fact,
the results that exist for describing the error of the CG method completely are not
straightforward to generalize to the block CG method and hence to the ECG method.
Furthermore, in order to simplify the analysis we neglect round-off errors, and it is
also well known that they can significantly impact the convergence of the CG method
[28]. However, the theoretical study of the behavior of the ECG method in finite
arithmetic is out of the scope of the present paper. Our aim is to make a first step in
understanding the convergence behavior of the ECG method, but we are aware that
a lot remains to be done.

This section is dedicated to the proof of the following result.

Theorem 2.1. Let xk be the approximate solution given by the ECG method in
exact precision with an enlarging factor t at step k \geq 1. Then we have

(2.30) | | xk - x\ast | | A \leq | | \^e0| | A min
p\in \BbbP k

1

max
i\in \{ t,...,n\}

| p(\lambda i)| ,

where \BbbP k
1 denotes the set of polynomials of degree at most k and such that p(0) \equiv 1,

and \^e0 is a constant independent of k defined as

(2.31) \^e0 \equiv E0(\Phi
\top
1 E0)

 - 1

\left(
0
...
0
1

\right) ,

where E0 denotes the initial enlarged error and \Phi 1 =
\bigl(
\phi 1 . . . \phi t

\bigr)
denotes the matrix

whose columns are the t eigenvectors associated to the smallest eigenvalues of A.

Proof. In [14], it is shown that the approximate solution of ECG at iteration
k \geq 1, denoted by xk, verifies

(2.32) | | x\ast - xk| | A = min
y\in \scrK k,t(A,r0)

| | x\ast - y| | A.

Our strategy is to find a y \in \scrK k,t(A, r0) that satisfies

(2.33) | | x\ast - y| | A \leq C min
p\in \BbbP k

1

max
i\in \{ t,...,n\}

| p(\lambda i)| ,

where C is a constant which does not depend on k. For any element z of \scrK k,t(A, r0),
the error x\ast - z reads as

(2.34) x\ast - z =

t\sum
j=1

pkj(A)E
(j)
0 ,

where pkj is a polynomial of degree not exceeding k, and E
(j)
0 denotes the jth column

of the initial enlarged error, denoted by E0.

D
ow

nl
oa

de
d

01
/2

3/
20

 to
 1

28
.9

3.
65

.2
16

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SCALABLE ENLARGED KRYLOV SOLVERS C529

Let \Phi \Lambda \Phi \top be the spectral decomposition of A, i.e, A = \Phi \Lambda \Phi \top , where the ei-
genvalues are sorted in an increasing order in the diagonal matrix \Lambda , and the col-
umns of \Phi are the corresponding eigenvectors such that \Phi is orthonormal. We fur-
ther denote \Lambda 1 = diag(\lambda 1, . . . , \lambda t), \Lambda 2 = diag(\lambda t+1, . . . , \lambda n) and \Phi 1 =

\bigl(
\phi 1 . . . \phi t

\bigr)
,

\Phi 2 =
\bigl(
\phi t+1 . . . \phi n

\bigr)
.

Let

(2.35) \^e0 \equiv E0(\Phi
\top
1 E0)

 - 1

\left(
0
...
0
1

\right) .

It directly follows that

(2.36) \^e0 = \Phi \Phi \top \^e0 = \phi t +\Phi 2\Phi
\top
2 \^e0.

Indeed, by construction \^e0 is the vector in Range(E0) = span\{ E(1)
0 , . . . , E

(t)
0 \} such

that its orthogonal projection onto Range(\Phi 1) is exactly equal to \phi t [31, Lemma 4].

In particular, there exist t real numbers \zeta 1, . . . , \zeta t such that \^e0 =
\sum t

j=1 \zeta jE
(j)
0 . Thus,

if we choose pkj \equiv \zeta jpk in (2.34), where pk \in \BbbP k
1 , we can define y \in \scrK k,t(A, r0) such

that

(2.37) x\ast - y \equiv pk(A)\^e0.

Given our choice of \^e0, we have

x\ast - y = \Phi pk(\Lambda)\Phi
\top \^e0(2.38)

= \Phi pk(\Lambda)\Phi
\top (\phi t +\Phi 2\Phi

\top
2 \^e0)(2.39)

= \phi tpk(\lambda t) + \Phi 2pk(\Lambda 2)\Phi
\top
2 \^e0.(2.40)

Thus, we finally obtain the desired bound

(2.41) | | x\ast - y| | A \leq | | \^e0| | A min
p\in \BbbP k

1

max
i\in \{ t,...,n\}

| p(\lambda i)| .

It is possible to use Chebyshev polynomials [29, 32] to bound the min-max quan-
tity

(2.42) min
p\in \BbbP k

1

max
t\leq i\leq n

| p(\lambda i)| \leq 2

\biggl(\surd
\kappa t - 1
\surd
\kappa t + 1

\biggr) k

,

where \kappa t =
\lambda n

\lambda t
.

Corollary 2.2. Let xk be the approximate solution given by the ECG method
with an enlarging factor t at step k \geq 1. Then we have

(2.43) | | xk - x\ast | | A \leq 2| | \^e0| | A
\biggl(\surd

\kappa t - 1
\surd
\kappa t + 1

\biggr) k

,

where \^e0 is defined by (2.31), and \kappa t =
\lambda n

\lambda t
.

D
ow

nl
oa

de
d

01
/2

3/
20

 to
 1

28
.9

3.
65

.2
16

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C530 LAURA GRIGORI AND OLIVIER TISSOT

This final result is similar in its form to the following well-known result for the
CG method: a constant independent of k, 2| | \^e0| | A multiplied by a geometric factor,\bigl(
(
\surd
\kappa t - 1)/(

\surd
\kappa t + 1)

\bigr) k
. The main difference is that the geometric factor can be

much smaller for ECG, especially if \lambda 1 \ll \lambda t. In fact, this geometric factor looks
similar to that of the deflated CG method [10]. This method can be seen as applying
the CG method on the so-called deflated operator. This deflated operator is the same
as the original one, except that some of its (smallest) eigenvalues are shifted to be
equal to 1.2 Thus, it allows one to remove the possibly bad effect of these eigenvalues
on the convergence. However the main drawback of the deflated CG method is that
it requires the knowledge of these eigenvalues and their corresponding eigenvectors.
Furthermore, assuming that t vectors are deflated, Dost\'al [10] proved the following:

(2.44) \kappa (\~A) \leq \lambda n\sqrt{}
(1 - \gamma 2)\lambda 2

t+1 + \gamma 2\lambda 2
1

,

where \kappa (\~A) denotes the condition number of the deflated operator, and \gamma represents
the distance between the exact eigenspace associated to the t smallest eigenvalues
and the space spanned by the deflated vectors---it can be assumed to be strictly
smaller than 1; see [10]. If we plug this condition number in the well-known result
of the convergence of the CG method, the geometric factor depends on \gamma , which
in turn depends on the distance between the exact eigenspace associated to the t
smallest eigenvalues and the space spanned by the deflated vectors [35]. The results
about the convergence of the deflated CG method and that of the ECG method are
different, making their comparison difficult. However, the geometric factor of ECG
is independent of any error with respect to the exact eigenvectors, but the constant
is higher. On the other hand, if a low accuracy is required, it is likely that the
deflated CG method delivers a proper approximation in fewer iterations, in particular
if the deflated vectors approximate well the eigenvectors associated to the smallest
eigenvalues. Furthermore, we want to point out that the proof can be easily adapted
to show that one could select in \Phi 1 any t eigenvectors associated to eigenvalues at
the end of the spectrum of A, i.e., a mixture of t smallest and largest eigenvalues.
Following [29, p. 312], it is possible to show an estimate similar to (2.43) using well-
chosen Chebyshev polynomials, resulting in a lower bound depending on the spectrum
of A.

We now briefly comment on our strategy for proving the result, and we review
similar existing results. The strategy of the proof of Theorem 2.1 mimics that used
by Saad in [31], but in the context of the Lanczos and block Lanczos methods. In
particular, the choice of \^e0 is driven by [31, Lemma 4]. This is of course due to the close
connection between the ECG method, the block CG method, and the block Lanczos
method. For instance, O'Leary proved a similar result for the block CG method [29,
Theorem 5]. More precisely, the geometric factors are the same. However, unlike that
of O'Leary, our proof does not rely on Chebyshev polynomials, and it is also more
simple. Hence the constant in front of the geometric factor has a simpler expression
in our case.

2.5. Dynamic reduction of the search directions. In what follows, we recall
an approach for reducing the block size in the Orthodir method during the iterations

2There exist a lot of different algorithmic variants of the method, e.g., to shift the eigenvalues to
0, but they are all theoretically equivalent [35].

D
ow

nl
oa

de
d

01
/2

3/
20

 to
 1

28
.9

3.
65

.2
16

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SCALABLE ENLARGED KRYLOV SOLVERS C531

presented in [16]. The idea is to reduce the added arithmetic and memory costs
of Orthodir over Orthomin, while maintaining its good convergence behavior. As
explained in the survey [17], the key idea to reduce the block size is to monitor the
rank of Rk. Once Rk becomes rank deficient, it means that a part of the approximate
solution has already converged at iteration k. More precisely, for i \geq k - 1 there exists
a linear combination (independent of i) of columns of Xi that remains constant. As
a consequence, there exists a linear combination of search directions that is no longer
useful for computing the approximate solution. The idea is to remove these search
directions in the next iterations. As Rk - 1 is an n \times t matrix with n large, it is
preferable to avoid computing the rank of Rk - 1 directly. In [16], it is shown that the
rank of \alpha k = P\top

k Rk - 1 can be computed instead.
The method presented in [16] can be divided into two parts. At each iteration

of the algorithm (Algorithm 2.2), a singular value decomposition (SVD) of \alpha k is
computed (line 5). If the numerical rank of \alpha k is below a given tolerance, \varepsilon def \equiv \varepsilon /

\surd
t

(following [16]), then the search directions are reduced accordingly (line 12) and some
of them are kept in order to keep the A-orthogonality property (lines 11, 21, and 22).
Although computing the SVD of \alpha k at each iteration induces an extra cost compared
to Orthodir, this operation does not involve any communications and it is negligible
because \alpha k is a small matrix of size t \times t. Furthermore, as the search directions Pk

are reduced, the dominant operation of Krylov iterations in terms of flops, the matrix
product (APk), and the application of the preconditioner (M - 1APk) become cheaper.

Algorithm 2.2. ECG D-Odir algorithm.

1: P0 = 0, R0 = Z1 = Re
0, H = []

2: for k = 1, . . . , kmax do
3: Pk = Zk(Z

\top
k AZk)

 - 1/2

4: \alpha k = P\top
k Rk - 1

5: \alpha k = Uk\Sigma kV
\top
k

6: let sk be the number of singular values of \alpha k bigger than \varepsilon def =
\varepsilon \surd
t
(see [16])

7: if sk < sk - 1 then
8: \alpha k = U\top

k \alpha k

9: Pk = PkUk

10: \alpha k = \alpha k(1 : sk, :)
11: H = [H,P (:, sk : sk - 1)]
12: Pk = Pk(:, 1 : sk)
13: end if
14: Xk = Xk - 1 + Pk\alpha k

15: Rk = Rk - 1 - APk\alpha k

16: if | |
\sum t

i=1 R
(i)
k | | 2 < \varepsilon | | r0| | then

17: stop
18: end if
19: \gamma k = (APk)

\top (APk)
20: \rho k = (APk - 1)

\top (APk)
21: \delta k = (AH)\top (APk)
22: Zk+1 = APk - Pk\gamma k - Pk - 1\rho k - H\delta k
23: end for
24: xk =

\sum t
i=1 X

(i)
kD

ow
nl

oa
de

d
01

/2
3/

20
 to

 1
28

.9
3.

65
.2

16
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C532 LAURA GRIGORI AND OLIVIER TISSOT

2.6. Curing breakdowns in Orthomin. As explained previously, the Or-
thomin version of ECG can break down. There exist several methods to overcome
this issue, and in the following we recall the breakdown-free block CG method defined
in [21]. Starting from the original algorithm of O'Leary [29], the authors propose
to perform a rank-revealing QR decomposition of Zk+1 and then drop its null part
before A-orthonormalizing it. They show that in exact arithmetic this allows one to
continue the algorithm with nearly no further modification. The resulting algorithm
is given in Algorithm 2.3.

From a practical point of view, the size of Pk+1 can be reduced, but at each
iteration Zk+1 is of size n \times t because the size of Rk remains constant. Hence the
matrix product APk is cheaper, but the application of the preconditioner M - 1Rk is
not. Furthermore, computing a rank-revealing QR factorization of Zk+1 cannot be
neglected because Zk+1 is of size n\times t. One should keep in mind that the purpose of
this method is to improve the stability of Orthomin. Thus, it is likely that it requires
more flops than the dynamic variant of Orthodir.

Algorithm 2.3. BF-ECG algorithm.

1: P0 = 0, R0 = Z1 = Re
0

2: for k = 1, . . . , kmax do
3: Pk = Zk(Z

\top
k AZk)

 - 1/2

4: \alpha k = P\top
k Rk - 1

5: Xk = Xk - 1 + Pk\alpha k

6: Rk = Rk - 1 - APk\alpha k

7: if | |
\sum t

i=1 R
(i)
k | | 2 < \varepsilon | | r0| | then

8: stop
9: end if

10: \beta k = (APk)
\top Rk

11: Zk+1 = Rk - Pk\beta k

12: Zk+1 = RRQR(Zk+1,
\surd
\varepsilon machine) (using Algorithm 3.1)

13: end for
14: xk =

\sum t
i=1 X

(i)
k

3. Parallel design.

3.1. Data distribution. As is usually the case in parallel implementations of
Krylov methods, we assume that the unknowns are distributed among the processors.
We also assume that each processor owns different unknowns. Thus, all the variables
whose size scales as the size of the linear system (Xk, Rk, Pk, APk, Zk) are distrib-
uted rowwise among the processors according to the distribution of the unknowns.
All variables whose size scales as the enlarging factor t (\alpha k, \beta k, \gamma k, \rho k) are replicated
on all the processors. Locally, they are stored contiguously and column by column
(see Figure 2). There is no allocation or deallocation of memory during the iterations.
In particular, when using dynamic Orthodir or breakdown-free Orthomin the mem-
ory is not freed when the block size is reduced. The local memory consumption of
preconditioned Orthodir and Orthomin on Nproc processors is summarized in Table
1. For completeness, we also add the local memory consumption of the standard CG
algorithm, described in [32], for instance, where only five vectors and two scalars are
needed.

D
ow

nl
oa

de
d

01
/2

3/
20

 to
 1

28
.9

3.
65

.2
16

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SCALABLE ENLARGED KRYLOV SOLVERS C533

[Pk; Pk−1]

[APk; APk−1]

Zk

Rk

Xk

αk

[γk; ρk]/βk

Fig. 2. Local distribution of the data: Orthodir on the left and Orthomin on the right.

Table 1
Complexity and memory consumption of Orthodir, Orthomin, and CG where t is the enlarging

factor, n is the number of rows of A, and Nproc is the number of processors. Parentheses indicate
the number of calls to MPI\.Allreduce.

\# flops \# messages \# words Memory

Omin 16 nt2

Nproc
+ 4 nt

Nproc
+ 1

3
t3 4 log2(Nproc) (4) 4t2 5 nt

Nproc
+ 2t2

Odir 20 nt2

Nproc
+ 5 nt

Nproc
+ 1

3
t3 4 log2(Nproc) (4) 5t2 7 nt

Nproc
+ 3t2

CG 10 n
Nproc

2 log2(Nproc) (2) 2 5 n
Nproc

3.2. Cost analysis of ECG. Our implementation of ECG is based on the
reverse communication interface [9]. For one iteration of ECG, it requires external
routines to apply the sparse matrix product and the preconditioner to a set of vectors.
Indeed, the implementation of these routines highly depends on the linear system to
be solved. This is why we do not take into account these operations in our cost
analysis.

Given n, t such that t \ll n, we denote by V,W tall and skinny matrices of size
n\times t whose rows are distributed among the processors, and \alpha is a matrix of size t\times t
replicated on the Nproc processors. Following [26], it is possible to decompose the
iterations of ECG (and, more generally, block CG) into the following kernels:

\bullet V \leftarrow V +W\alpha (tsmm in [26]),
\bullet \alpha \leftarrow V \top W (tsmtsm in [26]),
\bullet Cholesky factorization of \alpha (potrf),
\bullet triangular solve of \alpha with several right-hand sides (trsm).

Following the preconditioned ECG algorithm (Algorithm 2.1), each iteration of
Orthodir and Orthomin consists of 3 tsmm (lines 7, 8, and 12), 4 tsmtsm (lines 5, 6,
9, and 12), 1 potrf (line 5), and 2 trsm (line 5). Indeed, line 5 of the algorithm
(Algorithm 2.1) can be decomposed as

D
ow

nl
oa

de
d

01
/2

3/
20

 to
 1

28
.9

3.
65

.2
16

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C534 LAURA GRIGORI AND OLIVIER TISSOT

AZk \leftarrow A \ast Zk

C \leftarrow tsmtsm(Zk, AZk)
C \leftarrow potrf(C)
Pk \leftarrow trsm(Zk, C)
APk \leftarrow trsm(AZk, C)

sparse matrix set of vectors

form Z\top
k AZk

Cholesky factorization

update Pk and APk

Doing so allows us to avoid calling the sparse matrix set of vectors product for comput-
ing APk at the price of an extra trsm. Hence the difference between the two algorithms
is the construction of Zk+1 (line 12). The tsmtsm and tsmm for constructing Zk+1 in
Orthodir (see (2.5)--(2.7)) cost twice as much as for Orthomin (see (2.3)--(2.4)).

As matrices of size t\times t are replicated among the processors, we notice that tsmm,
the Cholesky factorization of \alpha , and the triangular solve of \alpha are local operations
without any communication. Hence we use the corresponding LAPACK routines:
gemm, potrf (dense Cholesky factorization), and trsm (dense triangular solve with
several right-hand sides). However, V and W are distributed and tsmtsm is not a
local operation. The LAPACK routine gemm is called to compute the local product
V \top
i Wi followed by a call to MPI Allreduce.

Thus, the only kernel operation that requires a communication is tsmtsm, and
four calls to MPI Allreduce are done per iteration. It is usually assumed that during
a call to MPI Allreduce the number of messages sent and received on the network is
equal to log2(Nproc)---although the exact number depends on the MPI implementation
[36]. Moreover, it is a blocking operation: when completed, all the processors are
synchronized. This is why in practice, as in standard CG, the communication cost
is dominated by two calls to MPI Allreduce: the one after the sparse matrix set of
vectors product (line 5) and the one after the preconditioner (line 12) because they
occur after operations with a potential load imbalance between processors.

In summary, the detailed costs of one iteration of Orthodir and Orthomin in terms
of flops, words, and messages are indicated in Table 1. For the sake of comparison,
we recall the complexity of the CG algorithm described in [32]. We also report the
number of MPI Allreduce in parentheses, in addition to the order of magnitude of
the number of messages. In summary, one iteration of ECG is approximately t2 times
more costly in terms of flops than one iteration of CG. While the number of messages
is of the same order, the number of words is also t2 times larger. Indeed, there is a
trade-off between these extra costs and the reduction of the number of iterations due
to using enlarged Krylov subspaces as search spaces.

3.3. Cost of dynamic reduction of ECG. The implementation of the dy-
namic reduction of the search directions within Orthodir follows Algorithm 2.2. In
practice, we use LAPACK routine gesvd and only compute the left singular vectors
of \alpha k, denoted by Uk. We check the singular values obtained. If there are some
smaller than \varepsilon \surd

t
, which is the criterion proposed in [16], we call geqrf on U in order

to perform the updates PUk, APUk, and U\top
k \alpha k in-place with ormqr. Since Pk and

APk are stored in a column major fashion, the selection of the columns is done at no
cost. Similarly, H is not explicitly defined. However, the selection of the first rows of
\alpha k implies an in-place memory rearrangement.

The implementation of breakdown-free Orthomin is similar to Orthomin, except
the computation of a rank-revealing QR decomposition of Zk+1. As Zk+1 is distrib-
uted, it is not reasonable to use a LAPACK kernel to compute it. Instead, we use a
modification of the Chol-QR algorithm [38] (Algorithm 3.1) which is a cheaper but

D
ow

nl
oa

de
d

01
/2

3/
20

 to
 1

28
.9

3.
65

.2
16

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SCALABLE ENLARGED KRYLOV SOLVERS C535

less stable alternative to TS-RRQR [8, 6]. Its implementation is very easy using the
LAPACK routine pstrf (Cholesky with pivoting) for computing (R, \pi) at line 2 of
Algorithm 3.1. We use the default tolerance of pstrf for detecting the rank deficiency
of Zk+1; this is why the overall RRQR in Algorithm 2.3 (line 12) is computed up to\surd
\varepsilon machine. This of course might cause numerical issues, e.g., if the stopping criterion

is set to a value smaller than
\surd
\varepsilon machine.

Algorithm 3.1. Chol-RRQR.

Input: P , \varepsilon
Output: Q1 orthogonal such that P\pi = (Q1 Q2)

\bigl(
R11 R12

0 R22

\bigr)
, where \pi is a permutation

and all the diagonal elements of R11 are larger than \varepsilon
1: \mu \leftarrow P\top P
2: Compute (R, \pi) such that \pi \top \mu \pi = R\top R with R =

\bigl(
R11 R12

0 R22

\bigr)
and all the diagonal

elements of R11 are larger than \varepsilon 2

3: P1 \leftarrow P\pi (:, 1 : size(R11))
4: Q1 \leftarrow P1R

 - 1
11

4. Numerical experiments.

4.1. Description of the parallel environment. In the experiments, we use a
block Jacobi preconditioner, associating at each block an MPI process. Before calling
ECG, each MPI process factorizes the diagonal block of A corresponding to the local
row panel that it owns. The initial enlarged residual Re

0 =
\bigl(
Re

0
(1) . . . Re

0
(t)
\bigr)
is

constructed as the leftmost example in Figure 1. At each iteration of ECG, each
MPI process performs a backward and forward solve locally in order to apply the
preconditioner. Hence the application of the block Jacobi preconditioner does not
need any communication. It is likely that there exist better preconditioners than
block Jacobi for our test cases; however, we are interested in the iterative method
rather than in the preconditioner. In particular, we do not want to target specific
applications and aim at being as generic as possible. Although in theory it is possible
to apply any preconditioner within this implementation, in practice it is essential that
applying this preconditioner to several vectors at the same time is not too costly, e.g,
a sublinear complexity with respect to the number of vectors.

The following experiments are performed on a machine located at Ume\r a Univer-
sity as part of High Performance Computing Center North (HPC2N), called Keb-
nekaise. It is a heterogeneous machine formed by a mix of Intel Xeon E5-2690v4
(Broadwell) with 2\times 14 cores (and E7-8860v4 for large memory computations), Nvidia
K80 GPU, and Intel Xeon Phi 7250 (Knight's Landing) with 68 cores. In our experi-
ments, we use the so-called compute nodes, which are formed by Intel Xeon E5-2690v4
(Broadwell) with 2\times 14 cores. For a detailed description of the machine, we refer the
reader to the online documentation.3

We compile the code (and its dependencies) using Intel toolchain installed on
the machine: mpiicc (based on icc version 18.0.1 20171018) and MKL [37] version
2018.1.163. We use PETSc [2] in order to compare ECG implementation to PETSc
PCG implementation. In particular, PETSc is configured to use MKL-PARDISO
as the exact solver for sparse matrices in the block Jacobi preconditioner. For par-
titioning the matrix, we are using the METIS library downloaded and installed by
PETSc.

3https://www.hpc2n.umu.se/resources/hardware/kebnekaise

D
ow

nl
oa

de
d

01
/2

3/
20

 to
 1

28
.9

3.
65

.2
16

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://www.hpc2n.umu.se/resources/hardware/kebnekaise

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C536 LAURA GRIGORI AND OLIVIER TISSOT

Fig. 3. Heterogeneity pattern of Young's modulus and Poisson's ratio for elasticity matrices.

4.2. Test cases. The Ela matrices arise from the linear elasticity problem with
Dirichlet and Neumann boundary conditions defined as follows:

div(\sigma (u)) + f = 0 on \Omega ,(4.1)

u = 0 on \partial \Omega D,(4.2)

\sigma (u) \cdot n = 0 on \partial \Omega N ,(4.3)

where \Omega is some regular domain, e.g, a parallelepiped. We denote by \partial \Omega D the Dirichlet
boundary, \partial \Omega N is the Neumann boundary, f is some body force, and u is the unknown
displacement field. We denote by \sigma (.) the Cauchy stress tensor given by Hooke's law:
it can be expressed in terms of Young's modulus E and Poisson's ratio \nu . For a
more detailed description of the problem, see [15]. We consider a heterogeneous
beam made of several layers of a hard material (E1, \nu 1) = (2\times 1011, 0.25) and a soft
material (E2, \nu 2) = (107, 0.45), i.e., discontinuous E and \nu (Figure 3). The matrices
Ela N correspond to this equation on a beam discretized with FreeFem++ [18] using
a triangular mesh that is refined as N increases and the P1 finite element scheme.
More precisely, the mesh used for generating the Ela 4 matrix contains 1600\times 30\times 30
points on the corresponding vertices. This mesh is coarsened by dividing the number
of vertices in each dimension by 21/3 in order to construct the Ela 3 matrix, and
so on and so forth for the Ela 2 and Ela 1 matrices. This test case is known to be
difficult because the matrix is ill conditioned. In particular, the standard one-level
preconditioners are not expected to be very effective [34].

As previously pointed out, ECG is an algebraic method that does not rely on any
particular assumption on the matrix, except that it is SPD. As an illustration, we
also test the implementation on the five largest SPD matrices coming from the Sparse
Matrix Collection of Tim Davis (see [5]). Numerical properties of the test matrices
are summarized in Table 2.

4.3. Results. In all the experiments, the tolerance is set as the default tolerance
of PETSc, i.e., 10 - 5, and the maximum number of iterations is set to 25, 000. The
right-hand side is chosen uniformly random and normalized, and the initial guess
is set to 0. We do not use any kind of threading and use 28 MPI processes per
node. Unless otherwise stated, we use one OpenMP thread per MPI process---we also
perform numerical experiments to observe the effect of threading in the last section.

D
ow

nl
oa

de
d

01
/2

3/
20

 to
 1

28
.9

3.
65

.2
16

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SCALABLE ENLARGED KRYLOV SOLVERS C537

Table 2
Test matrices.

Name Size Nonzeros Problem

Hook 1498 1,498,023 59,374,451 Structural problem
Flan 1565 1,564,794 117,406,044 Structural problem
G3 circuit 1,585,478 7,660,826 Circuit simulation problem
Bump 2911 2,911,419 130,378,257 Reservoir simulation
Queen 4147 4,147,110 316,548,962 Structural problem

Ela 1 615,168 21,373,272 Linear elasticity
Ela 2 1,210,800 42,611,160 Linear elasticity
Ela 3 2,383,125 84,726,039 Linear elasticity
Ela 4 4,615,683 165,388,197 Linear elasticity

4.3.1. Impact of the enlarging factor. As a first step, we illustrate the be-
havior of the two operations that we did not take into account in our complexity
analysis: the sparse matrix-set of vectors product, and the application of the block
Jacobi preconditioner to a set of vectors. In Figure 4, we plot the runtimes we ob-
tained for these two operations when varying the number of vectors in the right-hand
side, with a fixed number of MPI processes set to 56, and for the matrices coming
from Tim Davis's collection. The sparse matrix-set of vectors is computed using
PETSc's routine MatMatMult, and the block Jacobi preconditioner is computed using
the MKL-PARDISO direct solver. For both kernels, we observe a sublinear increase in
the runtime; i.e., when the number of right-hand sides increases, the time per right-
hand side is significantly reduced. However, we observe that the sparse matrix-set
of vectors seems more sensitive to the number of right-hand sides, e.g., the runtime
with eight right-hand sides is higher than with 10---we suspect that this is due to
some cache effects. In comparison, the behavior of the application of the block Jacobi
preconditioner is more regular. We want to point out that G3 circuit has a very par-
ticular, and undesired, behavior because the runtime is increasing superlinearly when
the number of right-hand sides is increasing. This is likely due to the particular struc-
ture of the matrix---it is much sparser than the others---and the internal functioning
of MKL-PARDISO; it makes ECG not suitable for this matrix.

We now study the impact of the enlarging factor t on the methods. More precisely,
we fix the number of processors to 56 and we vary the value of t for the four methods:
Orthodir (Odir), Orthodir with dynamic reduction of the search directions (D-Odir),
Orthomin (Omin), and breakdown-free Orthomin (BF-Omin).

The results obtained for the matrices coming from Tim Davis's collection are
summarized in Table 3. First of all, we observe that for all these matrices Odir and
Omin are indeed similar: the number of iterations is almost the same whatever the
value of t. In particular, Omin does not break down for these matrices, and that is why
we do not report the results we obtained with BF-Omin: they are the same as with
Omin but with a slight increase in the runtime. Also, we do not report the runtime
of D-Odir when t is strictly smaller than 6 because the runtime is not reduced, and
even slightly higher sometimes. For Flan 1565 and Hook 1498, we observe that the
runtime is decreasing when t increases, and this decrease is greater for Flan 1565 (a
bit smaller than a factor of 2). The ``best"" value of t is different for the two matrices (6
for Hook and 14 for Flan), but we also observe that there is not a very large variation
of the runtime from one value of t to another. For instance, values ranging from 6
to 10 deliver almost the same runtime for Hook 1498. As we pointed out previously,

D
ow

nl
oa

de
d

01
/2

3/
20

 to
 1

28
.9

3.
65

.2
16

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C538 LAURA GRIGORI AND OLIVIER TISSOT

1 8 16 24
0.0

0.1

0.2

Hook

1 8 16 24
0.00

0.01

0.02

1 8 16 24
0.0

0.2

0.4

Flan

1 8 16 24
0.00

0.02

0.04

1 8 16 24
0.00

0.02

0.04

0.06
G3

1 8 16 24
0.000

0.002

0.004

1 8 16 24
0.0

0.2

0.4

0.6 Bump

1 8 16 24
0.00

0.02

0.04

1 8 16 24
0.0

0.5

1.0

Queen

1 8 16 24
0.00

0.05

0.10

(a) Results for the sparse matrix-dense matrix product using PETSc. At the top, we indicate the
total runtime (y-axis) with respect to the number of right-hand sides (x-axis). At the bottom, it is
the total runtime divided by the number of right-hand sides (y-axis) with respect to the number of
right-hand sides (x-axis).

1 8 16 24
0.0

0.5

1.0

Hook

1 8 16 24
0.0

0.1

0.2

1 8 16 24
0.0

0.5

1.0

1.5
Flan

1 8 16 24
0.0

0.1

0.2

0.3

1 8 16 24
0.00

0.25

0.50

0.75

G3

1 8 16 24
0.00

0.05

0.10

1 8 16 24
0

1

2

3
Bump

1 8 16 24
0.00

0.25

0.50

0.75

1 8 16 24
0

2

4

Queen

1 8 16 24
0.0

0.5

1.0

1.5

(b) Results for the block Jacobi preconditioner's application with MKL-PARDISO. At the top, we
indicate the total runtime (y-axis) with respect to the number of right-hand sides (x-axis). At the
bottom, it is the runtime divided by the number of right-hand sides (y-axis) with respect to the
number of right-hand sides (x-axis).

Fig. 4. Runtime results (in seconds) for the key operations within an iteration of ECG: the
application of the matrix to a set of vectors (Figure 4a) and the application of the block Jacobi
preconditioner (Figure 4b). The number of processors is set to 56, and both operations are repeated
10 times.

G3 circuit is not adapted for ECG, and the runtime increases quite significantly when
t increases. This poor performance is very likely due to the behavior of the routine
for applying the block Jacobi preconditioner (see Figure 4b) because the number
of iterations is decreasing rather effectively when t increases. For Bump 2911 and
Queen 4147, we also observe that the runtime is increasing when t increases. Unlike
G3 circuit, for these two matrices the sparse matrix-set of vectors product and the
application of the preconditioner are efficient when increasing t. In this case, the
cause is inherent to the method: the number of iterations is not decreasing enough
to compensate the increase in runtime of one iteration when the value of t increases.
This is particularly illustrated on Queen 4147, with Odir from t = 2 to t = 28: the
number of iterations is decreased by only 20\%. Furthermore, one could notice that
the increase in runtime is indeed sublinear with respect to the increase of t. In all

D
ow

nl
oa

de
d

01
/2

3/
20

 to
 1

28
.9

3.
65

.2
16

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SCALABLE ENLARGED KRYLOV SOLVERS C539

Table 3
Runtime results (Ttot, in seconds) and the corresponding iteration count (iter) for the matrices

coming from Tim Davis's collection with Nproc = 56. The enlarging factor is denoted by t. The ++
means that the maximum number of iterations (25, 000) was reached.

Hook Flan G3 Bump Queen

Method t Ttot iter Ttot iter Ttot iter Ttot iter Ttot iter

Odir 2 16.2 357 51.1 776 8.3 390 97.5 703 285.5 1056
4 12.8 217 40.8 456 9.6 336 109.6 607 350.4 992
6 11.7 176 32.5 341 11.1 288 112.1 572 350.6 940
8 12.2 149 31.0 268 11.3 251 121.6 532 408.9 942
10 11.9 131 28.6 233 11.6 213 128.1 515 415.5 901
12 13.0 122 29.5 204 12.7 201 142.0 503 457.9 877
14 13.3 114 28.4 185 13.3 182 154.7 507 476.2 863
16 14.3 108 29.6 171 13.5 170 165.6 472 527.7 860
18 14.6 104 28.7 158 14.0 157 162.6 455 537.2 841
20 15.9 100 30.8 148 14.5 149 181.7 447 610.6 831
22 16.3 96 30.4 141 15.7 145 197.8 462 626.8 820
24 16.8 91 31.3 132 15.9 139 213.2 465 685.4 819
26 17.5 89 31.5 127 16.8 133 221.1 455 708.9 827
28 18.3 86 32.5 121 17.1 128 241.2 465 742.6 799

D-Odir 6 11.4 177 32.4 345 10.7 290 112.7 580 353.2 963
8 11.8 150 30.8 269 11.6 253 121.1 540 409.9 967
10 11.4 132 28.2 235 11.4 215 125.3 523 351.8 927
12 12.5 124 29.0 206 12.2 203 139.1 516 460.5 895
14 12.5 115 27.5 188 12.9 184 149.3 532 475.1 882
16 13.3 110 28.7 173 13.0 171 153.4 483 514.8 885
18 13.4 106 27.5 161 13.5 158 156.1 465 533.5 863
20 14.4 101 29.2 150 14.0 151 171.4 455 502.2 861
22 15.5 97 28.7 143 14.8 147 178.9 475 606.7 843
24 15.2 92 29.4 134 14.8 141 193.5 488 637.2 851
26 15.7 90 29.5 130 15.7 135 198.2 484 674.2 858
28 16.4 87 30.4 123 16.2 131 209.9 486 710.4 827

Omin 2 14.7 357 50.9 776 8.5 390 96.0 701 284.1 1057
4 12.4 217 40.2 456 9.3 336 108.8 610 345.6 991
6 11.2 176 31.4 341 10.0 288 109.5 575 341.8 937
8 11.6 149 31.4 268 10.7 251 123.3 532 401.2 944
10 11.3 131 27.6 233 10.6 213 123.6 515 403.2 901
12 12.4 122 28.4 204 11.5 201 137.4 504 450.4 878
14 12.6 114 27.0 185 12.2 182 149.0 507 466.2 866
16 13.5 108 28.4 171 13.7 170 152.3 471 512.6 858
18 13.8 104 27.5 158 12.7 157 157.0 456 466.5 842
20 15.2 100 29.6 148 13.2 149 173.6 447 594.0 833
22 15.4 96 29.1 141 14.1 145 188.9 462 599.7 821
24 16.0 91 29.8 132 14.3 139 204.1 465 641.0 821
26 16.5 89 29.8 127 15.2 133 210.6 455 685.1 830
28 17.3 86 31.0 121 15.4 128 231.5 465 712.6 801

the cases, the D-Odir method allows one to reduce the runtime with respect to Odir
when t becomes large; e.g, for t = 28, the runtime is decreased for all the matrices.
Unfortunately, this reduction is not significant enough to make ECG attractive for
G3 circuit, Bump 2911, and Queen 4147. For these matrices, the runtime is still
increasing with t. For Hook 1498 and Flan 1565, it allows one to mitigate the added
costs of Odir compared to Omin. In fact, as illustrated in Figure 5 for the Flan 1565
matrix, the reduction of the search directions usually occurs when the convergence
has already started. This is why in practice we observe gains, in terms of runtime
with respect to Odir, of the order of 5\% to 10\%.

We perform the exact same experiments on Ela 1 matrix, also using 56 MPI

D
ow

nl
oa

de
d

01
/2

3/
20

 to
 1

28
.9

3.
65

.2
16

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C540 LAURA GRIGORI AND OLIVIER TISSOT

0 50 100 150 200
Iteration

10
1

10
0

10
2

10
4

10
5 (+2)

Flan_1565, # procs = 56, t = 12

odir-0
odir-1

4

8

12

Fig. 5. Convergence (scale on the left) of D-Odir (odir-1) compared to Odir (odir-0) for the
Flan matrix. The dashed line represents the number of search directions for D-Odir (scale on
the right). Between parentheses, we indicate the difference of iteration count to reach convergence
between D-Odir and Odir (+ means that D-Odir took more iterations to converge).

Table 4
Runtime results (Ttot, in seconds) and the corresponding iteration count (iter) for Ela 1 with

Nproc = 56. The enlarging factor is denoted by t. The ++ means that the maximum number of
iterations (25, 000) was reached, and the -- means that a breakdown occurred.

Odir D-Odir Omin BF-Omin

t Ttot iter Ttot iter Ttot iter Ttot iter

2 60.1 3320 ++ -- 218.1 13,939
4 32.0 1362 ++ -- 138.4 5,357
6 23.6 868 ++ -- 524.6 19,898
8 15.1 461 14.1 457 -- 492.3 16,426
10 14.0 375 12.3 363 -- 515.8 15,074
12 14.5 334 14.2 403 -- 854.4 23,176
14 14.1 296 12.2 300 -- 568.8 13,333
16 15.0 265 13.4 285 -- ++
18 14.9 252 13.2 254 -- ++
20 16.2 231 12.5 237 -- ++
22 15.5 224 13.9 228 -- ++
24 17.2 213 12.8 220 -- 998.0 15,896
26 17.3 206 14.5 209 -- 1,273.8 18,528
28 18.8 200 14.6 202 -- ++

processes, and we summarize the results in Table 4. First of all, we observe that Omin
breaks down for this matrix for all the values of t tested. Using BF-Omin effectively
cures the breakdowns, but the convergence becomes very slow, and for some values
of t the method simply does not converge within the prescribed maximum number
of iterations. The resulting runtimes are both very slow (with respect to Odir) and
unstable because from one value of t to another the resulting number of iterations is
changing significantly. For instance, for t = 12 the number of iterations is roughly
13, 000, and for t = 14 it is roughly 23, 000. On the contrary, Odir is very stable and
converges for all the values of t we have tested. The resulting runtime is decreasing

D
ow

nl
oa

de
d

01
/2

3/
20

 to
 1

28
.9

3.
65

.2
16

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SCALABLE ENLARGED KRYLOV SOLVERS C541

up to t = 8, being almost a factor of 4 times less than for t = 2, and then it starts
to increase slightly when t is larger than 20. Finally, D-Odir is also unstable when
t is smaller than 6 and it cannot reach the required accuracy within the prescribed
maximum number of iterations. We want to emphasize that one should not expect
to obtain a significant gain with D-Odir when t is small. However, when t is large,
as for Tim Davis's matrices, D-Odir is slightly faster than Odir. For instance, when
t = 20, D-Odir is 25\% faster than Odir.

In conclusion, D-Odir is the best method over the different variants of ECG that
were tested: it shows a good trade-off between the stability of Odir and the efficiency
of Omin. The results support the theoretical convergence study done in the previous
section. ECG(t) is acting as if the t smallest eigenvalues of the matrix are deflated.
Nevertheless, there exist matrices such as Bump 2911 or Queen 4147 for which the
reduction of the number of iterations does not compensate the extra cost of ECG
compared to standard CG, even when using the dynamic reduction of the search
directions. Also, the resulting runtime highly depends on the optimization of the
sparse matrix product and the application of the preconditioner to a set of vectors.
For example, ECG shows very poor performances for G3 circuit because the sparse
matrix-set of vectors product is not optimized for this matrix.

4.3.2. Strong scaling study. Following the parameter study, we perform a
strong scaling study on Hook 1498, Flan 1565, Queen 4147, and Ela 4. As G3 circuit
is not particularly well suited for the method, we do not perform the strong scaling
study on this matrix. For the sake of brevity, we omit the results obtained with
Bump 2911 because they are similar to those obtained with Queen 4147. There is an
interplay between the choice of t and the number of MPI processes. Indeed, increasing
the number of MPI processes deteriorates the quality of the preconditioner and reduces
its application cost. However, for the sake of simplicity, we decide to keep the value
of t constant while increasing the number of MPI processes.

The results are shown in Figure 6 (color is available online only). More precisely,
we compare PETSc PCG (blue bars), ECG (orange bars), and a modified PETSc
PCG (green bars), where the sparse matrix-vector is applied using the MatMatMult

routine, i.e, the vector is regarded as a dense matrix with one column. For Hook 1498,
we use D-Odir and set t = 10, which corresponds to one of the best over the values
of t we tested in the previous study. We observe that D-Odir is faster than PETSc
PCG when the number of MPI processes is relatively low (252 and 504), but when it
is large (more than 1, 000) PETSc PCG becomes almost twice as fast. For the other
matrices, we also observe that the performance of ECG deteriorates significantly with
respect to PETSc PCG when the number of MPI processes becomes large. This is
because the routine MatMatMult is underoptimized when the number of MPI processes
is large and the number of columns in the right-hand side is very low. For example, for
Hook 1498 and Flan 1565, when Nproc = 2, 016, the MatMult routine (sparse matrix-
vector product) is around 10 times faster than the MatMatMult routine, where the
right-hand side is regarded as a dense matrix with one column (see Figure 7). The
total runtime per right-hand side of MatMatMult is indeed slightly lower than the
runtime of MatMult when the number of right-hand sides is large enough; in this case,
the total runtime of MatMatMult is significantly larger. However, if the number of
right-hand sides is not large enough---which is the case in our strong scaling study---
then the runtime per right-hand side is larger than the runtime of the MatMult routine.
Furthermore, the gap is increasing when the number of MPI processes increases.

Hence we also compare ECG with a modified PETSc PCG (green bars in Fig-

D
ow

nl
oa

de
d

01
/2

3/
20

 to
 1

28
.9

3.
65

.2
16

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C542 LAURA GRIGORI AND OLIVIER TISSOT

252 504 1008 2016
0.0

0.5

1.0

5.0

R
un

tim
e

(s
)

x1.5 x1.6

x1.3
x1.6

x0.7

x1.5

x0.6

x2.5

Hook, D-Odir(10)

PETSc default ECG PETSc+MatMatMult

250

500

750

1000

1250

1500

252 504 1008 2016
 0

 1

 5

10

x1.8 x1.9

x1.8 x2.2

x1.6
x2.2

x0.5

x2.3

Flan, D-Odir(14)

500

1000

1500

2000

2500

3000

ite

r

252 504 1008 2016
 0

 1

 5
10

100 x0.7 x0.7
x0.6 x0.7

x0.6 x0.7
x0.4 x0.7

Queen, Omin(6)

1200

1400

1600

1800

252 504 1008 2016
 0

10

100
250

x6.9 x6.9
x6.4 x6.4

x5.6 x6.2

x3.6
x6.3

Ela_4, D-Odir(20)

0

5000

10000

15000

20000

Fig. 6. Strong scaling results for Hook 1498, Flan 1565, Queen 4147, and Ela 4 with Nproc

varying from 252 to 2016. We indicate both the runtimes, with bars (left scale), and the iteration
counts, with black dots (right scale). The speed-up with respect to ECG is indicated on top of the
bars.

1 8 16 24
0.000

0.002

0.004

0.006

0.008

0.010

0.012
Hook

1 8 16 24
0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

Flan

Fig. 7. Runtime results per right-hand side (in seconds) for the sparse matrix-dense matrix
product using PETSc (MatMatMult routine) with Nproc = 2, 016 for Hook 1498 and Flan 1565. In
red (color is available online only), we indicate the runtime of a call to the MatMult routine.

D
ow

nl
oa

de
d

01
/2

3/
20

 to
 1

28
.9

3.
65

.2
16

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SCALABLE ENLARGED KRYLOV SOLVERS C543

ure 6) where the routine MatMatMult is used for computing the sparse matrix-vector
product. We believe that this comparison is relevant because both ECG and this
modified PETSc PCG rely on the exact same routine for computing the sparse ma-
trix application to a (set of) vector(s). We indeed observe that this modified version
of PETSc PCG is less scalable than the default one; e.g, for Hook 1498 the run-
time is increasing from 1, 008 to 2, 016 MPI processes. Furthermore, we observe that
this modified version of PETSc PCG is also less scalable than ECG; for Hook 1498,
Flan 1565, and Ela 4, the speed-up is slightly increasing from 1, 008 to 2, 016 MPI
processes. As previously suggested by the parameter study, Queen 4147 is not very
adapted for ECG, but even for this matrix, ECG is scaling as well as the modified
PETSc PCG.

In conclusion, we have shown that ECG's scaling is highly dependent on the
routine that performs the sparse matrix-set of vectors product. This is of course
not very surprising. What is more surprising, however, is the fact that the MatMult

routine of PETSc is much more scalable than the MatMatMult when the number of
right-hand sides is small. In practice, this explains the difference in terms of the
scalability of ECG compared to PETSc PCG. We believe that it should be possible
to optimize the MatMatMult routine so that this difference would at least be reduced,
or even be removed. Also, we want to emphasize that enlarging the Krylov subspaces
is not incompatible with other techniques currently developed in order to increase
the performances of Krylov methods. For instance, we mention that we are currently
performing four calls to MPI Allreduce per iteration, but that could be reduced to
two, and even one with Odir (and D-Odir), by fusing them. Furthermore, we could
use pipelining [13] or communication avoiding based on s-step methods [20, 3] on
top of ECG---that would require us to take into account a possible loss of numerical
stability of the method.

4.3.3. Dependence on the mesh size---weak scaling study. Given the im-
portance of the parameter t regarding the efficiency of the method, we perform a study
of the convergence of the method with respect to the mesh size for the elasticity test
case. More precisely, we consider the Ela N matrices (N = 1, . . . , 4). Our major focus
is not the weak scaling of ECG, but rather the comparison between PETSc's CG and
D-Odir in terms of runtime.

As for the strong scaling study, we use D-Odir(20). The results are summarized
in Table 5. We observe that D-Odir(20) is always at least 3.5 times faster than PETSc
PCG. However, the gap tends to slightly decrease when the number of MPI processes
increases. Indeed, when Nproc = 256, D-Odir(20) is up to 3.8 times faster than PETSc
PCG. As outlined in the strong scaling study, the MatMatMult routine scales poorly
(compared to the MatMult routine) when the number of columns in the right-hand
side is very small. Thus, we also indicate, in the column labelled TMMM, the runtimes
when replacing the sparse matrix-vector product within PETSc PCG by a call to
MatMatMult. In this case, the gap between D-Odir(20) and the modified PETSc PCG
is increasing when the number of MPI processes is increasing. For instance, when
Nproc = 2016, D-Odir(20) is around 6.5 times faster than the modified PETSc PCG,
whereas it is 4.8 times faster for the smallest problem.

4.3.4. Impact of threads on performance. One motivation for enlarging the
Krylov subspaces is to increase the arithmetic intensity of the resulting methods. This
is particularly interesting to take advantage of the so-called manycore architecture,
such as Nvidia GPUs, Intel Xeon Phi, or Sunway SW26010 used in the Sunway
TaihuLight supercomputer. As the implementation relies on the MKL library which

D
ow

nl
oa

de
d

01
/2

3/
20

 to
 1

28
.9

3.
65

.2
16

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C544 LAURA GRIGORI AND OLIVIER TISSOT

Table 5
Weak scaling study. The dimension of the matrix is denoted by n, and t denotes the enlarging

factor. The ratio between PETSc runtime and ECG runtime is indicated between parentheses.

D-Odir PETSc CG

\# MPI n t \# iter Ttot \# iter Tdef TMMM

252 6.15\times 105 20 360 3.4 8,803 13.0 (\times 3.8) 16.3 (\times 4.8)
504 1.21\times 106 20 463 4.9 11,333 17.6 (\times 3.6) 23.7 (\times 4.8)
1008 2.38\times 106 20 608 6.8 14,801 23.8 (\times 3.5) 36.8 (\times 5.4)
2016 4.61\times 106 20 784 10.2 19,047 36.1 (\times 3.5) 64.0 (\times 6.4)

is multithreaded [37], it is straightforward to assess its efficiency on the Xeon Phi
processors.

In order to do so, we perform the following experiments on NERSC's supercom-
puter Cori. It consists of two partitions, one with Intel Haswell processors and another
with the last generation of Intel Xeon Phi processors: Knights Landing (KNL). More
precisely, the second partition consists of 9,688 single-socket Intel Xeon Phi 7250
(KNL) processors with 68 cores each. For a detailed description of the machine, we
refer the reader to the online documentation.4 We compile the code (and its depen-
dencies) using the default compilers and libraries installed on the machine: icc version
18.0.1, cray-mpich version 7.6.2, MKL version 2018.1.163, and METIS version 5.1.0.
We have installed PETSc, and as for Kebnekaise, it has been linked with MKL so that
it uses MKL-PARDISO in the block Jacobi preconditioner. We consider the Ela 4
test case, and we study the impact of threads on the strong scaling of Odir(20). We
do not use the dynamic reduction of the search directions in order to keep the cost of
one iteration constant during the solve to better understand the effect of threading.
We fix the number of MPI processes to 2048, and we increase the number of threads
from one to eight---this means at most 2, 048 \times 8 = 16, 384 threads, each one being
bound to one physical core.

The results obtained are summarized in Table 6. We observe that using more
than two threads, and up to eight, always has a significant effect on the speed-up,
even when the number of MPI processes is high. For instance, as shown in Table
6, increasing the number of threads from one to eight with a fixed number of 2, 048
MPI processes leads to a decrease in runtime of 2. Of course, we are not close to
full efficiency when using multiple threads, but we are still taking advantage of the
BLAS 3 routines. Indeed, the corresponding speed-up with PETSc PCG is only 1.5.
In particular, we observe that the difference between ECG's speed-up and PETSc
PCG's speed-up is increasing when the number of threads is increasing. Thus, ECG
is more adapted to the current trend in hardware architecture for reaching exascale,
namely manycore processors.

5. Conclusion. In this paper, we have studied the ECG method. It relies on
so-called enlarged Krylov subspaces which can be seen as particular cases of block
Krylov subspaces. The parallel efficiency of the approach has been assessed, and we
have shown that this method is scalable up to 16, 384 cores and it is up to 6.9 times
faster than PETSc's implementation of PCG.

First, we have thoroughly studied the method from a theoretical point of view
under the assumption of exact arithmetic. Starting from the theory, we have exhibited
the relationship between the two variants of the method (Orthodir and Orthomin)

4http://www.nersc.gov/users/computational-systems/cori/configuration/

D
ow

nl
oa

de
d

01
/2

3/
20

 to
 1

28
.9

3.
65

.2
16

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://www.nersc.gov/users/computational-systems/cori/configuration/

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SCALABLE ENLARGED KRYLOV SOLVERS C545

Table 6
Runtime results (in seconds) on the Ela 4 matrix when Nproc = 2, 048. We indicate the speed-up

when increasing the number of threads for each method.

PETSc PCG Odir(20)

\# omp Ttot speed-up Ttot speed-up

1 83.3 -- 32.6 --
2 75.4 1.1 25.0 1.3
4 62.5 1.3 19.5 1.7
8 56.1 1.5 16.6 2.0

and thus explained their differences in terms of robustness. We also have studied its
convergence rate, and we have shown that the ECG method is acting as if t arbitrary
eigenvalues at the end of the spectrum of the matrix were somehow deflated, where
t is the enlarging factor (the initial block size). Then we have described the parallel
design of the method, including the two variants as well as their dynamic versions,
where the number of search directions is adaptively reduced during the iterations
[21, 16]. Numerical experiments show that enlarging the Krylov subspaces allows us
to reduce significantly the number of iterations with respect to the standard PCG
method. Furthermore, the reduction of the search directions allows us to reduce the
cost of the extra arithmetic operations induced by the method. Overall, the proposed
solver is up to 6.9 times faster than PETSc PCG for an elasticity matrix. Also, as
our implementation is based on BLAS 3 kernels only, it improves the scaling when
increasing the number of threads per MPI process. Thus, it is scaling up to 16, 384
threads, each one bound to a physical core, and it is well adapted for manycore
architectures.

Throughout this work, the only assumption we make is that the matrix is SPD.
Hence the resulting methods are very generic and completely algebraic. For instance,
it is straightforward to use D-Odir for solving linear systems with several right-hand
sides. Similarly, ECG can be used with any preconditioner that could be used with
CG. Thus, it can be integrated very easily in any existing code. Of course, many
parameters come into play when the performance is considered, and ECG does not
always overtake the standard CG method in terms of runtime. However, we have
observed large speed-ups, up to 6.9 on elasticity matrices, for example. As ECG
increases the arithmetic intensity and reduces the communication, it is well suited for
modern and future architectures that exhibit massive parallelism. In order to observe
this in practice, it is crucial that both the application of the operator (matrix) and of
the preconditioner to a set of vectors scale sublinearly with respect to the number of
vectors. We have found that it was not always the case with the MatMatMult routine
of PETSc (with respect to MatMult). Thus, an interesting direction for future research
is to reduce, and maybe even to remove, this gap. According to the theoretical study
and the numerical experiments, ECG is particularly well adapted for matrices with a
small number of small eigenvalues.

REFERENCES

[1] S. F. Ashby, T. A. Manteuffel, and P. E. Saylor, A taxonomy for conjugate gradient meth-
ods, SIAM J. Numer. Anal., 27 (1990), pp. 1542--1568, https://doi.org/10.1137/0727091.

[2] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin,
V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, D. A. May, L. C. McInnes,
K. Rupp, P. Sanan, B. F. Smith, S. Zampini, H. Zhang, and H. Zhang, PETSc Users

D
ow

nl
oa

de
d

01
/2

3/
20

 to
 1

28
.9

3.
65

.2
16

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1137/0727091

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C546 LAURA GRIGORI AND OLIVIER TISSOT

Manual, Tech. Report ANL-95/11 - Revision 3.8, Argonne National Laboratory, Lemont,
IL, 2017, http://www.mcs.anl.gov/petsc.

[3] E. Carson, N. Knight, and J. Demmel, Avoiding communication in nonsymmetric Lanczos-
based Krylov subspace methods, SIAM J. Sci. Comput., 35 (2013), pp. S42--S61, https:
//doi.org/10.1137/120881191.

[4] A. T. Chronopoulos, s-step iterative methods for (non)symmetric (in)definite linear systems,
SIAM J. Numer. Anal., 28 (1991), pp. 1776--1789, https://doi.org/10.1137/0728088.

[5] T. A. Davis and Y. Hu, The University of Florida sparse matrix collection, ACM Trans. Math.
Software, 38 (2011), 1, https://doi.org/10.1145/2049662.2049663.

[6] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou, Communication-optimal parallel and
sequential QR and LU factorizations, SIAM J. Sci. Comput., 34 (2012), pp. A206--A239,
https://doi.org/10.1137/080731992.

[7] J. Demmel, M. Hoemmen, M. Mohiyuddin, and K. Yelick, Minimizing communication in
sparse matrix solvers, in Proceedings of the ACM/IEEE Supercomputing SC9 Conference,
2009.

[8] J. W. Demmel, L. Grigori, M. Gu, and H. Xiang, Communication avoiding rank revealing
QR factorization with column pivoting, SIAM J. Matrix Anal. Appl., 36 (2015), pp. 55--89,
https://doi.org/10.1137/13092157X.

[9] A. J. Dongarra, V. Eijkhout, and A. Kalhan, Reverse Communication Interface for Lin-
ear Algebra Templates for Iterative Methods, Tech. Report, 1995, http://www.netlib.org/
lapack/lawnspdf/lawn99.pdf.

[10] Z. Dost\'al, Conjugate gradient method with preconditioning by projector, Int. J. Comput.
Math., 23 (1988), pp. 315--323, https://doi.org/10.1080/00207168808803625.

[11] A. Dubrulle, Retooling the method of block conjugate gradients, Electron. Trans. Numer.
Anal., 12 (2001), pp. 216--233.

[12] A. el Guennouni, K. Jbilou, and H. Sadok, A block version of BiCGSTAB for linear systems
with multiple right-hand sides, Electron. Trans. Numer. Anal., 16 (2003), pp. 129--142.

[13] P. Ghysels and W. Vanroose, Hiding global synchronization latency in the preconditioned
conjugate gradient algorithm, Parallel Comput., 40 (2014), pp. 224--238, https://doi.org/
10.1016/j.parco.2013.06.001.

[14] L. Grigori, S. Moufawad, and F. Nataf, Enlarged Krylov subspace conjugate gradient meth-
ods for reducing communication, SIAM J. Matrix Anal. Appl., 37 (2016), pp. 744--773,
https://doi.org/10.1137/140989492.

[15] L. Grigori, F. Nataf, and S. Yousef, Robust Algebraic Schur Complement Preconditioners
Based on Low Rank Corrections, Research Report RR-8557, 2014, https://hal.inria.fr/
hal-01017448.

[16] L. Grigori and O. Tissot, Reducing the Communication and Computational Costs of En-
larged Krylov Subspaces Conjugate Gradient, Research Report RR-9023, 2017, https:
//hal.inria.fr/hal-01451199.

[17] M. H. Gutknecht, Block Krylov space methods for linear systems with multiple right-hand
sides: An introduction, in Modern Mathematical Models, Methods and Algorithms for
Real World Systems, A. H. Siddiqi, I. S. Duff, and O. Christensen, eds., Anamaya, New
Delhi, India, 2007, pp. 420--447.

[18] F. Hecht, New development in freefem++, J. Numer. Math., 20 (2012), pp. 251--265.
[19] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems,

J. Research Nat. Bur. Standards, 49 (1952), pp. 409--436.
[20] M. Hoemmen, Communication-Avoiding Krylov Subspace Methods, Ph.D. thesis, University of

California, Berkeley, Berkeley, CA, 2010.
[21] H. Ji and Y. Li, A breakdown-free block conjugate gradient method, BIT, 57 (2017), pp. 379--

403, https://doi.org/10.1007/s10543-016-0631-z.
[22] P. Jir\'anek, M. Rozlo\v zn\'{\i}k, and M. H. Gutknecht, How to make simpler GMRES and GCR

more stable, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 1483--1499, https://doi.org/10.
1137/070707373.

[23] P. Jolivet, Domain Decomposition Methods. Application to High-Performance Computing,
theses, Universit\'e de Grenoble, Grenoble, France, 2014, https://tel.archives-ouvertes.fr/
tel-01155718.

[24] P. Jolivet and P. Tournier, Block iterative methods and recycling for improved scalability
of linear solvers, in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC '16, IEEE Press, Piscataway, NJ, 2016,
17, http://dl.acm.org/citation.cfm?id=3014904.3014927.

[25] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning ir-
regular graphs, SIAM J. Sci. Comput., 20 (1998), pp. 359--392, https://doi.org/10.1137/

D
ow

nl
oa

de
d

01
/2

3/
20

 to
 1

28
.9

3.
65

.2
16

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://www.mcs.anl.gov/petsc
https://doi.org/10.1137/120881191
https://doi.org/10.1137/120881191
https://doi.org/10.1137/0728088
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1137/080731992
https://doi.org/10.1137/13092157X
http://www.netlib.org/lapack/lawnspdf/lawn99.pdf
http://www.netlib.org/lapack/lawnspdf/lawn99.pdf
https://doi.org/10.1080/00207168808803625
https://doi.org/10.1016/j.parco.2013.06.001
https://doi.org/10.1016/j.parco.2013.06.001
https://doi.org/10.1137/140989492
https://hal.inria.fr/hal-01017448
https://hal.inria.fr/hal-01017448
https://hal.inria.fr/hal-01451199
https://hal.inria.fr/hal-01451199
https://doi.org/10.1007/s10543-016-0631-z
https://doi.org/10.1137/070707373
https://doi.org/10.1137/070707373
https://tel.archives-ouvertes.fr/tel-01155718
https://tel.archives-ouvertes.fr/tel-01155718
http://dl.acm.org/citation.cfm?id=3014904.3014927
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1137/S1064827595287997

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SCALABLE ENLARGED KRYLOV SOLVERS C547

S1064827595287997.
[26] M. Kreutzer, J. Thies, M. R\"ohrig-Z\"ollner, A. Pieper, F. Shahzad, M. Galgon,

A. Basermann, H. Fehske, G. Hager, and G. Wellein, GHOST: Building blocks for
high performance sparse linear algebra on heterogeneous systems, Internat. J. Parallel Pro-
gramming, 45 (2017), pp. 1046--1072, https://doi.org/10.1007/s10766-016-0464-z.

[27] J. Langou, Iterative Methods for Solving Linear Systems with Multiple Right-Hand Sides,
Ph.D. thesis, CERFACS, Toulouse, France, 2003.

[28] J. M\'alek and Z. Strako\v s, Preconditioning and the Conjugate Gradient Method in the Context
of Solving PDEs, SIAM Spotlights 1, SIAM, Philadelphia, 2015, https://doi.org/10.1137/
1.9781611973846.

[29] D. P. O'Leary, The block conjugate gradient algorithm and related methods, Linear Algebra
Appl., 29 (1980), pp. 293--322.

[30] M. Robb\'e and M. Sadkane, Exact and inexact breakdowns in the block GMRES method,
Linear Algebra Appl., 419 (2006), pp. 265--285.

[31] Y. Saad, On the rates of convergence of the Lanczos and the block-Lanczos methods, SIAM J.
Numer. Anal., 17 (1980), pp. 687--706, https://doi.org/10.1137/0717059.

[32] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia, 2003, https://doi.
org/10.1137/1.9780898718003.

[33] N. Spillane, An adaptive multipreconditioned conjugate gradient algorithm, SIAM J. Sci. Com-
put., 38 (2016), pp. A1896--A1918, https://doi.org/10.1137/15M1028534.

[34] N. Spillane, V. Dolean, P. Hauret, F. Nataf, C. Pechstein, and R. Scheichl, Abstract
robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps,
Numer. Math., 126 (2014), pp. 741--770, https://doi.org/10.1007/s00211-013-0576-y.

[35] J. M. Tang, R. Nabben, C. Vuik, and Y. A. Erlangga, Comparison of two-level precon-
ditioners derived from deflation, domain decomposition and multigrid methods, J. Sci.
Comput., 39 (2009), pp. 340--370, https://doi.org/10.1007/s10915-009-9272-6.

[36] R. Thakur, R. Rabenseifner, and W. Gropp, Optimization of collective communication
operations in MPICH, Int. J. High Perform. Comput. Appl., 19 (2005), pp. 49--66, https:
//doi.org/10.1177/1094342005051521.

[37] E. Wang, Q. Zhang, B. Shen, G. Zhang, X. Lu, Q. Wu, and Y. Wang, Intel math kernel
library, in High-Performance Computing on the Intel R\bigcirc Xeon Phi, Springer, Cham, 2014,
pp. 167--188.

[38] I. Yamazaki, S. Tomov, and J. Dongarra, Mixed-precision Cholesky QR factorization and
its case studies on multicore CPU with multiple GPUs, SIAM J. Sci. Comput., 37 (2015),
pp. C307--C330, https://doi.org/10.1137/14M0973773.

D
ow

nl
oa

de
d

01
/2

3/
20

 to
 1

28
.9

3.
65

.2
16

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1007/s10766-016-0464-z
https://doi.org/10.1137/1.9781611973846
https://doi.org/10.1137/1.9781611973846
https://doi.org/10.1137/0717059
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1137/15M1028534
https://doi.org/10.1007/s00211-013-0576-y
https://doi.org/10.1007/s10915-009-9272-6
https://doi.org/10.1177/1094342005051521
https://doi.org/10.1177/1094342005051521
https://doi.org/10.1137/14M0973773

	Introduction
	Enlarged Krylov conjugate gradients
	Block Krylov methods
	Enlarged Krylov subspaces
	Equivalence between Orthodir and Orthomin
	Convergence study
	Dynamic reduction of the search directions
	Curing breakdowns in Orthomin

	Parallel design
	Data distribution
	Cost analysis of ECG
	Cost of dynamic reduction of ECG

	Numerical experiments
	Description of the parallel environment
	Test cases
	Results
	Impact of the enlarging factor
	Strong scaling study
	Dependence on the mesh size—weak scaling study
	Impact of threads on performance

	Conclusion
	References

