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RANDOMIZED GRAM–SCHMIDT PROCESS WITH APPLICATION
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Abstract. A randomized Gram–Schmidt algorithm is developed for orthonormalization of high-
dimensional vectors or QR factorization. The proposed process can be less computationally expensive
than the classical Gram–Schmidt process while being at least as numerically stable as the modified
Gram–Schmidt process. Our approach is based on random sketching, which is a dimension reduction
technique consisting in estimation of inner products of high-dimensional vectors by inner products
of their small efficiently computable random images, so-called sketches. In this way, an approximate
orthogonality of the full vectors can be obtained by orthogonalization of their sketches. The pro-
posed Gram–Schmidt algorithm can provide computational cost reduction in any architecture. The
benefit of random sketching can be amplified by performing the nondominant operations in higher
precision. In this case the numerical stability can be guaranteed with a working unit roundoff inde-
pendent of the dimension of the problem. The proposed Gram–Schmidt process can be applied to
Arnoldi iteration and results in new Krylov subspace methods for solving high-dimensional systems
of equations or eigenvalue problems. Among them we chose the randomized GMRES method as a
practical application of the methodology.
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ing, numerical stability, rounding errors, loss of orthogonality, multiprecision arithmetic, Krylov
subspace methods, Arnoldi iteration, generalized minimal residual method
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1. Introduction. The orthonormalization of a set of high-dimensional vectors
serves as basis for many algorithms in numerical linear algebra and other fields of
science and engineering. The Gram–Schmidt (GS) process is one of the easiest and
most powerful methods to perform this task.

The numerical stability of the standard implementations of GS, which are the
classical GS algorithm (CGS) and the modified GS algorithm (MGS), were analyzed
in [1, 7]. The analysis of CGS was improved in [12, 13]. In [1, 13, 22, 30] the authors
discussed more sophisticated variants of the GS process and in particular the CGS
algorithm with re-orthogonalization (CGS2). Versions of the GS process well-suited
for modern extreme-scale computational architectures were developed in [23,31].

In this article we propose a probabilistic way to reduce the computational cost of
the GS process by using the random sketching technique [16, 28, 34]. This approach
recently became a popular tool for solving high-dimensional problems arising in such
fields as theoretical computer science, signal processing, data analysis, model order
reduction, and machine learning [33, 34]. The key idea of random sketching tech-
nique relies in the estimation of inner products of high-dimensional vectors by inner
products of their low-dimensional images through a random matrix. The random
sketching matrix is chosen depending on the computational architecture so that it
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RANDOMIZED GRAM–SCHMIDT PROCESS A1451

can be efficiently applied to a vector. In this way, one is able to efficiently embed a
set (or a subspace) of high-dimensional vectors, defining the problem of interest, into
a low-dimensional space and then tackle the problem in this low-dimensional space.
In the context of the GS process, this implies orthogonalizing the sketches rather than
high-dimensional vectors. Along with the randomized variant of the GS process, here
referred to as the randomized GS process (RGS), we also provide precise conditions
on the sketch to guarantee the approximate orthogonality of the output vectors in
finite precision arithmetic. They rely on the ε-embedding property of the random
sketching matrix for the subspace spanned by the output vectors. This property is
shown to hold for standard random matrices with high probability if the set of vec-
tors to be orthogonalized is provided a priori. Furthermore, an efficient procedure for
the a posteriori certification of the ε-embedding property is presented. Besides the
certification of the output, this procedure can be used for the adaptive selection of
the size of the random sketching matrix or for improving the robustness of algorithms
as depicted in Remark 3.10.

Furthermore, we show how the efficiency gains of the RGS algorithm can be am-
plified by using a multiprecision arithmetic. In particular, it is proposed to perform
expensive high-dimensional operations in low precision, which represents the working
precision, while computing the efficient random projections and low-dimensional oper-
ations in high precision. By exploiting statistical properties of rounding errors [9,19],
we are able to prove the stability of RGS for the working precision unit roundoff
independent of the high dimension of the problem. Clearly, the presented analysis
directly implies stability guarantees also for the unique precision model.

The randomization entails a possible failure of an algorithm. The probability of
this happening, however, is a user-specified parameter that can be chosen very small
(e.g., 10−10) without considerable impact on the overall computational costs.

One of the uses of the GS process is the computation of an orthonormal basis of
a Krylov subspace. This procedure may be used for the solution of high-dimensional
eigenvalue problems or systems of equations. In the context of minimal residual
methods, such an approach is, respectively, referred to as the Arnoldi iteration for
eigenvalue problems or the generalized minimal residual (GMRES) method for linear
systems of equations. For the presentation of these methods, see section 4. The
numerical properties of GMRES were analyzed in [10,15,24,26]. The usage of variable
(or multi) precision arithmetic for Krylov methods, and in particular GMRES, was
discussed in [8, 11, 14, 29, 32, 35]. In the present article we chose the GMRES method
as a practical application of the RGS algorithm.

The organization of the article is as follows. In subsection 1.1 we describe the basic
notations. Subsection 1.2 introduces a general GS process and particularizes it to few
classical variants. Section 2 at first discusses the general idea of the random sketching
technique. Then in subsection 2.2, we analyze the rounding errors of a sketched
matrix-vector product. A version of the GS process, based on random sketching, is
proposed in subsection 2.3. Its performance in different computational architectures is
then studied in subsection 2.4. Section 3 is devoted to the a priori as well as a posteriori
stability analysis of the RGS process. Section 4 discusses the incorporation of the
methodology into the Arnoldi iteration and GMRES algorithms. Section 5 provides
the experimental validation of proposed algorithms. Finally, section 6 concludes the
article.

For better presentation most of the proofs of theorems and propositions are pro-
vided as supplementary material (M138870SupMat.pdf [local/web 390KB]).
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A1452 OLEG BALABANOV AND LAURA GRIGORI

1.1. Preliminaries. Throughout the manuscript we work with real numbers
noting that the presented methodology can be naturally extended to complex num-
bers.

Algebraic vectors are here denoted by bold lowercase letters, e.g., letter x. For
given vectors x1, . . . ,xk, we denote matrix [x1, . . . ,xk] by Xk (with a bold capital
letter) and the (i, j)th entry of Xk by xi,j (with a lowercase letter). The notation Xk

can be further simplified to X if k is constant. Furthermore, we let [Xk](N1:N2,M1:M2)

denote the block of entries xi,j of Xk with (i, j) ∈ {N1, N1 + 1, . . . , N2} × {M1,M1 +
1, . . . ,M2}. For a special case of M1 = M2, we denote the vector [Xk](N1:N2,M1:M2)

by simply [Xk](N1:N2,M1). Moreover, if Xk is a vector, [Xk](N1:N2,1) is denoted by
[Xk](N1:N2). The minimal and the maximal singular values of X are denoted by
σmin(X) and σmax(X) and the condition number by cond(X). We let ⟨·, ·⟩ and ∥ · ∥ =
σmax(·) be the ℓ2-inner product and ℓ2-norm, respectively. ∥·∥F denotes the Frobenius
norm. For two matrices (or vectors) X and Y we say that X ≤ Y if the entries of
X satisfy xi,j ≤ yi,j . Furthermore, for a matrix (or a vector) X, we denote by |X|
the matrix Y with entries yi,j = |xi,j |. We also let XT and X†, respectively, denote
the transpose and the Moore–Penrose inverse of X. Finally, we let Ik×k be the k × k
identity matrix.

For a quantity or an arithmetic expression, X, we use notation fl(X) or X̂ to
denote the computed value of X with finite precision arithmetic.

1.2. GS process. The GS process is a method to orthonormalize a set of vectors
or compute QR factorization of a matrix. We are concerned with a column-oriented
variant of the process. It proceeds recursively, at each iteration selecting a new vector
from the set and orthogonalizing it with respect to the previously selected vectors, as
is depicted in Algorithm 1.1.

The projector Π(j) in Algorithm 1.1 is usually taken as approximation to the
(ℓ2-)orthogonal projector In×n −Qj(Qj)

† onto span(Qj)
⊥, 1 ≤ j ≤ m − 1. If Algo-

rithm 1.1 is used with infinite precision arithmetic, then considering

Π(j) = In×n −Qj(Qj)
T(1.1)

will produce an exact QR factorization of W. This fact can be shown by induction.
In short, we can show that Π(i−1) being an orthogonal projector implies Qi being an
orthonormal matrix, which in its turn implies that Π(i) is an orthonormal projector.
Algorithm 1.1 with the choice (1.1) is referred to as the CGS process. With finite
precision arithmetic, however, matrix Qj can be guaranteed to be orthonormal only
approximately. This can make the CGS algorithm suffer from numerical instabilities.
In particular, in this case the orthogonality of Q factor, measured by ∥Im×m−QTQ∥,
can grow as cond(W)2 or more, depending on the method used for normalization [7,
30].

Algorithm 1.1. GS process

Given: n×m matrix W, m ≤ n
Output: n×m factor Q and m×m upper triangular factor R.
for i = 1 : m do
1. Compute a projection qi = Π(i−1)wi (also yielding [R](1:i−1,i)).
2. Normalize qi (also yielding ri,i).

end for
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RANDOMIZED GRAM–SCHMIDT PROCESS A1453

Besides the projector (1.1), there are a couple of other standard choices for Π(j).
They can yield a better numerical stability but require more computational cost in
terms of flops, storage consumption, scalability, or amount of communication between
processors. The MGS algorithm uses the projector

Π(j) =
(
In×n − qj(qj)

T
) (

In×n − qj−1(qj−1)
T
)
. . .

(
In×n − q1(q1)

T
)
, 1 ≤ j ≤ m−1.

In this case the orthogonality measure of Q depends only linearly on cond(W) [7].
Numerical stability of the MGS algorithm is sufficient for most applications and is
often considered as benchmark for characterizing the stability of algorithms for or-
thogonalizing a set of vectors or computing a QR factorization. Another choice for
Π(j) is

Π(j) =
(
In×n −Qj(Qj)

T
) (

In×n −Qj(Qj)
T
)
, 1 ≤ j ≤ m− 1,

which results in a so-called CGS process with re-orthogonalization (CGS2). This
projector can be shown to yield a similar (or better) stability as the MGS process.

In this work we are concerned with a scenario when W is a large matrix with
a moderate number of columns, i.e., when m ≪ n. For this situation, we propose a
new randomized projector Π(j) that can yield more efficiency than the CGS process
while providing no less numerical stability than the MGS process. Unlike standard
approaches, our RGS algorithm provides a Q factor that is not ℓ2-orthogonal even
under exact arithmetic but that is very well-conditioned with very high probability.
This property is sufficient for a number of applications. For instance, as is shown
in subsection 4.2, a small condition number of the Q factor guarantees an almost
optimal convergence of the GMRES solution. For other cases, the Q factor produced
by the RGS algorithm should be post processed with a Cholesky QR.

2. RGS algorithm.

2.1. Introduction to random sketching. Let Θ ∈ Rk×n, with k ≪ n, be a
sketching matrix. This matrix shall be seen as an embedding of subspaces of Rn into
subspaces of Rk and is therefore referred to as a ℓ2-subspace embedding. The ℓ2-inner
products between vectors in subspaces of Rn are estimated by

⟨·, ·⟩ ≈ ⟨Θ·,Θ·⟩.

For a given (low-dimensional) subspace of interest V ⊂ Rn, the quality of such an
estimation can be characterized by the following property of Θ.

Definition 2.1. For ε < 1, the sketching matrix Θ ∈ Rk×n is said to be an
ε-subspace embedding for V ⊂ Rn if we have

∀x,y ∈ V, |⟨x,y⟩ − ⟨Θx,Θy⟩| ≤ ε∥x∥∥y∥.(2.1)

Let V be a matrix whose columns form a basis for V . To ease presentation in the
next sections, an ε-subspace embedding for V shall be often referred to simply as an
ε-embedding for V.

Corollary 2.2. If Θ ∈ Rk×n is an ε-embedding for V, then the singular values
of V are bounded by

(1 + ε)−1/2σmin(ΘV) ≤ σmin(V) ≤ σmax(V) ≤ (1− ε)−1/2σmax(ΘV).
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A1454 OLEG BALABANOV AND LAURA GRIGORI

Proof. Let a ∈ Rdim(V ) be an arbitrary vector and x = Va. By definition of Θ,

(1 + ε)−1∥Θx∥2 ≤ ∥x∥2 ≤ (1− ε)−1∥Θx∥2, which implies that

(1 + ε)−1/2∥ΘVa∥ ≤ ∥Va∥ ≤ (1− ε)−1/2∥ΘVa∥.

The statement of proposition then follows by using definitions of the minimal and the
maximal singular values of a matrix.

Corollary 2.2 implies that to make the condition number of matrix V close to 1,
it can be sufficient to orthonormalize small sketched matrix ΘV. This observation
serves as basis for the RGS process in subsection 2.3. Note that the orthogonalization
of ΘV with respect to the ℓ2-inner product is equivalent to orthonormalization of V
with respect to the product ⟨Θ·,Θ·⟩. Note also that in our applications there will be
no practical benefit of considering very small values for ε. The usage of ε ≤ 1/2 or
ε ≤ 1/4 will be sufficient.

We here proceed with sketching matrices that do not require any a priori knowl-
edge of V to guarantee (2.1). Instead, Θ is generated from a carefully chosen distribu-
tion such that it satisfies (2.1) for any low-dimensional subspace with high probability.

Definition 2.3. The sketching matrix Θ ∈ Rk×n is called a (ε, δ, d) oblivious
ℓ2-subspace embedding if it is an ε-embedding for any fixed d-dimensional subspace
V ⊂ Rn with probability at least 1− δ.

In general, such oblivious subspace embeddings with high probability have a bounded
norm, as is shown in Corollary 2.4.

Corollary 2.4. If Θ ∈ Rk×n is a (ε, δ/n, 1) oblivious ℓ2-subspace embedding,
then with probability at least 1− δ, we have

∥Θ∥F ≤
√
(1 + ε)n.

Proof. It directly follows from Definition 2.3 and the union bound argument that
Θ is an ε-embedding for each canonical (Euclidean) basis vector. This implies that
the ℓ2-norms of the columns of Θ are bounded from above by

√
1 + ε. The statement

of the corollary then follows immediately.

There are several distributions that are known to satisfy the (ε, δ, d) oblivious
ℓ2-subspace embedding property when k is sufficiently large. The standard exam-
ples include Gaussian, Rademacher distributions, subsampled randomized Hadamard
transform (SRHT) and Fourier transform, CountSketch matrix, and more [2, 16, 34].
In this work we shall rely on Rademacher matrices and partial SRHT (P-SRHT).
A (rescaled) Rademacher matrix has independent and identically distributed en-
tries equal to ±1/

√
k with probabilities 1/2. The efficiency of multiplication by

Rademacher matrices can be attained due to proper exploitation of computational
architectures. For instance, the products of Rademacher matrices with vectors can be
implemented with standard SQL primitives and are embarrassingly parallelizable. For
n being a power of 2, SRHT is defined as a product of a diagonal matrix of random
signs with a Walsh–Hadamard matrix, followed by a uniform subsampling matrix and
scaling factor 1/

√
k. Random sketching with SRHT can improve efficiency in terms of

number of flops. Products of SRHT matrices with vectors require only n log2(n) flops
using the fast Walsh–Hadamard transform or 2n log2(k+1) flops using the procedure
in [3]. P-SRHT is used instead of SRHT when n is not a power of 2 and is defined as
the first n columns of an SRHT matrix of size s, where s is the power of 2 such that
n ≤ s < 2n. Furthermore, for both (P-)SRHT and Rademacher matrices a seeded
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RANDOMIZED GRAM–SCHMIDT PROCESS A1455

random number generator can be utilized to allow efficient storage and application of
Θ. This is particularly important for limited-memory and distributed computational
architectures. It follows that the rescaled Rademacher distribution with

k ≥ 7.87ε−2(6.9d+ log(1/δ))(2.2a)

and the P-SRHT distribution with

k ≥ 2(ε2 − ε3/3)−1
(√

d+
√
8 log(6n/δ)

)2

log(3d/δ),(2.2b)

respectively, are (ε, δ, d) oblivious ℓ2-subspace embeddings [4]. We see that the bounds
(2.2) are independent or only logarithmically dependent on the dimension n and
probability of failure and are proportional to the low dimension d. This implies that
one can use Θ of a small size even for very large problems and very small probabilities
of failure.

2.2. Rounding errors in a sketched matrix-vector product. Let us fix a
realization of an oblivious ℓ2-subspace embedding Θ ∈ Rk×n of sufficiently large size
and consider a matrix-vector product

x = Yz with Y ∈ Rn×m, z ∈ Rm,

computed in finite precision arithmetic with unit roundoff u < 0.01/m. Note that
elementary linear algebra operations on vectors such as addition or multiplication by
a constant can be also viewed as matrix-vector products. Define rounding error vector
∆x = x̂− x. The standard worst-case scenario rounding analysis provides an upper
bound for ∆x of the following form [18]:

|∆x| ≤ u.(2.3)

In a general case, the vector u can be taken as1

u = 1.02mu|Y||z|.(2.4)

In some situations, e.g., if the matrix Y is sparse, this bound can be improved. Here,
we are particularly interested in the case when Y = aIn×n, i.e., when Yz represents
a multiplication of z by a constant, and when Yz = Y′z′ +h, i.e., when it represents
a sum of a matrix-vector product with a vector. Then in the first case, one can take

u = u|az|,

and in the second case,2

u = 1.02u(|h|+m|Y′||z′|).

Let us now address bounding the rounding error of the sketch Θx̂. This will
become particularly handy in section 3 to simplify stability analysis of the RGS algo-
rithm proposed in subsection 2.3. We here seek a bound of the form

∥Θ∆x∥ ≤ D∥u∥,(2.5)

1We here used the fact that mu
1−mu

≤ 1.02mu.
2We have, by the standard worst-case scenario analysis,

|∆x| ≤
(m− 1)u

1− (m− 1)u
|Y′||z′|+ u

((
1 +

(m− 1)u

1− (m− 1)u

)
|Y′||z′|+ |h|

)
≤ 1.02u(|h|+m|Y′||z′|).
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A1456 OLEG BALABANOV AND LAURA GRIGORI

where D is a coefficient possibly depending on n. Clearly, we have

∥Θ∆x∥ ≤ ∥Θ∥∥u∥,(2.6)

which combined with Corollary 2.4 implies that with high probability the relation (2.5)
holds with D = O(

√
n).3

Next we notice that taking D = O(
√
n) accounts for a very improbable worst-

case scenario and is pessimistic in practice. If x is independent of Θ, then with high
probability the relation (2.5) holds for D = O(1).4 Furthermore (as is argued below in
detail), one can expect the relation (2.5), with D = O(1), to hold for Θ of moderate
size even when x depends on Θ (i.e., when Y and z are chosen depending on Θ),
since the rounding error vector ∆x should in practice have only a minor correlation
with Θ. This property can be viewed as a sketched version of the standard “rule of
thumb” stating that in practice one can reduce the worst-case scenario error constants
(e.g., constant γn = nu

1−nu in [18]) by a factor of
√
n. It has an important meaning

in the context of (oblivious) randomized algorithms: the sketching step does not in
practice multiply the rounding errors by a factor depending on n. In other words,
with random sketching one is able to efficiently reduce the dimension of the problem
without a loss of numerical precision.

To provide a precise guarantee that (2.5) holds for D = O(1) we shall need to
explore the properties of ∆x as a vector of rounding errors. For this we shall consider
a probabilistic rounding model, where

• the rounding errors ξ due to each elementary arithmetic operation x op y,
i.e.,

ξ =
fl(x op y)− (x op y)

(x op y)
with op = +,−, ∗, /,

are bounded random variables possibly depending on each other but are in-
dependently centered (i.e., have zero mean);

• the computation of each entry of x̂ is done independently of other entries, in
other words, the entries of ∆x are drawn independently of each other.

This model corresponds to [9, Model 4.7]. Its particular case is the so-called stochastic
rounding model (see [9]), which recently gained attention in the machine learning
community to improve the accuracy and the efficiency of training neural networks.
The analysis of standard numerical linear algebra algorithms and, in particular, the
rigorous foundation of the “rule of thumb”, with the probabilistic rounding model is
provided in [9, 17, 19, 20]. Note that the rounding model used here does not assume
the rounding errors to be independent random variables as in [17, 19, 20] but only
mean-independent with zero mean, which is a weaker and more realistic assumption,
as is argued in [9].

Let us deduce that under the described probabilistic model, the vector ∆x has
entries that are independent centered random variables. It then follows from Theo-
rem 2.5 that Θ shall satisfy (2.5) with D = O(1) with probability at least 1− 2δ if Θ
is a (ε, ( nd )

−1δ, d), with d = O(log(1/δ)), oblivious ℓ2-subspace embedding. According
to (2.2), this property is satisfied if Θ is a Rademacher matrix with O(log(n) log(1/δ))
rows or P-SRHT matrix with O(log2(n) log2(1/δ)) rows.

3If Θ is a (ε, δ/n, 1) oblivious subspace embedding, then we have D =
√
1 + ε

√
n with probability

at least 1− δ.
4If Θ is a (ε, δ, 1) oblivious subspace embedding, then we have D =

√
1 + ε with probability at

least 1− δ.
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Theorem 2.5. Draw a realization Θ ∈ Rk×n of (ε/4, ( nd )
−1δ, d) oblivious ℓ2-

subspace embedding, with d = 4.2c−1 log(4/δ), where c ≤ 1 is some universal constant.
Let φ ∈ Rn be a vector with entries that are independent random variables from
distributions that can depend on Θ. If φ has zero mean, i.e., E(φ|Θ) = 0, and
|φ| ≤ γ for some vector γ ∈ Rn, then

|∥φ∥2 − ∥Θφ∥2| ≤ ε∥γ∥2(2.7)

holds with probability at least 1− 2δ.

Proof. The proof of Theorem 2.5 will rely on the following property of Θ:

(1− ε)∥a∥2 ≤ ∥Θa∥2 ≤ (1 + ε)∥a∥2 for all d-sparse vectors a ∈ Rn,(2.8)

called the restricted isometry property of level ε and order d, or simply (ε, d)-RIP.5

This is a well-known fact that oblivious ℓ2-subspace embeddings satisfy the RIP with
high probability, as is shown in Proposition 2.8. The statement of Theorem 2.5
then follows by combining Proposition 2.8 with Theorem 2.9, and the union bound
argument.

Corollary 2.6. Consider the probabilistic rounding model. If Θ is a (ε/4,
( nd )

−1δ, d) oblivious ℓ2-subspace embedding, with d = 4.2c−1 log(4/δ), where c ≤ 1
is some universal constant, then the bound (2.5) holds with D =

√
1 + ε with proba-

bility at least 1− 2δ.

Remark 2.7. The universal constant c in Theorem 2.5 and Corollary 2.6 is same
as that in the Hanson–Wright inequality (see [33, Theorem 6.2.1]). It can be shown
that this constant is greater than 1/64 [25].

Proposition 2.8. An (ε, ( nd )
−1δ, d) oblivious ℓ2-subspace embedding Θ ∈ Rk×n

satisfies (ε, d)-RIP with probability at least 1− δ.

Proof. Let B denote the canonical (Euclidean) basis for Rn. It follows directly
from the definition of Θ and the union bound argument that Θ is an ε-embedding for
all subspaces spanned by d vectors from B, simultaneously, with probability at least
1− δ. Since every d-sparse vector a ∈ Rn belongs to a subspace spanned by d vectors
from B, we conclude that Θ satisfies (2.8) with probability at least 1− δ.

Theorem 2.9. Let Θ ∈ Rk×n be a matrix satisfying (ε/4, 2d)-RIP with d =
2.1c−1 log(4/δ), where c ≤ 1 is some universal constant. Let φ ∈ Rn be a vector with
entries that are independent random variables. If φ has zero mean and |φ| ≤ γ for
some vector γ ∈ Rn, then

|∥φ∥2 − ∥Θφ∥2| ≤ ε∥γ∥2

holds with probability at least 1− δ.

Proof. See supplementary material (M138870SupMat.pdf [local/web 390KB]).

2.3. RGS process. Consider the variants of Algorithm 1.1 where the projector
Π(i−1) has the form

Π(i−1)wi = wi −Qi−1x(2.9)

5A vector a ∈ Rn is called d-sparse if it has at most d nonzero entries.
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with x = R(1:i−1,i) computed from Qi−1 and wi. The classical methods proceed with

taking x as an approximation of Q†
i−1wi or, equivalently, as an approximate solution

to the following least-squares problem:

min
y
∥Qi−1y −wi∥.(2.10)

The stability of Algorithm 1.1 in this case can be directly linked to the accuracy
of x. The CGS and MGS algorithms belong to the aforementioned category of GS
processes with x taken as, respectively, x = QT

i−1wi and x = Ti−1(Q
T
i−1wi), for some

triangular matrix Ti−1 [31]. The connection of CGS and MGS with solving (2.10)
was explored in [27]. A similar formulation was also used in [6].

In this work we develop new variants of the GS process that satisfy (2.9), but
this time that produce the output Q factor orthonormal with respect to the sketched
product ⟨Θ·,Θ·⟩ rather than the ℓ2-inner product as in standard methods. Thus,
the Q factor is no longer ℓ2-orthonormal even in exact arithmetic, though, according
to Corollary 2.2, it has a small (ℓ2-)condition number and yields a reduced computa-
tional cost. Such factorization corresponds to taking x in (2.9) as an approximation
of (ΘQi−1)

†(Θwi) or, equivalently, a minimizer of the sketched residual:

min
y
∥(ΘQi−1)y −Θwi∥.

Furthermore, the normalization of qi at step 2 of Algorithm 1.1 has to be performed
accordingly: qi = qi/∥Θqi∥. We see that unlike in standard methods, here the
computation of x requires only (efficient) evaluation of random projections and oper-
ations on small vectors and matrices with no standard operations on high-dimensional
vectors. The GS process with such a projector is depicted in Algorithm 2.1.

In general, stability of Algorithm 2.1 directly depends on the accuracy and sta-
bility of the least-squares solver used in step 2. One should prioritize least-squares
solvers that are as accurate and stable as possible. They can be based on Givens
rotations or Householder transformation as is considered in our stability analysis
(see subsection 3.1). Such standard solvers should yield a negligible computational
cost when matrix Sm = ΘQm is sufficiently small, which happens in most applica-
tions. However, when Sm is of moderate size, the least-squares solution with standard
methods can entail a considerable computational cost and has to be avoided. In such
cases, by using the fact that Si−1 is approximately orthonormal, one can compute
x = [R](1:i−1,i) from the normal equation:

(Si−1)
TSi−1x = (Si−1)

Tpi

with several Richardson iterations x← x+ST
i−1(pi−Si−1x) requiring a minor compu-

tational cost. The resulting algorithm can be viewed as a sketched version of the CGS
process with re-orthogonalizations. The case x = (Si−1)

Tpi with only one Richardson
iteration exactly corresponds to the orthogonalization of W with respect to ⟨Θ·,Θ·⟩
with the CGS process defined for a general inner product. Moreover, instead of us-
ing the Richardson iterations we could also compute x by orthogonalizing pi to Si−1

with an MGS step. In this case Algorithm 2.1 would correspond to orthogonalization
of W with respect to ⟨Θ·,Θ·⟩ with the MGS process. The ways for efficient and
stable solution of the sketched least-squares problem are addressed in details in our
subsequent work on the block variants of the RGS process.

At i = 1 of Algorithm 2.1 we used a conventional notation that [R](1:i−1,i) is
a 0-by-1 matrix and Qi−1 is an n-by-0 matrix, implying that q′

i = wi and s′i = pi.
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Algorithm 2.1. RGS algorithm

Given: n×m matrix W and k × n matrix Θ, m ≤ k ≪ n.
Output: n×m factor Q and m×m upper triangular factor R.
for i = 1 : m do
1. Sketch wi: pi = Θwi. # macheps: ufine

2. Solve k × (i− 1) least-squares problem:
[R](1:i−1,i) = argminy ∥Si−1y − pi∥. # macheps: ufine

3. Compute projection of wi: q
′
i = wi −Qi−1[R](1:i−1,i). # macheps: ucrs

4. Sketch q′
i: s

′
i = Θq′

i. # macheps: ufine

5. Compute the sketched norm ri,i = ∥s′i∥. # macheps: ufine

6. Scale vector si = s′i/ri,i. # macheps: ufine

7. Scale vector qi = q′
i/ri,i. # macheps: ufine

end for
8. (Optional) compute ∆m = ∥Im×m − ST

mSm∥F and ∆̃m = ∥Pm−SmRm∥F

∥Pm∥F
.

Use Theorem 3.2 to certify the output. # macheps: ufine

Algorithm 2.1 is executed with a multiprecision finite arithmetic with two unit round-
offs: a coarse one ucrs, and a fine one ufine, ufine ≤ ucrs ≤ 0.01/m. The roundoff
ucrs represents the working precision and is used for standard operations on high-
dimensional vectors and matrices in step 3, which is the most expensive computation
in the algorithm. This precision is also used for storage of large matrices Q and
W. All other (inexpensive) operations in Algorithm 2.1 are performed and accu-
mulated with a fine roundoff ufine. We chose a multiprecision model rather than
a unique precision one to show an interesting property of the algorithm: that one
may guarantee stability of Algorithm 2.1 by performing standard operations on high-
dimensional vectors (i.e., step 3) with unit roundoff ucrs independent of n (and k).
This feature of the RGS process can have a particular importance for extreme-scale
problems. Clearly, the results from this paper can be also used for the analysis of Al-
gorithm 2.1 executed with unique unit roundoff ufine. The stability guarantees in
such a case can be derived from sections 3 and 4 simply by introducing a fictitious
unit roundoff ucrs = F (m,n)ufine, where F (m,n) is a low-degree polynomial, and
looking at Algorithm 2.1 as though it were executed with multiprecision arithmetic
with unit roundoffs ufine and ucrs.

Remark 2.10. In step 4 of Algorithm 2.1, the sketch of q′
i could be computed also

as s′i = pi−Si−1[R](1:i−1,i) instead of s′i = Θq′
i. Our experiments, however, revealed

that this way is less stable.

2.4. Performance analysis. Let us now characterize the efficiency of Algo-
rithm 2.1 executed in different computational architectures. The performance analy-
sis is done through comparison to CGS. The CGS algorithm is the most efficient from
the standard (column-oriented) algorithms for orthogonalization of a set of vectors. It
requires nearly half as many flops and synchronizations between processors as CGS2,
and, unlike MGS, it can be implemented using matrix-vector operations, i.e., level-2
basic linear algebra subprograms (BLAS-2).

By assuming that m ≤ k ≪ n, we shall neglect the cost of operations on sketched
vectors and matrices in Algorithm 2.1. Then the computational cost is characterized
by evaluation of random sketches at steps 1 and 4 and computation of the projection
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of wi at step 3. Moreover, at steps 1 and 4 we let the sketching matrix Θ be chosen
depending on each particular situation to yield the most efficiency.

The RGS algorithm can be beneficial in terms of the classical metric of efficiency,
which is the number of flops. If Θ is taken as SRHT, then the random projections
at steps 1 and 4 require in total (no more than) 4n log(k + 1) flops at each iteration.
For sufficiently large i, this cost is much less than the cost of step 3 that is nearly
2ni flops. The CGS requires more than 4ni flops at each iteration, and therefore it
is nearly twice as expensive as RGS. Furthermore, the flops at step 3 of the RGS
algorithm can be done in low precision, which can make Algorithm 2.1 even more
efficient.

Both CGS and RGS algorithms can be implemented by using BLAS-2 routines for
high-dimensional operations. The CGS algorithm in such an implementation, how-
ever, entails (at least) two passes over the basis matrix Qi−1 at iteration i, 2 ≤ i ≤ m.
Algorithm 2.1, on the other hand, at each iteration requires only one pass over Qi−1

and two applications of Θ. The applications of Θ can be performed by utilizing a
seeded random number generator with negligible storage costs. Consequently, in this
case RGS can be more pass-efficient than CGS. Furthermore, the matrix Qi−1 in the
RGS algorithm can be maintained in lower precision and still yield similar (or better)
accuracy than the CGS algorithm, which can amplify the storage reduction.

To characterize the performance of RGS in parallel/distributed computational ar-
chitecture, we consider the situation when the columns of W are provided recursively
as

wi+1 = Aqi, 1 ≤ i ≤ m− 1,

where A is an n× n matrix. This, for instance, happens in the Arnoldi algorithm for
computing an orthonormal basis of a Krylov subspace, which is the core ingredient
of the GMRES algorithm (see section 4 for details). We here assume that the high-
dimensional matrix A and the vectors qi are distributed among processors using block
rowwise partitioning (possibly with overlaps). This is a standard situation when A is
obtained from discretization of a PDE. It is then assumed that the computation of the
matrix-vector product wi+1 = Aqi requires communication only between neighboring
processors and has a minor impact on the overall communication cost. We also assume
that along with the local matrices and vectors on each processor are also maintained
copies of the sketches Si, s

′
i, and pi and matrix Ri.

Next we notice that the utilization of a seeded random number generator can allow
efficient access to any block of Θ with a minor computational cost and, in particular,
with absolutely no communication. The computation of the sketch pi = ΘAqi−1

in step 1 then requires only one global synchronization. The computation of the
sketch Θq′

i in step 4 of Algorithm 2.1 requires an additional synchronization, which
implies in total two global synchronizations at each iteration of Algorithm 2.1. This
communication cost is the same as of the classical implementation of CGS. In [21,
section 4] is described a way to reduce the communication cost of the CGS algorithm
to only one synchronization per iteration. This technique may also be applied to
the RGS algorithm by incorporating a lag into steps 5–7 of Algorithm 2.1. More
specifically, at iteration i, we can compute two sketches

s′i = Θq′
i and p′

i+1 = ΘAq′
i, 1 ≤ i ≤ m− 1,

simultaneously, by utilizing only one global synchronization, and then perform the
normalizations: ri,i = ∥s′i∥, si = s′i/ri,i, qi = q′

i/ri,i, and pi+1 = p′
i+1/ri,i. The
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communication cost of such implementation of the RGS algorithm then becomes only
one global synchronization per iteration. We conclude that RGS and CGS should have
similar numbers of required synchronizations in parallel/distributed computational
architecture.

3. Stability of RGS process. In this section we provide stability analysis of Al-
gorithm 2.1. It is based on the following assumptions that hold with high probability
if Θ is an oblivious subspace embedding of sufficiently large size.

First, we assume that Θ satisfies (3.1). According to Corollary 2.4, this property
holds with probability at least 1−δ, ifΘ is (1/2, δ/n, 1) oblivious subspace embedding.

Furthermore, let us define rounding error vectors

∆q′
i := q̂′

i −
(
ŵi − Q̂i−1[R̂](1:i−1,i)

)
and ∆qi := q̂i − q̂′

i/r̂i,i

in steps 3 and 6 of Algorithm 2.1. Then, the standard worst-case scenario round-
ing analysis yields (3.2) (for derivation, see subsection 2.2). Following the argu-
ments from subsection 2.2, we assume that Θ satisfies (3.3). It follows from Corol-
lary 2.6 and the union bound argument that this property holds under the proba-
bilistic rounding model with probability at least 1 − 4δ if Θ is (1/8,m−1( nd )

−1δ, d),
with d = O(log(m/δ)), oblivious subspace embedding. By using the bounds (2.2)
we conclude that Assumptions 3.1 hold under the probabilistic rounding model with
probability at least 1− δ, if Θ is a Rademacher matrix with k = O(log(n) log(m/δ))
rows or SRHT with k = O(log2(n) log2(m/δ)) rows. Note that these properties should
also hold under many other (possibly deterministic) rounding models. The classical
worst-case scenario model, however, entails D =

√
1 + ε

√
n in (3.3). The numerical

stability bounds in this case can be deduced from Theorems 3.2 and 3.3 by letting
ucrs = ucrs

√
n and ufine = ufine

√
n.

Assumptions 3.1. It is assumed that

∥Θ∥F ≤
√
1 + ε

√
n(3.1)

with ε ≤ 1/2. Furthermore, in Algorithm 2.1 we assume that

|∆q′
i| ≤ 1.02ucrs(|ŵi|+ i|Q̂i−1||[R̂](1:i−1,i)|),(3.2a)

|∆qi| ≤ ufine|q̂′
i/r̂i,i|,(3.2b)

and

∥Θ∆q′
i∥ ≤ 1.02ucrsD∥|ŵi|+ i|Q̂i−1||[R̂](1:i−1,i)|∥,(3.3a)

∥Θ∆qi∥ ≤ ufineD∥q̂′
i/r̂i,i∥,(3.3b)

with D =
√
1 + ε, ε ≤ 1/2, 1 ≤ i ≤ m.

3.1. Stability analysis. The results in this subsection shall rely on the con-
dition that Θ satisfies the ε-embedding property for Q̂ and Ŵ. A priori analysis
to satisfy this property with (high) user-specified probability of success is provided
in subsection 3.2. Furthermore, in subsection 3.2 we also provide a way to efficiently
certify that Θ is an ε-embedding for Q̂ and Ŵ. Then the stability of Algorithm 2.1
can be characterized by coefficients

∆m = ∥Im×m − ŜT
mŜm∥F and ∆̃m = ∥P̂m − ŜmR̂m∥F/∥P̂m∥F,

as is shown in Theorem 3.2.
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Theorem 3.2. Assume that

100m1/2n3/2ufine ≤ ucrs ≤ 0.01m−1 and n ≥ 100,

along with Assumptions 3.1. If Θ is an ε-embedding for Q̂ and Ŵ from Algorithm 2.1,
with ε ≤ 1/2, and if ∆m, ∆̃m ≤ 0.1, then the following inequalities hold:

(1+ ε)−1/2(1−∆m−0.1ucrs) ≤ σmin(Q̂) ≤ σmax(Q̂) ≤ (1− ε)−1/2(1+∆m+0.1ucrs)

and
∥Ŵ − Q̂R̂∥F ≤ 3.7ucrsm

3/2∥Ŵ∥F.
Proof. See supplementary material (M138870SupMat.pdf [local/web 390KB]).

According to Theorem 3.2, the numerical stability of Algorithm 2.1 can be ensured
by guaranteeing that ∆m and ∆̃m are sufficiently small (along with the ε-embedding
property of Θ). This can be done by employing a sufficiently accurate backward-
stable solver to the least-squares problem in step 2. Below we provide theoretical
bounds for ∆m and ∆̃m in this case.

Theorem 3.3. Consider Algorithm 2.1 utilizing QR factorization based on House-
holder transformation or Givens rotations for computing the solution to the least-
squares problem in step 2.

Under Assumptions 3.1, if Θ is an ε-embedding for Q̂m−1 and Ŵ, with ε ≤ 1/2,
and if

ucrs ≤ 10−3cond(Ŵ)−1m−2,

ufine ≤ (100m1/2n3/2 + 104m3/2k)−1ucrs,

then ∆m and ∆̃m are bounded by

∆̃m ≤ 4.2ucrsm
3/2∥Ŵ∥F/∥P̂∥F ≤ 6ucrsm

3/2,(3.4)

∆m ≤ 20ucrsm
2cond(Ŵ).(3.5)

Proof. See supplementary material (M138870SupMat.pdf [local/web 390KB]).

Remark 3.4. In general, the result of Theorem 3.3 holds for any least-squares
solver in step 2 as long as the following backward-stability property is satisfied:

[R̂](1:i−1,i) = argmin
y
∥(Ŝi−1 +∆Si−1)y − (p̂i +∆pi)∥ with

∥∆Si−1∥F ≤ 0.01ucrs∥Ŝi−1∥, ∥∆pi∥ ≤ 0.01ucrs∥p̂i∥.

Remark 3.5. Notice that Theorem 3.3 requires Θ to be an ε-embedding for Q̂m−1

and not Q̂. This observation will become handy for proving the ε-embedding property
for Q̂ in subsection 3.2 by using induction on m.

Theorems 3.2 and 3.3 imply a stable QR factorization for working unit roundoff
ucrs independent of the high dimension n.

In some cases, obtaining a priori guarantees with Theorem 3.3 can be an im-
practical task due to the need to estimate cond(Ŵ). Furthermore, one may want
to use Algorithm 2.1 with a higher value of ucrs than is assumed in Theorem 3.3,
possibly with a bigger gap between the values of ucrs and ufine. In such cases, the
computed QR factorization can be efficiently certified a posteriori by computing ∆m

and ∆̃m and using Theorem 3.2 with no operations on high-dimensional vectors and
matrices, and the estimation of cond(Ŵ).
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3.2. Epsilon embedding property. The stability analysis in subsection 3.1
holds if Θ satisfies the ε-embedding property for Q̂ and Ŵ. In this section we provide
a priori and a posteriori analysis of this property.

A priori analysis. Let us consider the case when Ŵ and Θ are independent of
each other. Then it follows directly from Definition 2.3 that if Θ is (ε, δ,m) oblivious

ℓ2-subspace embedding, then it satisfies the ε-embedding property for Ŵ with high
probability. Below, we provide a guarantee that in this case Θ will also satisfy an
ε-embedding property for Q̂ with moderately increased value of ε.

Proposition 3.6. Consider Algorithm 2.1 using the Givens or Householder least-
squares solver in step 2 and computed with unit roundoffs

ucrs ≤ 10−3cond(Ŵ)−1m−2,

ufine ≤ (100m1/2n3/2 + 104m3/2k)−1ucrs.

Under Assumptions 3.1, if Θ is an ε-embedding for Ŵ, with ε ≤ 1/4, then it satisfies

the ε′-embedding property for Q̂ with

ε′ = 2ε+ 180ucrsm
2cond(Ŵ).

Proof. See supplementary material (M138870SupMat.pdf [local/web 390KB]).

When Ŵ is generated depending on Θ (as we have in the Arnoldi process in sec-

tion 4), the a priori analysis for the ε-embedding property for Ŵ can be nontrivial
and pessimistic. Nevertheless, Θ can still be expected to be an ε-embedding because
there is only a minor correlation of the rounding errors with Θ. When there is no a
priori guarantee on the quality of Θ or the guarantee is pessimistic, it can be impor-
tant to be able to certify the ε-embedding property a posteriori, which is discussed
next.

A posteriori certification. The quality of Θ can be certified by providing an
upper bound ω̄ for the minimum value ω of ε, for which Θ satisfies the ε-embedding
property for V. The matrix V can be chosen as Q̂ or Ŵ. The considered a posteriori
bound ω̄ is probabilistic. We proceed by introducing an (additional to Θ) sketching
matrix Φ used solely for the certification so that it is randomly independent of V
and Θ. For efficiency, this matrix should be of size no more than the size of Θ. In
practice, an easy and robust way is to use Φ and Θ of same size. Define parameters
ε∗ and δ∗ characterizing, respectively, the accuracy of ω̄ (i.e., its closeness to ω) and
the probability of failure for ω̄ to be an upper bound. Then we can use the following
results from [5] (see Propositions 3.7 and 3.8).

Proposition 3.7 (corollary of Proposition 5.3 in [5]). Assume that Φ is a

(ε∗, δ∗, 1)-oblivious subspace embedding. Let V = Q̂ or Ŵ, VΘ = ΘV, and VΦ =
ΦV. Let X be a matrix such that VΦX is orthonormal. If

ω̄ = max{1− (1− ε∗)σ2
min(V

ΘX), (1 + ε∗)σ2
max(V

ΘX)− 1} < 1,

then Θ is a ω̄-embedding for V, with probability at least 1− δ∗.

Proposition 3.8 (corollary of Proposition 5.4 in [5]). In Proposition 3.7, if Φ
is a ε′-embedding for V, then ω̄ satisfies

ω̄ ≤ (1 + ε∗)(1− ε′)−1(1 + ω)− 1.
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A1464 OLEG BALABANOV AND LAURA GRIGORI

First we notice that the coefficient ω̄ in Proposition 3.7 can be efficiently com-
puted from the two sketches of V with no operations on high-dimensional vectors and
matrices. For efficiency, (at iteration i) the sketches Φq̂′

i and Φŵi may be computed
along with, respectively, ŝ′i in step 4 and p̂i in step 1 of Algorithm 2.1. The matrix X
can be obtained (possibly in implicit form, e.g., as inverse of upper-triangular matrix)
with standard orthogonal decomposition algorithms such as the QR factorization or
the singular value decomposition performed in sufficient precision. It follows that ω̄
is an upper bound for ω with probability at least 1− δ∗ if Φ is a (ε∗, δ∗, 1)-oblivious
subspace embedding. This property of Φ has to be guaranteed a priori, e.g., from the
theoretical bounds (2.2) or [2, Lemma 5.1]. For instance, it is guaranteed to hold for
Rademacher matrices with k ≥ 2(ε∗2/2−ε∗3/3)−1 log(δ∗/2) rows, which in particular
becomes k > 530 for ε∗ = 1/4 and δ∗ = 0.1% and any m and n.

In Proposition 3.8, the closeness of ω̄ and ω is guaranteed if Φ is a ε′-embedding
for V (for some given ε′). This condition shall be satisfied with probability at least
1− δ′ (for some given δ′) if Φ is an (ε′, δ′,m) oblivious ℓ2-subspace embedding. This
fact is not required to be guaranteed a priori, which allows us to choose the size for
Φ (and Θ) based on practical experience and still have a certification.

In practice, the random projections VΘ = ΘV and VΦ = ΦV can be computed
only approximately due to rounding errors. In such a case, it can be important to
provide a stability guarantee for the computed value of ω̄ (given in Proposition 3.9).
In Proposition 3.9, along with Assumptions 3.1 for Θ, we also assume that

∥Φ∥F ≤
√
1 + ε

√
n, and ∥VΦ∥F ≥

√
1− ε∥V∥F(3.6)

with ε ≤ 1/2. These properties hold with probability at least 1 − 2δ∗ if Φ is
(1/2, δ∗/n, 1) oblivious subspace embedding.

Proposition 3.9. Let V = Q̂ or Ŵ, V̂Θ = fl(Θ · V), and V̂Φ = fl(Φ · V).
Assume that the sketches are computed with unit roundoff ufine satisfying

100n3/2m1/2ufine ≤ ucrs ≤ cond(V̂Φ)−1.

Assume that Φ satisfies (3.6) and that Θ satisfies Assumptions 3.1. Let X̂ be a matrix

such that V̂ΦX̂ is orthonormal. Define

ˆ̄ω = max{1− (1− ε∗)σ2
min(V̂

ΘX̂), (1 + ε∗)σ2
max(V̂

ΘX̂)− 1}.

Then we have that if ω̄ ≤ 1,

|ω̄ − ˆ̄ω| ≤ ucrscond(V̂
Φ).

Proof. See supplementary material (M138870SupMat.pdf [local/web 390KB]).

It follows from Proposition 3.9 that the computed value of ω̄ is approximately
equal to the exact one if ucrscond(V̂

Φ) is sufficiently small. This implies the following
computable certificate for the quality of Θ:

ω ≤ ω̄ ≤ ˆ̄ω + ucrscond(V̂
Φ),

which holds with probability at least 1 − O(δ∗). Furthermore, Proposition 3.9 is

consistent: cond(V̂Φ) is guaranteed to be sufficiently small, namely, O(cond(V)), if
Φ is an ε-embedding for V.
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RANDOMIZED GRAM–SCHMIDT PROCESS A1465

Remark 3.10 (RGS algorithm with multiple sketches). The certification of Θ
can be performed at each iteration of Algorithm 2.1 (by letting m = i in the above
procedure). In this way, one can detect the iteration i (if there is any) without
sufficient quality of Θ and switch to a new sketching matrix, which is randomly
independent from V. This allows us to make sure that the used Θ is an ε-embedding
for V at each iteration. We leave the development of the RGS algorithm with multiple
sketches for future research.

4. Application to Arnoldi process and GMRES. In this section we employ
the RGS process to solving high-dimensional nonsingular (possibly non-symmetric)
systems of equations of the form

Ax = b(4.1)

with the GMRES method. Without loss of generality we here assume that (4.1) is
normalized so that ∥b∥ = ∥A∥ = 1.

An order-j Krylov subspace is defined as

Kj(A,b) := span{b,Ab, . . . ,Aj−1b}.

The GMRES method consists in approximation of x with a projection xm−1 in
Km−1(A,b) that minimizes the residual norm

∥Axm−1 − b∥.

To obtain a projection xm−1, the GMRES method first proceeds with constructing
the orthonormal basis of Km(A,b) with an Arnoldi process (usually based on GS
orthogonalization). Then the coordinates of xm−1 in the Arnoldi basis are found by
solving a (small) transformed least-squares problem.

4.1. RGS-Arnoldi process. The Arnoldi basis can be constructed recursively
by taking the first basis vector q1 as a normalized right-hand-side vector b and
each new vector qi+1 as Aqi orthonormalized against the previously computed basis
q1, . . . ,qi. This procedure then produces the orthonormal matrix Qm satisfying the
Arnoldi identity

AQm−1 = QmHm,

where Hm is the upper Hessenberg matrix. The Arnoldi algorithm can be viewed as
a column-oriented QR factorization of matrix [b,AQm−1]. In this case, the R factor
Rm and the Hessenberg matrix Hm satisfy the relation Hm = [Rm](1:m,2:m).

Below, we propose a randomized Arnoldi process based on the RGS algorithm
from subsection 2.3 for computing the Krylov basis orthonormal with respect to
the sketched product ⟨Θ·,Θ·⟩, rather than ℓ2-inner product as in standard methods
(see Algorithm 4.1). This process will serve as the core for the randomized GMRES
method in subsection 4.2.

In Algorithm 4.1, the computation of the matrix-vector product in step 3 with
the fine unit roundoff ufine is assumed to have only a minor impact on the overall
computational costs. This can be the case, for instance, when the matrix A is sparse
or structured. Furthermore, if needed, the matrix-vector product can be computed
also with a larger unit roundoff as long as the associated error satisfies ∥ŵi−Aq̂i−1∥ =
O(ucrsm

−1/2)∥q̂i−1∥ required by Propositions 4.1 and 4.2.
Let us now address the accuracy of Algorithm 4.1. Clearly, if Θ is an ε-embedding

for Km(A,b), then Algorithm 4.1 in infinite precision arithmetic produces a well-
conditioned basis matrix Qm satisfying the Arnoldi identity. In addition, we clearly
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A1466 OLEG BALABANOV AND LAURA GRIGORI

Algorithm 4.1. RGS-Arnoldi algorithm

Given: n×n matrix A, n× 1 vector b, k×n matrix Θ with k ≪ n, parameter m.
Output: n×m factor Qm and m×m upper triangular factor Rm.
1. Set w1 = b.
2. Perform 1st iteration of Algorithm 2.1.
for i = 2 : m do
3. Compute wi = Aqi−1. # macheps: ufine

4. Perform ith iteration of Algorithm 2.1.
end for
5. (Optional) Compute ∆m and ∆̃m.

Use Proposition 4.1 to certify the output. # macheps: ufine

have range(Qm) = range(Wm) = Km(A,b). Since Km(A,b) and Θ are independent,
the matrix Θ can be readily chosen as (ε, δ,m) oblivious ℓ2-subspace embedding to
have the ε-embedding property with high probability.

Numerical stability of Algorithm 4.1 in finite precision arithmetic can be derived
directly from Theorems 3.2 and 3.3 characterizing the stability of the RGS algorithm.

Proposition 4.1. Assume that

100m1/2n3/2ufine ≤ ucrs ≤ 0.01m−1 and n ≥ 100,

along with Assumptions 3.1. If Θ satisfies the ε-embedding property for Q̂m and Ŵm

with ε ≤ 1/2 and ∆m, ∆̃m ≤ 0.1, then we have

(1+ε)−1/2(1−∆m−0.1ucrs) ≤ σmin(Q̂m) ≤ σmax(Q̂m) ≤ (1−ε)−1/2(1+∆m+0.1ucrs).

We also have

(A+∆A)Q̂m−1 = Q̂mĤm

for some matrix ∆A with rank(∆A) < m and ∥∆A∥F ≤ 15ucrsm
2.

Proof. See supplementary material (M138870SupMat.pdf [local/web 390KB]).

It follows from Proposition 4.1 that the stability of the proposed RGS-Arnoldi
algorithm can be guaranteed by computing or bounding a priori coefficients ∆m and
∆̃m. Proposition 4.1 can be viewed as a backward stability characterization, since it
implies that

range(Q̂m−1) = Km−1(A+∆A,b+∆b),

where ∥∆A∥F ≤ 15ucrsm
2 and ∥∆b∥ = ∥r̂1,1q̂1 − b∥ ≤ ufine. In other words,

according to Proposition 4.1, the output of Algorithm 4.1 in finite precision arithmetic
is guaranteed to produce a well-conditioned basis Q̂m−1 for the Krylov space of a
slightly perturbed matrix A and vector b.

Let us next provide a priori bounds for ∆m and ∆̃m. Define parameter

τ(Q̂m−1) = min
ym−1∈range(Q̂m−1)

∥Aym−1 − b∥,

representing the best attainable residual error with the computed Krylov basis.
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RANDOMIZED GRAM–SCHMIDT PROCESS A1467

Proposition 4.2. Consider Algorithm 4.1 using the Givens or Householder least-
squares solver in step 2 of Algorithm 2.1, and

ucrs ≤ 10−4τ(Q̂m−1)cond(A)−1m−2,

ufine ≤ (100m1/2n3/2 + 104m3/2k)−1ucrs.

Under Assumptions 3.1, if Θ satisfies the ε-embedding property for Q̂m−1 and Ŵm

with ε ≤ 1/2, then ∆m and ∆̃m are bounded by

∆̃m ≤ 6ucrsm
3/2,

∆m ≤ 160ucrsm
2cond(A)τ(Q̂m−1)

−1.

Proof. See supplementary material (M138870SupMat.pdf [local/web 390KB]).

Proposition 4.2 guarantees numerical stability of Algorithm 4.1 if

τ(Q̂m−1) ≥ ucrsP (m)cond(A),

where P (m) = O(m2) is some low-degree polynomial. Clearly, if τ0 is the desired
tolerance for the GMRES solution, then one is required to use unit roundoff ucrs ≤
τ0P (m)−1cond(A)

−1
.

Both Propositions 4.1 and 4.2 hold if Θ satisfies the ε-embedding property for
Q̂m and Ŵm with ε ≤ 1/2. This assumption comes naturally from probabilistic char-
acteristics of rounding errors and oblivious embeddings. In particular, we can think
of similar considerations as in subsection 2.2 to justify the ε-embedding property of Θ
for Km(A+∆A,b+∆b), where matrix ∆A has rows with entries that are indepen-
dent centered random variables. The a priori analysis of the ε-embedding property
for a perturbed Krylov space, however, is not as trivial and is left for future research.
Note that the output of Algorithm 4.1 can be proven reliable a posteriori by efficient
certification of the ε-embedding property with the procedure from subsection 3.2.

4.2. Randomized GMRES. The randomized GMRES method is directly de-
rived from the randomized Arnoldi iteration. Let Q̂m and Ĥm be the basis matrix
and the Hessenberg matrix computed with Algorithm 4.1. (The randomized) GMRES
method then proceeds with obtaining the solution ym−1 to the small least-squares
problem

ym−1 = arg min
zm−1∈Rm−1

∥Ĥmzm−1 − r̂1,1e1∥,(4.2)

yielding an approximate solution xm−1 = Q̂m−1ym−1 to (4.1). The underlined least-
squares problem can be efficiently solved with a QR factorization based on Givens
rotations or Householder transformation (or any other methods) in sufficient precision.

In infinite precision arithmetic, the orthogonality of Qm implies that solving (4.2)
is equivalent to minimizing the sketched norm of the residual. More specifically, we
have

min
zm−1∈Rm−1

∥Hmzm−1 − r1,1e1∥ = min
zm−1∈Rm−1

∥ΘQm(Hmzm−1 − r1,1e1)∥

= min
zm−1∈Rm−1

∥Θ(AQm−1zm−1 − b)∥.
(4.3)

Thus, the GMRES solution xm−1 minimizes the residual error up to a factor
√

1+ε
1−ε ,

provided Θ is an ε-embedding for Qm.
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A1468 OLEG BALABANOV AND LAURA GRIGORI

Numerical stability of the randomized GMRES can be characterized by using
Proposition 4.1 that yields the following result.

Proposition 4.3. Let Assumptions 3.1 hold. Assume that Θ is an ε-embedding

for Q̂m and Ŵm, with ε ≤ 1/2 and ∆m, ∆̃m ≤ 0.1; then we have

∥(A+∆A)xm−1 − (b+∆b)∥ ≤ cond(Q̂m) min
v∈Km−1(A+∆A,b+∆b)

∥(A+∆A)v− (b+∆b)∥

for some matrix ∆A and vector ∆b with ∥∆A∥F ≤ 15ucrsm
2 and ∥∆b∥ ≤ ufine.

Proof. See supplementary material (M138870SupMat.pdf [local/web 390KB]).

Notice that for sufficiently small ∆m and ∆̃m, cond(Q̂m) is close to
√

1+ε
1−ε . Con-

sequently, Proposition 4.1 guarantees that xm−1 is a quasi-optimal minimizer of the
residual error over a (slightly) perturbed Krylov space.

5. Numerical experiments. In this section the proposed methodology is veri-
fied in a series of numerical experiments and compared against classical methods. In
the randomized algorithms, several sizes k and distributions for the sketching matrices
Θ and Φ are tested. We use in step 2 of Algorithm 2.1 the Householder least-squares
solver. There was not detected any significant difference in performance (i.e., stability
or accuracy of approximation for the same k) between the Rademacher (or Gauss-
ian) distribution and (P-)SRHT, even though the theoretical bounds for (P-)SRHT
are worse. Therefore, in this section we present only the results for the (P-)SRHT
distribution.

For better presentation, the orthogonality of the sketch Sm is here measured by
the condition number cond(Sm) instead of the coefficient ∆m = ∥Im×m − ST

mSm∥F
as in the previous sections.

5.1. Construction of an orthogonal basis for synthetic functions. Let us
first consider construction of an orthogonal basis approximating the functions

fµ(x) =
sin (10(µ+ x))

cos (100(µ− x)) + 1.1
, x ∈ [0, 1],

for parameter values µ ∈ [0, 1].
The function’s domain is discretized with n = 106 evenly spaced points xj , while

the parameter set is discretized with m = 300 evenly spaced points µj . Then a QR
factorization of the matrix [W]i,j = fµj

(xi), 1 ≤ i ≤ n, 1 ≤ j ≤ m, is performed
with standard versions (CGS, MGS, and CGS2) of the GS process, along with the
randomized version of the process, given by Algorithm 2.1. The classical algorithms
are executed in float32 format with unit roundoff ≈ 10−8. Algorithm 2.1 is first exe-
cuted using a unique float32 format for all the arithmetic operations, i.e., by taking
ucrs = ufine ≈ 10−8. Then, the results are compared to Algorithm 2.1 under the
multiprecision model executing step 3 in float32 while executing other operations in
float64, i.e., by taking ucrs ≈ 10−8 and ufine = 10−16. Note that the execution of Al-
gorithm 2.1 with the unique float32 format has nearly the same computational cost
as with the mixed float32/float64 formats. Furthermore, as was argued in subsec-
tion 2.4, the RGS algorithm here requires half the flops6 and data passes than CGS

6We did not take into consideration the flops associated with the solutions of k × (i − 1) least-
squares problems in step 2 of Algorithm 2.1, which will become irrelevant for larger dimensions n.
They could be reduced by solving the least-squares problems (iteratively) with normal equation.
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RANDOMIZED GRAM–SCHMIDT PROCESS A1469

and, respectively, four times fewer flops and data passes than CGS2. Moreover, un-
like MGS, it is implemented by using BLAS-2 routines for standard high-dimensional
operations.

Figure 5.1(a) presents the evolution of the condition number of the computed
Q factor at each iteration of the GS process. The evolution of (square root of) the
condition number of Wi, 1 ≤ i ≤ m, is also depicted. We see that for i ≥ 150, Wi

becomes numerically singular. For the CGS and CGS2 methods, dramatic instabilities
are observed at iterations i ≥ 50 and i ≥ 150, respectively. The MGS method exhibits
more robustness than the other two standard variants of the GS process. With this
method, the condition number of Qi remains close to 1 up to iteration i = 130 and
then gradually degrades by more than an order of magnitude. The RGS algorithm
executed in unique float32 format with k = 1500 presents a similar stability as MGS.
We see from Figure 5.1(a) that even though increasing of k from 1500 to 5000 improves
the quality of Θ in terms of the ε-embedding property, the usage of k = 5000 does not
improve the stability of the RGS algorithm in unique float32 format but only worsens
it. This can be explained by the increased rounding errors in computations of random
projections and solutions of least-squares problems in step 2. The multiprecision RGS
algorithm, on the other hand, does not present this behavior. It provides a Q factor
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Fig. 5.1. The construction of orthogonal basis for synthetic functions fµ(x). In the plots, u.p.
RGS and m.p. RGS, respectively, refer to the unique precision RGS and the multiprecision RGS
algorithms.
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with the condition number close to 1+O(ε) and, particularly, an order of magnitude
smaller than the condition number of the MGS Q factor.

The evolution of the approximation error ∥Wi−QiRi∥/∥Wi∥ is depicted in Fig-
ure 5.1(b). We see that for CGS the error at first is close to the machine precision,
but then it gradually degrades by two orders of magnitude. For CGS2 a dramatically
large error is observed at iterations i ≥ 150. For MGS and RGS algorithms the error
remains close to the machine precision at all iterations.

Figure 5.1(c) addresses a posteriori verification of the quality of the computed
Q factor from its sketch. We see that indeed cond(Qi) can be well estimated by
cond(Si).

Recall that the stability characterization of the RGS algorithm in subsection 3.1
relies on the ε-embedding property of Θ. The minimal value ω of ε for which Θ sat-
isfies the ε-embedding property for Qi, at each iteration, is provided in Figure 5.1(d).
We also show the upper bound ω̄ for ω computed with Proposition 3.7 from the
sketches with no operations on high-dimensional vectors or matrices. In Proposi-
tion 3.7, the matrix Φ was chosen to be of same size as Θ. Moreover, the parameter
ε∗ was taken as 0.05. It is observed that for both the unique precision and the multi-
precision algorithms with k ≥ 5000, the matrix Θ satisfies the ε-embedding property
with (almost) ε ≤ 1/2, which is the condition used in subsection 3.1 for deriving sta-
bility guarantees for the RGS algorithm. For k = 1500 at iterations i ≥ 70, the value
of ω becomes larger than 1/2. Nevertheless, it remains small enough, which suggests
a sufficient stability of the RGS algorithm also for this value of k and correlates well
with the experiments (see Figure 5.1(a)). The estimator ω̄ of ω remains an upper
bound of ω at all iterations and values of k, which implies robustness of Proposi-
tion 3.7 for characterizing the ε-embedding property of Θ. An overestimation of ω
by nearly a factor of 2 is revealed at all iterations and values of k. Moreover, this
behavior of ω̄ is observed also in other experiments. This suggests that, in practice,
the value of ω̄ can be divided by a factor of 2.

5.2. Orthogonalization of solution samples of a parametric PDE. Next
we consider a model order reduction problem from [5, section 6.1]. This problem
describes a wave scattering with an object covered in an acoustic invisibility cloak.
The cloak is multilayered. The problem is governed by a parametric PDE, where
the parameters are the properties of materials composing the last 10 layers of the
cloak, and the wave frequency. By discretization with second-order finite elements,
the parametric PDE is further transformed into a complex-valued system of equations
of the form

Aµuµ = bµ,(5.1)

where Aµ ∈ Cn×n and bµ ∈ Cn with n ≈ 400000. The aim in [5] is to solve (5.1)
for parameters µ from the parameter set of interest P. See [5] for more detailed
description of the problem.

Let us consider the construction of an orthogonal basis (so-called reduced basis)
approximating the set {uµ : µ ∈ P}. For this, we drew from P m = 300 uniform
samples µ1, µ2, . . . , µm and then performed a QR factorization of the matrix

W = [uµ1
,uµ2

, . . . ,uµm
]

with the following versions of the GS process: CGS, CGS2, and MGS computed
in float32 format, the unique precision RGS in float32, and the multiprecision RGS
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(d) Coeff. ω and its upper bound

Fig. 5.2. The construction of orthogonal basis for the solution set of a parametric PDE.
In the plots, u.p. RGS and m.p. RGS, respectively, refer to the unique precision RGS and the
multiprecision RGS algorithms.

using float32 for standard high-dimensional operations, while using float64 for other
operations.7

The condition number of the factor Qi and the approximation error ∥Wi −
QiRi∥/∥Wi∥ obtained at each iteration of the algorithms are depicted in Figure 5.2(a)
and (b), respectively. Furthermore, for randomized algorithms, in Figure 5.2(c) we
provide a comparison of cond(Qi) and cond(Si). In Figure 5.2(d) we present the
characterization of the ε-embedding property of Θ for Qi given by the value ω and
its upper bound computed with Proposition 3.7. In Proposition 3.7 we chose Φ to be
of same size as Θ with the parameter ε∗ = 0.05.

A very similar picture is observed as in the previous numerical example. More
specifically, dramatic instabilities are revealed at iterations i ≥ 50 for CGS and i ≥ 190
for CGS2. The MGS and the unique precision RGS with k = 1500 show a similar
stability, which is better than the one of CGS and CGS2. For these algorithms
cond(Qi) remains close to 1 at iterations i ≤ 150 but degrades by more than an
order of magnitude at latter iterations. The multiprecision RGS algorithm at all
iterations provides a Q factor with condition number close to 1. The approximation
error ∥Wi −QiRi∥/∥Wi∥ again is close to the machine precision for MGS and RGS

7The extension of the theoretical analysis of the RGS process from real numbers to complex
numbers is straightforward.
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algorithms, while it is larger for CGS and CGS2. The condition number of the sketched
Q factor, Si, is verified to be a good estimator of the condition number of Qi. For
both the unique as well as the multiprecision RGS algorithms with k ≥ 5000, the
condition ω ≤ 1/2 used in the stability analysis is (nearly) satisfied. For k = 1500,
the value of ω is larger than 1/2 at iterations i ≥ 70, though it remains sufficiently
small suggesting the stability of the RGS algorithm also for this sketch size. Again,
we reveal an overestimation of ω̄ as an upper bound of ω by nearly a factor of 2.

5.3. Solution of a linear system with GMRES. In this numerical exper-
iment the RGS algorithm is tested in the context of the GMRES method for the
solution of the linear system of equations:

Afxf = b,(5.2)

where the matrix Af is taken as the “SiO2” matrix of dimension n = 155331 from
the SuiteSparse matrix collection. The right-hand-side vector b is taken as b =
Ay/∥Ay∥, where y = [1, 1, . . . , 1]T. Furthermore, the system (5.2) is preconditioned
from the right by the incomplete LU factorization Pf of A with zero level of fill in.
With this preconditioner the final system of equations has the following form:

Ax = b,

where A = AfPf and xf = Pfx. This system is considered for the solution with
the GMRES method based on different versions of the GS process. Here we test only
CGS, CGS2, MGS, and the unique precision RGS. The multiprecision RGS is not
considered since the unique precision RGS already provides a nearly optimal solution.

In all experiments, the products with matrix A are computed in float64 for-
mat. The solutions of the Hessenberg least-squares problems (4.2) are computed with
Givens rotations also in float64 format. All other operations (i.e., the GS iterations)
are performed in float32 format.

The convergence of the residual error is depicted in Figure 5.3(a). The condition
number of the Q factor (characterizing the orthogonality of the computed Krylov
basis) at each iteration i is provided in Figure 5.3(b). In Figure 5.3(b) we also provide
the condition number of Wi = [AQi−1, b] and the value of ω representing the ε-
embedding property of Θ for Qi in the RGS algorithm with k = 5000.

At iterations i ≥ 50, we reveal a dramatic instability of the CGS algorithm
resulting in the early stagnation of the residual error. The other versions of the
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(a) Residual error ∥Ax̂i−1 − b∥.
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Fig. 5.3. Solution of a linear system with GMRES.
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GS process present a better stability. The CGS2 and RGS with all sketch sizes
at all iterations yield almost orthogonal Q factor. For these algorithms the error
has converged to machine precision. The MGS algorithm does not provide a well-
conditioned Q factor at i ≥ 110 iterations. Nevertheless, it yields the convergence of
the residual error up to machine precision similar to CGS2 and RGS.

Finally, we see that for RGS with k = 5000, Θ is verified to be an ε-embedding
for Qi with ε ≤ 1/2. This implies applicability of the stability analysis from subsec-
tion 3.1.

6. Conclusion. In this article we proposed a novel RGS process for efficient
orthogonalization of a set of high-dimensional vectors. This process can be incor-
porated into the GMRES method or Arnoldi iteration for solving large systems of
equations or eigenvalue problems. Our methodology can be adapted to practically
any computational architecture.

The RGS process was introduced under a multiprecision arithmetic model that
also accounts for the classical unique precision model. We proposed to perform ex-
pensive high-dimensional operations in low precision while computing the inexpensive
random projections and low-dimensional operations in high precision. The numerical
stability of the algorithms was shown for the low-precision unit roundoff independent
of the dimension of the problem. This feature can have a major importance when
solving extreme-scale problems.

The great potential of the methodology was realized with three numerical exam-
ples. In all the experiments, the multiprecision RGS algorithm provided a Q factor
(i.e., the orthogonalized matrix) with condition number close to 1. It remained stable
even in extreme cases, such as orthogonalization of a numerically singular matrix,
where the standard CGS and CGS2 methods failed. This is in addition to the fact
that the RGS algorithm can require nearly half as many flops and passes over the
data than CGS.
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BIT, 35 (1995), pp. 309–330.

[11] L. Giraud, S. Gratton, and J. Langou, Convergence in backward error of relaxed gmres,
SIAM J. Sci. Comput., 29 (2007), pp. 710–728.

D
ow

nl
oa

de
d 

07
/0

3/
22

 to
 1

28
.9

3.
17

6.
12

7 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A1474 OLEG BALABANOV AND LAURA GRIGORI

[12] L. Giraud, J. Langou, and M. Rozloznik, The loss of orthogonality in the Gram–Schmidt
orthogonalization process, Comput. Math. Appl., 50 (2005), pp. 1069–1075.
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Schmidt gmres implementation, BIT, 37 (1997), pp. 706–719.

[16] N. Halko, P.-G. Martinsson, and J. A. Tropp, Finding structure with randomness: Prob-
abilistic algorithms for constructing approximate matrix decompositions, SIAM Rev., 53
(2011), pp. 217–288.

[17] N. Higham and T. Mary, Sharper probabilistic backward error analysis for basic linear algebra
kernels with random data, SIAM J. Sci. Comput., 42 (2020), pp. A3422–A3446.

[18] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM 2nd ed., Philadelphia,
2002.

[19] N. J. Higham and T. Mary, A new approach to probabilistic rounding error analysis, SIAM
J. Sci. Comput., 41 (2019), pp. A2815–A2835.

[20] I. C. Ipsen and H. Zhou, Probabilistic Error Analysis for Inner Products, preprint,
arXiv:1906.10465, 2019.

[21] S. K. Kim and A. Chrortopoulos, An efficient parallel algorithm for extreme eigenvalues of
sparse nonsymmetric matrices, Int. J. Super Comput. Appl., 6 (1992), pp. 98–111.
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[26] M. Rozlozńık, Numerical Stability of the GMRES Method, Manuscript, 1996.
[27] A. Ruhe, Numerical aspects of Gram-Schmidt orthogonalization of vectors, Linear Algebra

appl., 52 (1983), pp. 591–601.
[28] T. Sarlos, Improved approximation algorithms for large matrices via random projections, in

Proceddings of the 47th Annual IEEE Symposium on Foundations of Computer Science,
IEEE, 2006, pp. 143–152.

[29] V. Simoncini and D. B. Szyld, Recent computational developments in Krylov subspace meth-
ods for linear systems, Numer. Linear Algebra Appl., 14 (2007), pp. 1–59.

[30] A. Smoktunowicz, J. L. Barlow, and J. Langou, A note on the error analysis of classical
Gram–Schmidt, Numer. Math., 105 (2006), pp. 299–313.
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