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COMMUNICATION AVOIDING ILU0 PRECONDITIONER∗

LAURA GRIGORI† AND SOPHIE MOUFAWAD†‡

Abstract. In this paper we present a communication avoiding ILU0 preconditioner for solving
large linear systems of equations by using iterative Krylov subspace methods. Recent research has
focused on communication avoiding Krylov subspace methods based on so-called s-step methods.
However, there are not many communication avoiding preconditioners yet, and this represents a
serious limitation of these methods. Our preconditioner allows us to perform s iterations of the
iterative method with no communication, through ghosting some of the input data and performing
redundant computation. To avoid communication, an alternating reordering algorithm is introduced
for structured and well partitioned unstructured matrices, which requires the input matrix to be
ordered by using a graph partitioning technique such as k-way or nested dissection. We show that the
reordering does not affect the convergence rate of the ILU0 preconditioned system as compared to k-
way or nested dissection ordering, while it reduces data movement and is expected to reduce the time
needed to solve a linear system. In addition to communication avoiding Krylov subspace methods,
our preconditioner can be used with classical methods such as GMRES to reduce communication.
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1. Introduction. Many scientific problems require the solution of systems of
linear equations of the form Ax = b, where the input matrix A is very large and
sparse. We focus in this paper on solving such systems using Krylov subspace meth-
ods, such as GMRES [31] and CG [23]. These methods iterate from a starting vector
y until convergence or stagnation, by using projections onto the Krylov subspace
K(A, y) = span[y,Ay,A2y, . . .]. In the parallel case, the input matrix is distributed
over processors, and each iteration involves multiplying the input matrix with a vector,
followed by an orthogonalization process. Both these operations require communica-
tion among processors. Since A is usually very sparse, the communication dominates
the overall cost of the iterative methods when the number of processors is increased
to a large number. While the matrix-vector product can be performed by using point-
to-point communication routines between subsets of processors, the orthogonalization
step requires the usage of collective communication routines, and these routines are
known to scale poorly. More generally, on current machines the cost of communica-
tion, the movement of data, is much higher than the cost of arithmetic operations, and
this gap is expected to continue to increase exponentially. As a result, communication
is often the bottleneck in numerical algorithms.

In a quest to address the communication problem, recent research has focused
on reformulating linear algebra operations such that the movement of data is sig-
nificantly reduced or even minimized, as in the case of dense matrix factorizations
[12, 20, 3]. Such algorithms are referred to as communication avoiding. The commu-
nication avoiding Krylov subspace methods [29, 24, 6] are based on s-step methods
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[9, 33], which reformulate the iterative method such that the dependencies between
certain iterations are eliminated. In short, the reformulation allows us, by unrolling s
iterations of the Krylov subspace method and ghosting some of the data, to compute
s vectors of the basis without communication, followed by an orthogonalization step.
The orthogonalization step is performed by using TSQR, a communication optimal
QR factorization algorithm [12]. Another recent approach introduced in [18] focuses
on hiding the reduction latency in pipelined GMRES by overlapping the global com-
munication phase with other useful computations and local communications. For
s = 1, where s-step methods are equivalent to classical methods, there are many
available preconditioners. One of them, block Jacobi, is a naturally parallelizable
and communication avoiding preconditioner. However, except for a discussion in [24],
there are no available preconditioners that avoid communication and can be used
with s-step methods for s > 1. This is a serious limitation of these methods, since for
difficult problems, Krylov subspace methods without preconditioner can be very slow
or even might not converge.

Our goal is to design communication avoiding preconditioners that should be ef-
ficient in accelerating the iterative method and should also minimize communication.
In other words, given a preconditioner M , the preconditioned system with its commu-
nication avoiding version M−1

ca Ax = M−1
ca b should have the same order of convergence

as the original preconditioned system M−1Ax = M−1b, and also reduce communica-
tion. This is a challenging problem, since applying a preconditioner on its own may,
and in general will, require extra communication. Since the construction of M repre-
sents typically a large part of the overall runtime of the linear solver, we focus on both
minimizing communication during the construction of M and during its application
to a vector at each iteration of the linear solver. The incomplete LU factorization
(ILU) is a widely used black-box preconditioner, which can be used on its own or
as a building block of other preconditioners as domain decomposition methods. The
ILU preconditioner is written as M = LU , where L and U are the incomplete fac-
tors of the input matrix A. This preconditioner is obtained by computing a direct
LU factorization of the matrix A, and by dropping some of the elements during the
decomposition, based on either their numerical value or their relation with respect to
the graph of the input matrix A [28, 30]. For a historical overview on preconditioning
techniques and incomplete factorizations, refer to [4, 32].

In this paper we introduce CA-ILU0, a communication avoiding ILU0 precondi-
tioner for left preconditioned systems. With a few modifications discussed in section
5, the CA-ILU0 preconditioner can be applied to right and split preconditioned sys-
tems. We first start by introducing definitions, concepts, and algorithms used in this
paper in section 2. Then we adapt the matrix powers kernel to the ILU precondi-
tioned system to obtain the ILU matrix powers kernel in section 3. Each vector of
this kernel is obtained by computing ((LU)−1Ax); that is, in addition to the matrix-
vector multiplication Ax, it uses a forward and a backward substitution. The ILU
matrix power kernel, which is designed for any given LU decomposition, does not by
itself allow one to avoid communication. That is, if we want to compute s vectors
of this kernel with no communication through ghosting some of the data, there are
cases when one processor performs an important part of the entire computation. We
restrain then our attention to the ILU0 factorization, which has the property that
the L and U factors have the same sparsity pattern as the lower triangular part of A
and the upper triangular part of A, respectively. To obtain a communication avoid-
ing ILU0 preconditioner, we introduce in section 4 a reordering, alternating min-max
layers Amml(s), of the input matrix A, which is reflected in the L and U matrices.
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The Amml(1) reordering allows one to avoid communication when computing
s = 1 matrix vector multiplication (LU)−1Ax. In other words, the matrix vector
multiplication Ax, and the backward and forward substitution, are parallelized with
only one communication before starting the whole computation. Thus, the CA-ILU0
preconditioner can be used with classical preconditioned Krylov methods like GMRES
to reduce communication.

In general, the Amml(s) reordering allows the avoidance of communication for
s-steps of the matrix vector multiplication ((LU)−1Ax). In other words, s backward
and forward solves corresponding to a submatrix of A can be performed when s ≥ 1,
without needing any data from other submatrices. Thus with our reordering it is
sufficient to communicate once at the beginning of the first multiplication. This is
possible since the CA-ILU0 (L)−1 and (U)−1 are sparse, unlike those of ILU0 (see
Figure 4). Thus, the CA-ILU0 preconditioner can also be used with s-step Krylov
methods like s-step GMRES and CA-GMRES to reduce communication. In section
6.2, we discuss the reduction in communication introduced by our method for s ≥ 1.

In this paper we portray our CA-ILU0 preconditioner (section 5) and its per-
formance (section 6) using GMRES, but it can be used with other Krylov subspace
methods as well. Although we focus on structured matrices arising from the dis-
cretization of partial differential equations on regular grids, it must be noted that
the method also works for sparse unstructured matrices whose graphs can be well
partitioned (small edge or vertex separators). The Amml(s) reordering can be used to
avoid communication not only in parallel computations (between processors, shared-
memory cores or between CPU and GPU) but also in sequential computations (be-
tween different levels of the memory hierarchy). Thus in this paper we will use the
term processor to indicate the component performing the computation and fetch to
indicate the movement of data (read, copy, or receive message). In section 6 we show
that our reordering does not affect the convergence of ILU0 preconditioned GMRES
as compared to k-way reordering, and we model the expected performance of our
preconditioner based on the needed memory and the redundant flops introduced to
reduce the communication.

2. Preliminaries. In this section we give the definitions of the concepts and the
terms that we use in this paper as graphs, nested dissection, and k-way partitioning.
Then we briefly introduce CA-GMRES, the matrix powers kernel, and associated
graph partitioning problems.

2.1. Graphs and partitioning. The structure of an unsymmetric n×n matrix
A can be represented by using a directed graph G(A) = (V,E), where V is a set of
vertices and E is a set of edges. A vertex vi is associated with each row/column i
of the matrix A. An oriented edge ej,i from vertex j to vertex i is associated with
each nonzero element A(j, i) �= 0. A weight wi and a cost cj,i are assigned to every
vertex vi and edge ej,i, respectively. Let B be a subgraph of G(A) (B ⊂ G(A)); then
V (B) is the set of vertices of B, V (B) ⊂ V (G(A)), and E(B) is the set of edges of B,
E(B) ⊂ E(G(A)). Let i and j be two vertices of G(A). The vertex j is reachable from
the vertex i if and only if there exists a path of directed edges from i to j. The length
of the path is equal to the number of visited vertices excluding i. Let S be any subset
of vertices of G(A). The set R(G(A), S) denotes the set of vertices reachable from
any vertex in S and includes S (S ⊂ R(G(A), S)). The set R(G(A), S,m) denotes the
set of vertices reachable by paths of length at most m from any vertex in S. The set
R(G(A), S, 1) is the set of adjacent vertices of S in the graph of A, and we denote it
by Adj(G(A), S). The set Adj(G(A), S)−S is the open set of adjacent vertices of S in
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the graph of A, and we denote it by opAdj(G(A), S). Note that an undirected graph
of a symmetric matrix is a special case of directed graphs where all the edges are
bidirectional. Since there is no need to specify a direction, the edges are undirected.

We use MATLAB notation for matrices and vectors. For example, given a vector
y of size n × 1 and a set of indices α (which correspond to vertices in the graph of
A), y(α) is the vector formed by the subset of the entries of y whose indices belong
to α. For a matrix A, A(α, :) is a submatrix formed by the subset of the rows of A
whose indices belong to α. Similarly, A(:, α) is a submatrix formed by the subset of
the columns of A whose indices belong to α. We have A(α, β) = [A(α, :)](:, β), the β
columns of the submatrix A(α, :).

To exploit parallelism and reduce communication when solving a linear system
Ax = b using an iterative solver, the input matrix A is often reordered using graph
partitioning techniques such as nested dissection [17, 27] or k-way graph partition-
ing [26]. These techniques assume that the matrix A is symmetric and its graph is
undirected. In case A is unsymmetric, then the undirected graph of A + At is used
to define a partition for the matrix A. Graph partitioning techniques can be applied
on both graphs and hypergraphs (see, e.g., [8, 2]), and they rely on identifying ei-
ther edge/hyperedge separators or vertex separators. Since our preconditioner can be
used with both techniques, we describe them briefly in the following in the context of
undirected graphs.

Nested dissection [17] is a divide-and-conquer graph partitioning strategy based
on vertex separators. For undirected graphs, at each step of dissection, a set of vertices
that forms a separator is sought, which splits the graph into two disjoint subgraphs
once the vertices of the separator are removed. We refer to the two subgraphs as
Ω1,1 and Ω1,2, and to the separator as Σ1,1. The vertices of the first subgraph are
numbered first, then those of the second subgraph, and finally those of the separator.
The corresponding matrix has the following structure:

A =

⎛
⎝ A11 A13

A22 A23

A31 A32 A33

⎞
⎠ .

The algorithm then continues recursively on the two subgraphs Ω1,1 and Ω1,2. The
separators’ subgraphs and the subdomains’ subgraphs introduced at level i of the
nested dissection are denoted by Σi,j and Ωi,l, respectively, where j ≤ 2i−1, l ≤ 2i,
i ≤ t, and t = log(P ) (P is the number of processors). The vertices of the separators
and the final subdomains are denoted by Si,j = V (Σi,j) and Dl = V (Ωt,l), respec-
tively. Thus, at level i we introduce 2i−1 new separators and 2i new subdomains. We
illustrate nested dissection in Figure 2, which displays the graph of a two-dimensional
(2D) five-point stencil matrix A, where the vertices are represented by their indices.
For clarity of the figure, the edges are not shown in the graph, but it must be noted
that there are oriented edges connecting each vertex to its north, south, east, and west
neighbors. This corresponds to a symmetric matrix with a maximum of five nonzeros
per row. All the following figures of graphs have the same format. In addition, the
directed graphs of L and U coincide with that of A, where the L and U matrices are
obtained from the ILU0 factorization of A. By disregarding the colored lines, Figure
2 presents the subdomains and the separators obtained by using three levels of nested
dissection.

K-way graph partitioning by edge separators aims at partitioning a graph G =
(V,E) into k > 1 parts π = {Ω1,Ω2, . . . ,Ωk−1,Ωk}, where the k parts are nonempty
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(Ωi �= φ, Ωi ⊂ V for 1 ≤ i ≤ k, and ∪k
i=1Ωi = V ) and the partition π respects the

balance criterion

(2.1) Wi ≤ (1 + ε)Wavg,

whereWi =
∑

vj∈Ωi
wj is the weight associated to each part Ωi, Wavg = (

∑
vi∈V wi)/k

is the perfect weight, ε is the maximum allowed imbalance ratio, and wj is the weight
associated to vertex vj . In addition, k-way graph partitioning minimizes the cutsize
of the partition π,

(2.2) χ(π) =
∑

ei,j∈EE

ci,j ,

where EE is the set of external edges of π, EE ⊂ E, and ci,j is the cost of the edge ei,j ,
where i < j. In graph partitioning, the term edge-cut indicates that the two vertices
that are connected by an edge belong to two different partitions. The edge which is
cut is referred to as an external edge. In this paper, we use wj = 1 and ci,j = 1.

2.2. CA-GMRES and the matrix powers kernel. Communication avoid-
ing GMRES [24, 29] is based on s-step GMRES (see, e.g., [33, 15] and references
therein), where several changes have been introduced such that the communication
is minimized. First, the Arnoldi(s) algorithm, which restarts after computing and
orthogonalizing s vectors of the Krylov subspace basis, is replaced by the communica-
tion avoiding Arnoldi(s,t) algorithm, which restarts after t calls of the matrix powers
kernel. Second, the s vectors obtained from the matrix powers kernel are orthogonal-
ized against the previously computed vectors using block Gram–Schmidt and against
each others using TSQR (tall skinny QR) [12]. Finally the upper Hessenberg matrix
is reconstructed. In total, as explained in [24], CA-GMRES communicates a factor of
Θ(s) fewer messages in parallel than GMRES. In a sequential machine with two levels
of fast and slow memory, it reads the sparse matrix and vectors from slow memory to
fast memory a factor of Θ(s) fewer times.

To minimize communication in a parallel setting, the s monomial basis vectors
of the Krylov subspace [y,Ay,A2y, . . . , Asy] are computed with no communication
using the so-called matrix powers kernel [13]. This requires ghosting and computing
redundantly on each processor the data required for computing its part of the vectors
with no communication. Note that throughout this paper we use the term ghosting
to denote the storage of redundant data, of vectors or matrices, that do not belong
to the processor’s assigned domain or part, but are needed for future computations.
First, the data and the work is split between P processors. Each processor is assigned
a part α of the input vector y0 (y0(α)) and A(α, :), where α ⊆ V (G(A)). Then, each
processor has to compute the same part α of y1 = Ay0, y2 = Ay1, till ys = Ays−1

without communicating with other processors. To do so, each processor fetches all
the data needed from the neighboring processors, to compute its part α of the s
vectors. Thus, to compute ys(α), each processor should receive the missing data of
y0(ηs) and A(ηs, :) from its neighboring processors and store it redundantly, where
ηs = R(G(A), α, s). Finally, each processor computes the set R(G(A), α, s− i) of the
vectors yi for i = 1, 2, . . . , s without any communication with the other processors.
Figure 1 shows the needed data for each step on Domain 1 with s = 3 where the graph
of a 2D five-point stencil matrix with n = 200 is partitioned into four subdomains.
Since α ⊆ ηi = R(G(A), α, i), it is obvious that the more steps are performed, the
more redundant data is ghosted and flops are computed. In addition, partitioning
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Fig. 1. Data needed to compute three multiplications yi = Ayi−1 on Domain 1 using the matrix
powers kernel.

plays an important role in reducing the size of the ghost data and balancing the load
among processors. In [8] and [7], hypergraph partitioning models were introduced
to reduce the volume of communication in matrix vector multiplication and matrix
powers kernel.

3. ILU matrix powers kernel. The algorithm for solving a left-preconditioned
system by using Krylov subspace methods is the same as for a nonpreconditioned sys-
tem, with the exception of the matrix vector multiplications. For example, GMRES
requires computing y = Ax, while the preconditioned version computes y = M−1Ax,
where M is a preconditioner. Similarly, a preconditioned CA-GMRES relies on a pre-
conditioned matrix powers kernel. And constructing a communication avoiding pre-
conditioner is equivalent to building a preconditioned matrix powers kernel which com-
putes the set of s basis vectors {M−1Ay0, (M

−1A)2y0, . . . , (M
−1A)s−1y0, (M

−1A)sy0}
while minimizing communication, where y0 is a starting vector and s ≥ 1. In this
section we first define the partitioning problem associated with computing s vectors
of the preconditioned matrix powers kernel. Then we identify dependencies involved
in the computation of the preconditioned matrix powers kernel.

In this paper we focus on the incomplete LU preconditioner M = LU , which
consists of finding a lower triangular matrix L and an upper triangular matrix U that
approximate the input matrix A up to some error, i.e., A = LU + R, where R is the
residual matrix. There are different approaches for computing the incomplete L and
U factors, one of which is by defining a drop-tolerance such that all the entries in the
matrices L and U that are smaller than this drop-tolerance are dropped. Another
form of incomplete LU decomposition is ILU0, which produces L and U matrices that
have the same sparsity pattern as the lower and upper parts of A, respectively. The
third is ILU(k), which allows some fill-in in the L and U sparsity pattern up to some
level k. For more information on the different ILU decompositions refer to Chapter
10 of [30].

The partitioning problem. In the following, we consider that the matrix A and
the factors L and U of the preconditioner are distributed block row-wise over P pro-
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cessors. A communication avoiding preconditioner can be obtained if we are able
to ghost some data and perform some redundant computation such that s basis vec-
tors {M−1Ay0, (M

−1A)2y0, . . . , (M
−1A)s−1y0, (M

−1A)sy0} can be computed with no
communication. To obtain an efficient preconditioner, ideally we would like to min-
imize the size of the ghost data while balancing the load among processors. In this
paper, we use Metis’s edge separator (k-way) and vertex separator (nested dissection).
The obtained partition satisfies the balance criterion (2.1) and minimizes the cutsize
(2.2).

We are interested in ILU preconditioners where M = LU is obtained from the
ILU factorization of A. In practice, (LU)−1A is never computed explicitly. In fact,
determining yi = (LU)−1Ayi−1 during the computation of the preconditioned matrix
powers kernel is equivalent to performing the following three steps:

1. Compute f = Ayi−1,.
2. Solve LUyi = f ; i.e., solve Lz = f by forward substitution.
3. Solve Uyi = z by backward substitution.

Hence in practice the inverse of the factors LU is never computed, and the mul-
tiplication (LU)−1A is not performed when computing yi = (LU)−1Ayi−1. Thus,
we use a heuristic which starts by partitioning the graph of A using either nested
dissection or k-way graph partitioning, and we use the same partition for L and U .
Note that other graph partitioning techniques and even hypergraph partitioning tech-
niques can be used to partition A. But for simplicity we base our work on graphs.
Then, we introduce heuristics to reduce the redundant data and computation needed
to perform the forward and backward substitution by each processor without commu-
nication. However, before we discuss the heuristics, we first introduce the ILU matrix
powers kernel.

ILU preconditioned matrix powers kernel. Our ILU matrix powers kernel is based
on the matrix powers kernel, with the exception that A is replaced by (LU)−1A, since
we have a preconditioned system. Given a partition π = {Ω1,Ω2, . . . ,Ωk−1,Ωk} of
the graph of (LU)−1A, let α0 = V (Ωp) be the set of vertices assigned to processor
j, where processor j must compute {y1(α0), y2(α0), . . . , ys−1(α0), ys(α0)} with yi =
(LU)−1Ayi−1.

In the following we describe an algorithm that allows a processor j to perform s
steps with no communication, by ghosting parts of A, L, U , and y0 on processor j
before starting the s iterations. Consider that at some step i, processor j needs to
compute yi(α). The last operation that leads to the computation of yi(α) is the back-
ward substitution Uyi(α) = z. Due to the dependencies in the backward substitution,
the equations α are not sufficient for computing yi(α). Gilbert and Peierls showed
in [19] that the set of equations that need to be solved in addition to α is the set of
reachable vertices from α in the graph of U . Thus, the equations β = R(G(U), α) are
necessary and sufficient for solving the equations α. In other words, if the processor
j has in its memory U(β, β) and z(β), then it can solve with no communication the
reduced system U(β, β)yi(β) = z(β). This is because by definition of reachable sets,
there are no edges between the vertices in the set β and other vertices. Thus all the
columns in U(β, :) except the β columns are zero columns. To solve the reduced sys-
tem U(β, β)yi(β) = z(β), processor j needs to have in his memory z(β) beforehand.
And this is equivalent to solving the set of equations γ = R(G(L), β) of Lz = f . Sim-
ilarly, processor j solves the reduced system L(γ, γ)zi(γ) = f(γ), where f(γ) must be
available. Computing f(γ) is equivalent to computing A(γ, :)yi−1. However, it must
be noted that the entire vector yi−1 is not used, since for computing this subset of
matrix vector multiplication processor j needs only yi−1(δ), where δ = Adj(G(A), γ).
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Therefore, it computes A(γ, δ)yi−1(δ).
Hence to compute the first step, y1 = (LU)−1Ay0, processor j fetches y0(δ1),

A(γ1, δ1), L(γ1, γ1), and U(β1, β1). To perform another step, we simply let α1 = δ1
and do the same analysis. This procedure is summarized in Algorithm 1. Thus to
compute s steps of yi(α0) = [(LU)−1Ayi−1](α0), processor j fetches y0(δs), A(γs, δs),
L(γs, γs), and U(βs, βs). Note that αi−1 ⊆ βi ⊆ γi ⊆ δi ⊆ αi, for i = 1 until s. After
fetching all the data needed, processor j computes its part using Algorithm 2. Thus
Algorithm 1 has to output all the subsets βj , γj , and δj for 1 ≤ j ≤ s, which will be
used in Algorithm 2. Note that although processor j needs to compute only yi(α0),
where 1 ≤ i ≤ s, it computes some redundant flops in order to avoid communication.

Algorithm 1 s-step dependencies.

Input: G(A), G(L), G(U); s, number of steps; α0, subset of unknowns
Output: Sets βj , γj , and δj for all j = 1 till s

1: for i = 1 to s
2: Find βi = R(G(U), αi−1).
3: Find γi = R(G(L), βi).
4: Find δi = Adj(G(A), γi).
5: Set αi = δi.
6: end for

Algorithm 2 CA-ILU s-step spmv (A(γs, δs), L(γs, γs), U(βs, βs), s, α0).

Input: A(γs, δs), L(γs, γs), U(βs, βs), s, number of steps, α0, subset of unknowns
Output: yi(α0), where 1 ≤ i ≤ s

1: for i = s to 1
2: Compute f(γi) = A(γi, δi)yj−s(δi).
3: Solve L(γi, γi)zi−s+1(γi) = f(γi).
4: Solve U(βi, βi)yi−s+1(βi) = z(βi).
5: Save yi−s+1(α0), which is the part that processor j has to compute.
6: end for

The ILU matrix powers kernel presented here is general and works for any matrices
L and U . However, it is not sufficient to reduce or avoid communication, since the
reachable sets βi and γi might be much larger than αi−1 and βi, respectively. A
communication avoiding method is efficient if there is a good trade-off between the
number of redundant flops and the amount of communication which was reduced.
This reflects in the runtime of the algorithm. In other words, if while performing
three or four steps of a CA-ILU preconditioned iterative solver, each processor ends
up needing all the data and computing almost entirely the vectors yi, then either we
are not exploiting the parallelism of our problem efficiently or the problem is not fit
for communication avoiding techniques.

This is indeed the case if Algorithm 2 is applied to the 2D five-point stencil matrix
whose graph, presented in Figure 3(a), is partitioned into four subdomains by using
k-way partitioning. To perform only one step of an iterative solver preconditioned
by CA-ILU with no communication, processor 1 (which computes Domain 1 in the
figure) ends up computing the entire vector yi and fetching all the matrices A, L,
and U , where the L and U matrices are obtained from the ILU0 factorization. This
cancels any possible effect of the parallelization of the problem and shows that what
works for the matrix powers kernel of the form yi = Ayi−1 does not work for the
same kernel where the multiplication is yi = (LU)−1Ayi−1. Nested dissection might
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Fig. 2. An 11-by-43 5-point stencil, partitioned into 8 subdomains using 7 separators. The
data needed to compute one yi = (LU)−1Ayi−1 on Domain 1 is shown, where L and U matrices
are obtained from ILU (0).

look like a better solution since it splits the domain into independent subdomains
that interact only with the separators. However, it is not sufficient either to obtain a
communication avoiding preconditioner. This can be seen in Figure 2. To compute
one matrix-vector multiplication of the form yi = (LU)−1Ayi−1, processor 1 has to
fetch half of matrix A, half of matrix L, half of the vector yi−1, almost the quarter of
matrix U , and perform the associated computation.

This shows that partitioning the graph of the input matrix A by using tech-
niques such as nested dissection or k-way is not sufficient to reduce communication
in the preconditioned matrix powers kernel. This is because both the matrix vec-
tor multiplication and the forward/backward substitutions need to be performed in
a communication avoiding manner. In the next section, we introduce a new reorder-
ing that reduces the communication. Note that in Metis library [25] the subdomains
with number of vertices greater than 200 do not have a natural ordering as shown in
Figure 2, but they are partitioned recursively using nested dissection into smaller sub-
domains and separators. And this tends to reduce communication and the computed
redundant flops, as we will detail later in the experimental section 6.

4. Alternating min-max layers renumbering for ILU0 matrix powers
kernel. In this section we describe a reordering that allows us to compute and ap-
ply an ILU0 preconditioner in parallel in a preconditioned Krylov subspace method
with no communication. Let A be a matrix whose graph is partitioned into P subdo-
mains π = {Ω1,Ω2, . . . ,ΩP } using k-way graph partitioning. To compute and apply
in parallel the preconditioner, each processor j is assigned one subdomain Ωj over

which it should compute the s multiplications yi+1(α
(j)
0 ) = ((LU)−1Ayi)(α

(j)
0 ), where

0 ≤ i ≤ s − 1, α
(j)
0 = V (Ωj), and L and U are obtained from the ILU0 factor-

ization of A. The goal of our reordering algorithm is to renumber the vertices of

each subdomain, α
(j)
0 = V (Ωj) such that processor j can compute its assigned part

of the s multiplications without any communication. As explained in the previous
section, k-way partitioning and nested dissection alone are not sufficient to reduce
data movement and redundant flops in the ILU0 matrix powers kernel. However,
our new reordering, which is applied locally on the vertices of the subdomains Ωj , for
j = 1, 2, . . . , P , obtained after a graph partitioning, reduces the ghost zones in Figures
2 and 3(a) not only for performing one step, but also for performing 2, 3, . . . , s steps of
the ILU0 matrix powers kernel. In this section we focus on the reordering after apply-
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ing k-way graph partitioning; we refer to this reordering as alternating min-max layers
(Amml(s)) reordering. In the technical report [21] a similar reordering is described
for a graph partitioned using nested dissection. In this paper we focus on ILU0, since
this preconditioner produces L and U matrices that have the same sparsity pattern
as A. Hence the graphs of L and U are known before the numerical values of the
factors L and U are computed, and this allows us to reorder these graphs in order to
avoid communication during the computation of the factors. This is not the case in
drop-tolerance ILU, where the graphs of L and U are not known before the numerical
computation of the factors, and hence avoiding communication is a more complex
task there.

Note that k-way partitioning assigns to the vertices of every subdomain a set of
consecutive distinct indices or numbers, num. The reordering does not change the
set of indices assigned to every subdomain, but it changes the order of the vertices
within each subdomain.

In this paper we present two versions of Amml(s) reordering, Algorithms 3 and
4. Both algorithms take as input the graph of A; the vertices of the subdomain to

be reordered, α(j) = α
(j)
0 = V (Ωj); D, the set of d neighboring subdomains α(i) that

depend on α(j) (there exists at least one directed edge connecting a vertex in α(i) to
a vertex in α(j) in the graph of A); the number of steps s to be performed; the set of
indices num assigned to α(j); and evenodd, which defines in which order we want to
number our nodes “first, last, first, . . . ” (odd) or “last, first, last, first, . . . ” (even).
During the first call to the algorithm to reorder a subdomain, the initial parameters
are set to evenodd = even and num to the set of indices assigned to the subdomain by
k-way partitioning. As the name indicates, the goal of the alternating min-max layers
of Amml(s) reordering is to reorder each subdomain α(j) with 2s adjacent alternating
layers, starting from the layer that each of the neighboring subdomains α(i) is adjacent
to, for i �= j. This first layer is assigned with the largest indices.

Note that, in this section we use the term α
(j)
0 to denote V (Ωj), rather than α

(j)
0

which is used in section 3. The reason is that after reordering some vertices of α
(j)
0 ,

the remaining vertices α
(j)
1 are a subset of α

(j)
0 (α

(j)
s ⊂ · · · ⊂ α

(j)
1 ⊂ α

(j)
0 ), whereas in

section 3, α
(j)
1 = δ

(j)
1 is a superset of α

(j)
0 (α

(j)
0 ⊂ α

(j)
1 ⊂ · · · ⊂ α

(j)
s ).

We explain first the reordering for applying the ILU0 preconditioner during one
iteration of a Krylov subspace solver (s = 1), where the goal is to reduce the num-

ber of vertices in the sets β
(i)
1 = R(G(U), α

(i)
0 ) and γ

(i)
1 = R(G(L), β

(i)
1 ) for each

subdomain Ωi, where α
(i)
0 = V (Ωi). In the following, Figures 3(c) and 3(b) are

used to explain the alternating reordering for one step (s = 1), while Figure 3(d) is
used to display the reordering for two steps (s = 2). Further, Figure 4 shows the
sparsity pattern of the matrix A in its natural ordering, with k-way reordering, and
with k-way+Amml(2) reordering with the corresponding L−1 matrices, where L is ob-
tained from the ILU0 factorization of A. To reduce globally the number of reachable
vertices of interest in the graphs of L and U , the alternating reordering renumbers
the vertices of each subdomain Ωj such that locally on this subdomain the set of

reachable vertices β
(i)
1 ∩ α

(j)
0 and γ

(i)
1 ∩ α

(j)
0 from all the other subdomains Ωi is re-

duced. To do this, Algorithms 3 and 4 identify first the boundary vertices of each

neighboring subdomain Ωi in subdomain Ωj , bvU
(j,i)
0 = α

(j)
0 ∩ Adj(G(A), α

(i)
0 ), and

assign to the sets bvU
(j,i)
0 = α

(j)
0 ∩ Adj(G(A), α

(i)
0 ) the largest possible numbers in

num. Then the algorithms identify the adjacent vertices of bvU
(j,i)
0 in the graph of
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A, bvL
(j,i)
0 = α

(j)
0 ∩ opAdj(G(A), bvU

(j,i)
0 ), and assign to these sets the smallest num-

bers possible in num. Figure 3(b) displays the reordered graph obtained after this

reordering, where the vertices of the sets bvU
(j,i)
0 and bvL

(j,i)
0 are kept in their natural

ordering. The set β
(i)
1 is the set of vertices bounded by the red polygon, and the set

γ
(i)
1 is the set of vertices bounded by the blue polygon for i = 1. In the worst case,

the reachable set β
(i)
1 is equal to the union of the set α

(i)
0 with all the sets bvU

(j,k)
0 for

i �= j and j �= k. Similarly, the reachable set γ
(i)
1 is equal to β

(i)
1 and all the bvL

(j,k)
0 .

That is,

β
(i)
1 ⊆ α

(i)
0 ∪

P⋃
j=1
j �=i

bvU
(j)
0 and γ

(i)
1 ⊆ β

(i)
1 ∪

P⋃
j=1
j �=i

bvL
(j)
0 ,

where

bvU
(j)
0 =

P⋃
k=1
k �=j

bvU
(j,k)
0 and bvL

(j)
0 =

P⋃
k=1
k �=j

bvL
(j,k)
0 .

However, for each subdomain Ωi, the reachable sets can be further reduced by reorder-

ing the vertices within the sets bvU
(j,i)
0 and bvL

(j,i)
0 for all the neighboring subdomains

Ωj . Algorithms 3 and 4 differ only in the approach used for reordering the vertices

within the sets bvU
(j,i)
0 and bvL

(j,i)
0 .

The remaining numbers in num are assigned to the remaining vertices α
(j)
1 =

α
(j)
0 − bvL

(j)
0 − bvU

(j)
0 , where the α

(j)
1 vertices are kept in their natural ordering

as shown in Figure 3(c) (the black vertices), the bvU
(j)
0 vertices are the vertices in

subdomain Ωj that all the other subdomains i �= j depend on (the red and magenta

vertices), and bvL
(j)
0 = Adj(G(A), bvU

(j)
0 ) (the blue vertices). Then we get

β
(i)
1 ⊂ Adj(G(A), α

(i)
0 ) ∪ ζ and γ

(i)
1 ⊂ Adj(G(A), β

(i)
1 ) ∪ ζ∗,

where β
(i)
1 = R(G(U), α

(i)
0 ), γ

(i)
1 = R(G(L), β

(i)
1 ), |ζ| 	 |Adj(G(A), α

(i)
0 )|, and |ζ∗| 	

|Adj(G(A), β
(i)
1 |. The sets ζ and ζ∗ represent additional vertices that belong to the

reachable set in addition to the adjacent set. For example, in Figure 3(c), the ver-

tices 200 and 151 belong to the sets β
(1)
1 = R(G(U), α

(1)
0 ) and γ

(1)
1 = R(G(L), β

(1)
1 ),

respectively. However, these vertices do not belong to the sets Adj(G(A), α
(1)
0 ) and

Adj(G(A), β
(1)
1 ). Note that for matrices arising from 1D three-point stencil, 2D nine-

point stencil, and 3D 27-point stencil discretizations, we have ζ = ζ∗ = φ.

When computing s > 1 multiplications of the form yi = (LU)−1Ayi−1 for i =
1, 2, . . . , s, the goal of the alternating reordering is to reduce the number of vertices

not only in the sets β
(j)
1 and γ

(j)
1 , but also in the sets β

(j)
i and γ

(j)
i , for i = 1, 2, . . . , s.

Thus we perform the same analysis as for the case of s = 1. We obtain a recursive

reordering on the given set of vertices α
(j)
0 such that the two layers bvU

(j,i)
0 = α

(j)
0 ∩

Adj(G(A), α
(i)
0 ) and bvL

(j,i)
0 = α

(j)
0 ∩ opAdj(G(A), bvU

(j,i)
0 ) for all i �= j are assigned

with the largest and smallest numbers, respectively. The remaining numbers are

assigned to the unnumbered vertices α
(j)
1 = α

(j)
0 − bvU

(j)
0 − bvL

(j)
0 . But unlike the

case of s = 1, the vertices α
(j)
1 are reordered recursively, to minimize the cardinality of
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Algorithm 3 Amml (α(j), D, s, evenodd,G(A), num).

Input: α(j), the set of vertices of the subdomain to be reordered; G(A), the graph of A
Input: D = {α(i)|Adj(G(A), α(i)) ∩ α(j) �= φ, i = 1 : P, i �= j}, set of d neighboring
subdomains; s, the number of steps to be performed in the ILU matrix powers kernel
Input: evenodd, a tag that can be “even” or “odd”; num, set of indices assigned to α(j)

1: Let d = |D| be the cardinality of the set D.
2: if s == 0 then
3: Number α(j) in any order, preferably in the natural order.
4: else
5: for i = 1 to d do Find the vertices bvi = α(j) ∩Adj(G(A), α(i)).
6: for i = 1 to d do let cornersi = ∪d

k=1 (bvi ∩ bvk).
7: for i = 1 to d do
8: if evenodd = odd then
9: Assign to the unnumbered vertices of bvi the smallest numbers in num, numbvi

10: else Assign to the unnumbered vertices of bvi the largest numbers in num, numbvi

11: end if
12: Remove the numbers numbvi from num (num = num− numbvi).
13: if cornersi = φ then
14: Number the unnumbered vertices of bvi with the indices numbvi , in any order.
15: else
16: Call Amml (bvi, D, s, evenodd, G(A),numbvj ).
17: end if
18: end for
19: Let α(j) = α(j) − ∪d

i=1bvi.
20: if evenodd = even then Call Amml (α(j), {bvi | i = 1 : d}, s, odd,G(A)num).
21: else Call Amml (α(j), {bvi | i = 1 : d}, s − 1, even,G(A), num).
22: end if
23: end if

Algorithm 4 AmmlV2 (α(j), D, s, evenodd,G(A), num)

Input: α(j), the set of vertices of the subdomain to be reordered; G(A), the graph of A
Input: D = {α(i)|Adj(G(A), α(i)) ∩ α(j) �= φ, i = 1 : P, i �= j}, set of d neighboring
subdomains; s, the number of steps to be performed in the ILU matrix powers kernel
Input: evenodd, a tag that can be “even” or “odd”; num, set of indices assigned to α(l)

1: Let d = |D| be the cardinality of the set D
2: if s == 0 then
3: Number α(j) in any order, preferably in the natural order.
4: else
5: for i = 1 to d do Find the vertices bvi = α(j) ∩Adj(G(A), α(i))
6: Let bvj = ∪d

i=1bvi
7: if evenodd = odd then
8: Assign to the vertices of bvj , the smallest numbers in num, numbvj

9: else Assign to the vertices of bvj , the largest numbers in num, numbvj

10: end if
11: Remove the numbers numbvj from num (num = num− numbvj )
12: Reorder bvj using Nested Dissection to obtain an alternating reordering
13: Let α(j) = α(j) − bvj
14: if evenodd = even then Call AmmlV2 (α(j), bvj, s, odd,G(A), num)
15: else Call AmmlV2 (α(j), bvj, s − 1, even,G(A), num)
16: end if
17: end if
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Fig. 3. Data needed to compute yi = (LU)−1Ayi−1 on Domain 1 using ILU matrix powers
kernel for different reorderings where i = 1 in panels (a), (b), and (c) and i = 1, 2 in panel (d).
The red and blue layers of vertices are numbered with the largest and smallest available indices for
their corresponding domains. The magenta vertices belong to the red layer but are numbered with
the smallest vertices to reduce the reachable set in graph of L. The cyan vertices belong to the blue
layer but are numbered with the largest vertices to reduce the reachable set in graph of U .

the sets β
(j)
i and γ

(j)
i , for i = 2, 3, . . . , s. First bvU

(j,i)
1 = α

(j)
1 ∩ opAdj(G(A), bvL

(j,i)
0 )

and bvL
(j,i)
1 = α

(j)
1 ∩ opAdj(G(A), bvU

(j,i)
1 ) for all i �= j are assigned with the largest

and smallest numbers, respectively. Then if s = 2, the remaining numbers are assigned

to α
(j)
2 = α

(j)
1 − bvU

(j)
1 − bvL

(j)
1 , where the order of the vertices α

(j)
2 is unchanged.

Note that it is possible to reorder the vertices α
(j)
2 in any manner. For example,

Figure 4(c) shows the sparsity pattern of the k-way+Amml(2) reordered matrix A,

where the α
(j)
2 vertices are unchanged with j = 1, 2, 3, 4. And Figure 4(f) shows the

sparsity pattern of the corresponding L−1, where the diagonal blocks are dense. It is

possible to reorder the vertices of α
(j)
2 using nested dissection, to reduce the fill-ins

in the diagonal blocks of L−1; however, this will slow down the convergence of the

preconditioner. That is why we prefer to leave the α
(j)
s vertices unchanged.
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Fig. 4. The fill-ins in the inverse of L obtained from the ILU (0) factorization of a 2D five-point
stencil matrix, in its natural ordering A, in its k-way reordered matrix Ak, and in its k-way+Amml(2)
reordered version Aca, where U−1 = (L−1)t and nnz is the number of nonzero values.

If s > 2, then α
(j)
2 is also reordered recursively for s−2 to minimize the cardinality

of the sets β
(j)
i and γ

(j)
i for i = 3, 4, . . . , s. The reordering is performed in s recursive

steps. At each step, two layers,

bvU
(j)
t =

P⋃
i=1
i�=j

bvU
(j,i)
t and bvL

(j)
t =

P⋃
i=1
i�=j

bvL
(j,i)
t ,

are reordered, and this produces an alternating min-max 2s layer reordering. In Figure
3(d), where the graph is reordered in order to perform two multiplications, there
are four alternating layers starting from the boundary vertices in every subdomain.

Note that, similarly to the case of s = 1, the vertices of bvU
(j,i)
t and bvU

(j,i)
t for

t = 0, 1, . . . , s− 1 have to be reordered to reduce the addition of unnecessary vertices
to the reachable sets.

At each recursive call in Algorithms 3 and 4, either bvU
(j,i)
t or bvL

(j,i)
t , denoted

by bvi, is reordered. The tag evenodd is used to decide which one to reorder. If
evenodd = even, then the largest available numbers in the set num are assigned to

bvU
(j,i)
t . Otherwise, the smallest numbers in the set num are assigned to bvL

(j,i)
t .

In Algorithm 3, the bvU
(j,i)
t and the bvL

(j,i)
t are reordered by calling the algorithm

recursively to ensure an alternating reordering within each. In case the vertices of

bvU
(j,i)
t (bvL

(j,i)
t ) do not belong to any other bvU

(j,k)
t (bvL

(j,k)
t ), where k �= i, i.e.,

cornersj = φ, then the vertices of bvU
(j,i)
t (bvL

(j,i)
t ) are kept in their natural ordering.

The reordering for one and two steps is shown in Figures 3(c) and 3(d). The only
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difference in Algorithm 4 is that we let

bvU
(j)
t =

P⋃
i=1
i�=j

bvU
(j,i)
t and bvL

(j)
t =

P⋃
i=1
i�=j

bvL
(j,i)
t ,

denoted by bvj , and then reorder each using nested dissection. Since nested dissection
assigns to the vertices of the separators larger numbers than the two subdomains,
and then continues partitioning each till the final subdomains are very small, then

the obtained reordering of the bvU
(j)
t and bvL

(j)
t is very similar to an alternating

reordering. If s > 1, the remaining vertices of α(j) are reordered recursively, as shown
in Algorithms 3 and 4.

4.1. Complexity of AMML(s) reordering. We define the complexity of our
alternating min-max layers reordering as being the number of times the vertices and
the edges of the graph of A are visited in order to perform the reordering. The
complexity of Algorithms 3 and 4 for reordering the vertices of a subdomain Ωj for
s steps is equivalent to the complexity of finding the alternating layers from vertices
α(i) of each neighboring subdomain Ωi and then reordering each of these layers, where
α(i) = V (Ωi).

Both algorithms take as input all the sets of vertices of the d neighboring sub-
domains α(i) that depend on the vertices α(j) and find bvi = Adj(G(A), α(i)) ∩ α(j),
where i = 1, 2, . . . , d. This means that for finding the sets bvi for each neighboring
subdomain Ωi, all the vertices and edges of the subdomain Ωi are visited. In other
words, for each subdomain Ωj , d×|V (Ωmax)| vertices and d×|E(Ωmax)| edges have to
be visited, where |α(i)| ≤ |V (Ωmax)| and |E(Ωi)| ≤ |E(Ωmax)| for i �= j, and d is the
number of neighboring subdomains. However, this is not necessary. We can perform
a preprocessing step in which each processor Ωi finds its subdomain’s boundary ver-
tices, Si, that depend on some other vertex in α(j), where i �= j. Then the algorithms
can use Si instead of α(i), where |Si| 	 |α(i)|. But to keep the presentation of the
algorithms simple, α(i) was used instead. To find Si for each subdomain Ωi, |α(i)|
vertices and |E(Ωi)| edges are visited.

For each subdomain Ωj , finding the alternating layers from Si for each neighboring

subdomain Ωi requires visiting at most
∑d

i=1 |R(G(A), Si, 2s)| vertices and their asso-
ciated edges. In Algorithm 3, in case cornersi �= φ, the vertices of the set bvi and asso-
ciated edges need to be visited again. So some fraction of |∪d

i=1(R(G(A), Si, 2s)∩α(j))|
vertices and their associated edges are visited in this case. In the worst case, where
corners(i) �= φ, for all the d neighboring subdomains i = 1 : d, i �= j, the algorithm
visits at most | ∪d

i=1 (R(G(A), Si, 2s) ∩ α(j))| vertices and associated edges. Hence
reordering the vertices of a subdomain Ωj , α

(j) requires visiting at most

2

d∑
i=1

|R(G(A), Si, 2s) ∩ α(j)|+
d∑

i=1

|Si| 	 2|α(j)|+
d∑

i=1

ξ|α(i)| 	 (2 + dξ)|V (Ωmax)|

vertices and (2+dξ)|E(Ωmax)| edges. Note that |Si| = ξ|α(i)|, where 0 ≤ ξ 	 1 is the
ratio of the cardinality of the boundary vertices to the cardinality of the subdomain’s
vertices. The quantity ξ should be very small since the number of boundary vertices
in a subdomain is at most equal to the edge-cuts of that subdomain, and k-way
partitioning aims at minimizing the edge-cuts.

Thus, to reorder α(j), in total at most (3 + dξ)|V (Ωmax)| vertices and (3 +
dξ)|E(Ωmax)| edges are visited. Since the Amml(s) reordering is done in parallel
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on P processors, its parallel complexity is upper bounded by (3 + dξ)(|V (Ωmax)| +
|E(Ωmax)|). Hence our algorithm is of linear complexity with respect to (|V (Ωmax)|+
|E(Ωmax)|). In case the Amml(s) reordering is done sequentially, one processor loops
over the vertices of the subdomains and reorders them, then the complexity is upper
bounded by (3+dξ)P (|V (Ωmax)|+|E(Ωmax)|), where P is the number of subdomains.

5. CA-ILU0 preconditioner. In this section we summarize the different steps
required for constructing the CA-ILU0 preconditioner, presented in Algorithm 5. The
algorithm first reorders the input matrix by using a graph partitioning technique, and
in this paper we consider the usage of k-way partitioning. The obtained matrix is
further reordered using Amml(s) reordering. Note that the permutations applied to
the matrix A are also applied to the vector b. Then, the redundant data needed by
each processor is identified using Algorithm 1. The final step is to compute the ILU0
factorization of the reordered matrix to obtain the L and U matrices for precondi-
tioning the system Ax = b. The ILU0 factorization can be done sequentially on one
processor, where the needed parts of the L and U matrices have to be fetched by
the processors before starting the computations in a Krylov subspace solver, or it
can be done in parallel where each processor performs the ILU0 factorization of the
augmented part of A to obtain the needed parts of L and U .

The ILU0 factorization of A(γ
(j)
s , :) can be performed in parallel without any

communication for the following reasons. Performing the ILU0 factorization of A(ρ, :)
requires computing the factorization of A(ω, :) beforehand, where ω = R(G(L), ρ).

And by the definition of reachable sets, we have that R(G(L), γ
(j)
s ) = γ

(j)
s . Hence,

processor j has all the needed rows of A to perform the ILU0 factorization in par-
allel without any synchronization or communication, at the expense of doing some
redundant computation.

Algorithm 5 Construction of CA-ILU0 preconditioner.

1: Partition the graph of A into P subdomains by using k-way graph partitioning.
2: Find a permutation using Amml(s) reordering (Algorithm 3 or 4).
3: Apply the permutation to matrix A.
4: Find the redundant/ghost data that each processor needs using Algorithm 1.

5: Have each processor i fetch its corresponding A(γ
(i)
s , :).

6: Have each processor i perform the CA-ILU(0) factorization of A(γ
(i)
s , :) to obtain

the corresponding L(γ
(i)
s , :) and U(γ

(i)
s , :) matrices.

All the steps of the CA-ILU0 preconditioner construction are done in parallel. In
addition, steps 2 and 6 in Algorithm 5 can be done in parallel without communication.

Note that, after fetching the matrix A(γ
(j)
s , :) and y0(δ

(j)
s ), each processor can compute

its part of the L and U factors of the preconditioner and the first s multiplication
without any communication with other processors.

The CA-ILU0 preconditioner can be used with a classic Krylov subspace solver,
allowing us to apply the left-preconditioner without any communication. In this case
Amml(s) reordering has the parameter s set to 1.

On the other hand, the CA-ILU0 preconditioner can be used for ILU0 right-
preconditioned systems by slightly modifying the ILU matrix powers kernel where
Amml(s) reordering is unchanged. As for the split preconditioned system of the form
L−1AU−1y = L−1b with x = U−1y, CA-ILU0 preconditioner can also be used by
slightly modifying the ILU matrix powers kernel and Amml(s) reordering. In this
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case, when the tag evenodd = even, we assign to the layer at hand the smallest
indices in num and the largest indices otherwise. This produces 2s alternating layers
starting from small indices.

6. Expected numerical efficiency and performance of CA-ILU0 pre-
conditioner. The numerical efficiency and performance of CA-ILU0 preconditioner
depends on the convergence of GMRES for the CA-ILU0 preconditioned system, on
the complexity of Amml(s) reordering of the input matrix A, and on the additional
memory requirements and redundant flops of the ILU0 matrix powers kernel. We dis-
cuss the convergence of the CA-ILU0 preconditioned system using GMRES in section
6.1, the memory requirements and redundant flops in section 6.2. While we do not
present here results of a parallel implementation of CA-ILU0, the results presented
in this section show that CA-ILU0 can be expected to be faster in practice than
implementations of the classic ILU0 based on different reordering strategies.

We use in our experiments Metis [25] for graph partitioning purposes. Metis

provides two versions of multilevel k-way partitioning. We use the PartGraphKway
version that minimizes edge-cuts, which is referred to as Kway in the plots of itera-
tions, redundant flops, and memory. In addition, Metis provides a multilevel nested
dissection version called NodeNDP. The Kway version has the fastest convergence
but requires more memory and redundant flops than nested dissection versions. Hence
the Kway version is a good candidate for our CA-ILU0 preconditioner if we choose
appropriately the number of partitions and number of steps to obtain a good trade-off
between the amount of communication reduced and the amount of redundant compu-
tation. For this reason, in sections 6.1 and 6.2 the plots correspond to the CA-ILU0
preconditioner based on Kway partitioning.

The difference between the CA-ILU0 preconditioner based on nested dissection
and that based on k-way partitioning is the local reordering. When using nested
dissection to partition the graph of A, the obtained subdomains are reordered with
a modified Amml(s) reordering that produces 2s − 1 layers rather than 2s since the
separators are numbered larger than the subdomains. This modified Amml(s) algo-
rithm is the same as the Amml(s) algorithms (3 or 4). But instead of setting the tag
evenodd = even initially, it is set to odd. The separators are also reordered in an
alternating format with an additional step to Algorithms 3 and 4, as shown in the
technical report [21].

Finally, we compare our CA-ILU0 preconditioner with the block Jacobi precon-
ditioner in section 6.3.

6.1. Convergence. It is known that the convergence of ILU0 preconditioned
systems depends on the ordering of the input matrix. The best convergence is often
observed when the matrix is ordered using reverse Cuthill–McKee (RCM) or natural
ordering, while the usage of k-way partitioning or nested dissection tends to lead to
a slower convergence (see, for example, [14]). Hence, we first discuss the effect of our
reordering on the convergence of ILU0 preconditioned system. Our goal is to study
the convergence of the CA-ILU0 preconditioner. Since s-step GMRES can lead by
itself to a slower convergence than that of a classic GMRES method, we use in our
experiments the classic GMRES method. Table 1 gives a brief description of the test
matrices used and the nature of the problems they arise from.

The first four matrices, referred to as Nh2D1 , Nh2D2, Sky2D, and Sky3D, arise
from the following boundary value problems discretized using FreeFem++ [22] with
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Table 1

The test matrices.

Matrix Size Nonzeros Symmetric 2D/3D Problem

Nh2D1 40000 199200 Yes 2D Boundary value

Nh2D2 160000 798400 Yes 2D Boundary value

Sky2D 40000 199200 Yes 2D Skyscraper

Sky3D 64000 438400 Yes 3D Skyscraper

Bo1 1800 11670 Yes 3D Black oil reservoir

Bo2 14400 97080 Yes 3D Black oil reservoir

Utm3060 3060 42211 No 3D Electromagnetics

Bcsstk18 11948 149090 Yes 3D Structural (stiffness matrix)

Watt2 1856 11550 No 3D Computational fluid dynamics

a finite element P1 scheme:

−div(κ(x)∇u) = f in Ω,

u = 0 on ∂ΩD,

∂u

∂n
= 0 on ∂ΩN ,

where Ω = [0, 1]n (n = 2 or 3) and ∂ΩN = ∂Ω \ ∂ΩD. The tensor κ is the given
coefficients of the partial differential operator. In the 2D case, we have ∂ΩD =
[0, 1]×{0, 1}, and in the 3D case, we have ∂ΩD = [0, 1]×{0, 1}× [0, 1]. For a detailed
description refer to [1]. We focus on the following two cases:

• Nh2D1 and Nh2D2: A nonhomogeneous problem with large jumps in the
coefficients. The tensor κ is isotropic and discontinuous. It jumps from the
constant value 103 in the ring 1

2
√
2
≤ |x− c| ≤ 1

2 , c = (12 ,
1
2 )

T , to 1 outside.

• Sky2D and Sky3D skyscraper problems: The tensor κ is isotropic and dis-
continuous. The domain contains many zones of high permeability which are
isolated from each other. For Sky2D, we have

κ(x) =

{
103 ∗ ([10 ∗ x2] + 1) if [10xi] is odd, i = 1, 2,
1 otherwise,

where we note [x] as the integer value of x.
The Bo1 and Bo2 matrices are from a simulation of a black oil reservoir model,

based on a compositional triphase Darcy flow simulator (oil, water, and gas).1 The
permeability is heterogeneous, with jumps on the order of 28.

Nh2D1 and Sky2D are discretized on a 200 × 200 2D Cartesian grid. Nh2D2

is discretized on a 400 × 400 Cartesian grid. Bo1 , Bo2 , and Sky3D are discretized
on a 15 × 15 × 8 grid, a 30 × 30 × 16 grid, and a 40 × 40 × 40 grid, respectively.
As for the matrices Utm3060, Bcsstk18, and Watt2, their full description can be
found in [10]. Seven other matrices that arise from the boundary value problem
of the convection-diffusion equations, used in [5, 11] for testing preconditioners, are
described in Appendix A.

We compare the convergence of GMRES for the ILU0 preconditioned system
where the matrix A is reordered using k-way + Amml(s) version1 reordering (Algo-
rithm 3), k-way + Amml(s) version2 reordering (Algorithm 4), k-way reordering, and

1These matrices were provided to us by R. Masson, at that time at IFP Energies Nouvelles.
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the natural ordering of A for different number of partitions and for s = 1, 2, 5, 10.
We set the GMRES tolerance to 10−8 and the maximum number of iterations to 500.
Figure 5 shows the convergence behavior for the first eight matrices.

As expected, the ILU0 preconditioned system with the natural ordering of A con-
verges faster than when A is reordered using k-way and the two versions of Amml(s).
The convergence of the RCM ILU0 preconditioned system is not shown in the plots,
but for the symmetric matrices Nh2D1 , Bo1 , Bo2 , Bcsstk18, and Sky2D it has the
same convergence as natural ordering, while for Utm3060 it converges with two it-
erations fewer than natural ordering. For the matrix Nh2D1 , when A is reordered
using k-way and k-way plus Amml(1), the preconditioned GMRES has the same rate
of convergence. But as s increases and the more we reorder the matrix, the more
iterations are needed for convergence. We notice the same behavior for the matrices
Utm3060, Bo1 , and Bo2 (Figures 5(b), 5(c), and 5(d)). But for the matrix Bcsstk18,
GMRES converges in a maximum of nine iterations for the different reorderings of A,
as shown in Figure 5(e). It must be noted that without preconditioning, the Bcsstk18

system does not converge for the given tolerance, while for tol = 10−6 it converges in
909 iterations.

For the matrices Bo1 and Bo2 , k-way plus Amml(s) version1 (Algorithm 3) has
a better convergence than version 2 (Algorithm 4). However, for the matrices Nh2D1

and Utm3060 there is no clear winner. But for s = 1, version1 converges slightly
better, since in version2 nested dissection reorders two layers of vertices.

Table 6 in Appendix A shows the convergence behavior of ILU0 preconditioned
GMRES with the different reorderings for Watt2 and the other seven matrices. We
observe similar convergence behaviors with respect to number of partitions, steps s,
and the two versions of Amml(s).

We can conclude that our CA-ILU0 preconditioned system where the matrix A
is reordered using k-way and Amml(s) has a very similar convergence behavior to the
ILU0 preconditioned system where the matrix A is only reordered using the k-way
graph partitioning technique. Thus, our additional Amml(s) reordering of the matrix
does not much affect its convergence, while it enhances its communication avoiding
parallelizability.

6.2. Avoided communication versus memory requirements and redun-
dant flops of the ILU0 matrix powers kernel. The ILU0 matrix powers ker-
nel avoids communication by performing redundant flops and storing more vectors
and data. Table 2 compares the needed memory and performed flops for s ma-
trix vector multiplications on one subdomain/processor when using the nonprecondi-
tioned CA-GMRES (Ax,A2x, . . . , Asx) and the CA-ILU0 preconditioned CA-GMRES
((LU)−1Ax, . . . , ((LU)−1A)sx) on 2D nine-point stencils and 3D 27-point stencils. We

assume that each processor j has to compute the part α
(j)
0 = V (Ωj) of the s matrix

vector multiplication, where A is an n × n matrix, |α(j)
0 | ≈ n/P = wd, d = 2 for 2D

matrices and 3 for 3D matrices, and w = (n/P )
1
d is the width of the square or cube

subdomain. For simplicity, we refer to α
(j)
0 as α in Table 2.

CA-GMRES requires storing s vectors of size |R(G(A), α
(j)
0 , i)| ≈ |(w+2i)d|, i =

1, 2, . . . , s, one vector of size |α(j)
0 |, and the corresponding |R(G(A), α

(j)
0 , s− 1)| rows

of the matrix A. Then it performs
∑s

i=1((w + 2(i − 1))d)(2 × nnz − 1) flops, where
nnz is the number of nonzeros per row (9 and 27). CA-ILU0 preconditioned CA-

GMRES requires storing s vectors of size |R(G(A), α
(j)
0 , 2(i − 1))| ≈ |(w + 4(i −

1))d|, i = 1, 2, . . . , s, one vector of size |R(G(A), α
(j)
0 , 2s + 1)|, one vector of size



C236 LAURA GRIGORI AND SOPHIE MOUFAWAD

16 32 64 128 256
140

150

160

170

180

190

200

210

220

230

240

NUMBER OF PARTITIONS

T
H

E
 N

U
M

B
E

R
 O

F
 IT

E
R

A
T

IO
N

S
 N

E
E

D
E

D
 T

IL
L

 C
O

N
V

E
R

G
E

N
C

E

 

 

Kway + AMML(s) Version1
Kway + AMML(s) Version2
Kway
Natural ordering

s = 10

s = 2

s = 1

s = 5

(a) Matrix Nh2D1 .

4 8 16
50

100

150

200

250

300

350

400

450

NUMBER OF PARTITIONS

T
H

E
 N

U
M

B
E

R
 O

F
 IT

E
R

A
T

IO
N

S
 N

E
E

D
E

D
 T

IL
L

 C
O

N
V

E
R

G
E

N
C

E

 

 

Kway + AMML(s) Version1
Kway + AMML(s) Version2
Kway
Natural ordering

s = 10

s = 5

s = 2

s = 1

(b) Matrix Utm3060.

4 8 16 32 64
40

42

44

46

48

50

52

54

56

58

60

NUMBER OF PARTITIONS

T
H

E
 N

U
M

B
E

R
 O

F
 IT

E
R

A
T

IO
N

S
 N

E
E

D
E

D
 T

IL
L

 C
O

N
V

E
R

G
E

N
C

E

 

 

Kway + AMML(s) Version1
Kway + AMML(s) Version2
Kway
Natural ordering

s = 2

s = 5

s = 1

(c) Matrix Bo1 .

8 16 32 64 128
110

120

130

140

150

160

170

NUMBER OF PROCESSORS

T
H

E
 N

U
M

B
E

R
 O

F
 IT

E
R

A
T

IO
N

S
 N

E
E

D
E

D
 T

ill
 C

O
N

V
E

R
G

E
N

C
E

 

 

Kway + AMML(s) Version1

Kway + AMML(s) Version2

Kway

Natural ordering s = 5

s = 2

s = 1

(d) Matrix Bo2 .

4 8 16
7

8

9

10

NUMBER OF PARTITIONS

T
H

E
 N

U
M

B
E

R
 O

F
 IT

E
R

A
T

IO
N

S
 N

E
E

D
E

D
 T

IL
L

 C
O

N
V

E
R

G
E

N
C

E

 

 

Kway + AMML(s) Version1
Kway + AMML(s) Version2
Kway
Natural ordering

s = 10

s = 1

s = 2

s = 5

(e) Matrix Bcsstk18.

4 8 16 32 64 128 256
300

350

400

450

500

550

NUMBER OF PARTITIONS

T
H

E
 N

U
M

B
E

R
 O

F
 IT

E
R

A
T

IO
N

S
 N

E
E

D
E

D
 T

IL
L

 C
O

N
V

E
R

G
E

N
C

E

 

 

Kway + AMML(s) Version1
Kway + AMML(s) Version2
Kway
Natural ordering

s = 1

s = 2

s = 5

(f) Matrix Sky2D.

Fig. 5. The number of iterations needed for convergence for six matrices as a function of the
number of partitions and steps s. The matrices are either in natural ordering or reordered using k-
way partitioning (Kway), or k-way partitioning followed by Amml(s) based on Algorithm 3 (Version
1) or Algorithm 4 (Version 2). The number of partitions varies from 4, 8, 16, 32, 64, 128 to 256
depending on the size of the matrix. The number of steps s is either 1 (red), 2 (blue), 5 (green), or
10 (magenta).
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Table 2

Memory requirement and computational cost for performing s matrix vector multiplications
on one subdomain α, for the nonpreconditioned CA-GMRES and for the CA-ILU0 preconditioned
CA-GMRES.

Stencil CA-GMRES CA-ILU0 CA-GMRES

2D
Memory

(s+ 10)|α| + 2(s2 + 19s − 18)|α| 12 +
4
3
s3 + 38s2 − 214

3
s+ 36

(s + 21)|α| + 4(s2 + 41s − 4)|α| 12 +
16
3
s3 + 328s2 − 184

3
s+ 24

9-pt
Flops

17s|α| + 34(s2 − s)|α| 12 − 34s2 +
17
3
(4s3 + 2s)

35s|α|+ 4s(35s + 26)|α| 12 + 560
3

s3 +

208s2 + 172
3

s

3D

Memory

(s+ 28)|α| + 3(s2 + 55s − 54)|α| 23 +

[4s3+330s2−646s+324]|α| 13 +2s4+
220s3 − 646s2 + 648s− 216

(s+57)|α|+ (6s2 +678s− 78)|α| 23 +

4[4s3+678s2−154s+45]|α| 13 +16s4+
8s[452s2 − 154s+ 90]− 88

27-pt

Flops

53s|α|+ 159(s2 − s)|α| 23 + 106[2s3 −
3s2+s]|α| 13 +106s4+106(−2s3+s2)

107s|α| + 6s[107s + 80]|α| 23 +

2s[856s2 + 960s + 266]|α| 13 +
1712s4 + 1064s2 + 2560s3

|R(G(A), α
(j)
0 , 2s)|, the corresponding |R(G(A), α

(j)
0 , 2s)| rows of the matrices A and

L, and the |R(G(A), α
(j)
0 , 2s− 1)| rows of the matrix U . Then it performs

∑s
i=1(2×

nnz − 1)((w + 4i)d) flops to compute Ax. Solving the s lower triangular systems
(Lz = f) requires

∑s
i=1[1 + 2× (nnz− 1)/2]((w+4i)d) flops. Similarly, solving the s

upper triangular systems requires
∑s

i=1[1+2× (nnz−1)/2]((w+4i−2)d) flops. Note
that the memory and flops of CA-GMRES and CA-ILU0 preconditioned CA-GMRES
are governed by the same big O function.

Figure 6 plots the ratio of the total redundant flops in the ILU0 matrix powers
kernel for s = 1, 2, 5, 10 with respect to the flops needed for computing s matrix vector
multiplications in the sequential ILU0 preconditioned GMRES for six matrices in our
set that are reordered using k-way, k-way+Amml(s) Version1, and k-way+Amml(s)
Version2. Figure 7 plots the ratio of the ghost data that has to be saved in memory in
the ILU0 matrix powers kernel for s = 1, 2, 5, 10 with respect to the needed memory
in the matrix vector multiplication of the sequential ILU0 preconditioned GMRES
for six matrices in our set that are reordered using k-way, k-way+Amml(s) Version1,
and k-way+Amml(s) Version2. In Figures 6(a) and 7(a) we do not show the ratio of
redundant flops to needed flops for the Kway reordered matrix Nh2D1 , since it is at
least 10 times more than that of Amml(s) reordering. Hence the Amml(s) reordering
leads to at least 90% fewer redundant flops and less ghost memory in the ILU0 matrix
powers kernel than does Metis’s k-way partitioning. This leads to a reduction of the
volume of the communicated data at the end of the s steps.

In Figures 6(b) and 6(e), Amml(s) reordering performs from 10 to 50% fewer
redundant flops than Kway partitioning in the ILU0 matrix powers kernel. On the
other hand, in Figures 7(b) and 7(e), Amml(s) reordering needs 50% and 25% less
ghost memory for s = 1 and s = 2, respectively. Whereas for s = 5 and 10, Amml(s)
reordering and Kway partitioning ratios are equal to P − 1, where P is the number
of processors or partitions. This means that each processor ends up needing all the
matrices A, L, U and computing almost everything for a number of steps. Hence for
matrices Utm3060 and Bcsstk18, s has to be less than 5.

We compare the ratio of redundant flops and ghost data of the two versions of
Amml(s) reordering for the above three matrices. For matrix Nh2D1 (Figures 6(a) and
7(a)), version2 performs fewer redundant flops. For matrix Utm3060 (Figures 6(b)
and 7(b)), version1 has a slightly better performance for s > 1. As for the matrix



C238 LAURA GRIGORI AND SOPHIE MOUFAWAD

16 32 64 128 256
0

2

4

6

8

10

12

14

16

18

20

NUMBER OF PARTITIONS

(R
E

D
U

N
D

A
N

T
 F

L
O

P
S

) 
/ (

s 
* 

N
E

E
D

E
D

 F
L

O
P

S
)

 

 

Kway + AMML(s) Version1
Kway + AMML(s) Version2

s = 10

s = 5

s = 1

s = 2

(a) Matrix Nh2D1 .

4 8 16
0

2

4

6

8

10

12

14

NUMBER OF PARTITIONS

(R
E

D
U

N
D

A
N

T
 F

L
O

P
S

) 
/ (

s 
* 

N
E

E
D

E
D

 F
L

O
P

S
)

 

 

Kway CA−ILU0(s) Version1
Kway CA−ILU0(s) Version2
Kway

s = 1

s = 2

s = 5

s = 10

(b) Matrix Utm3060.

4 8 16 32 64
0

10

20

30

40

50

60

NUMBER OF PARTITIONS

(R
E

D
U

N
D

A
N

T
 F

L
O

P
S

) 
/ (

s 
* 

N
E

E
D

E
D

 F
L

O
P

S
)

 

 

Kway + AMML(s) Version1
Kway + AMML(s) Version2
Kway

s = 1

s = 5

s = 2

(c) Matrix Bo1 .

8 16 32 64 128
0

20

40

60

80

100

120

NUMBER OF PARTITIONS

(R
E

D
U

N
D

A
N

T
 F

L
O

P
S

) 
/ (

s 
* 

N
E

E
D

E
D

 F
L

O
P

S
)

 

 

Kway + AMML(s) Version1
Kway + AMML(s) Version2
Kway

s = 1

s = 5

s = 2

(d) Matrix Bo2 .

4 8 16
0

2

4

6

8

10

12

14

NUMBER OF PARTITIONS

(R
E

D
U

N
D

A
N

T
 F

L
O

P
S

) 
/ (

s 
* 

N
E

E
D

E
D

 F
L

O
P

S
)

s = 5

 

Kway + AMML(s) Version1
Kway + AMML(s) Version2
Kway

s = 10

s = 2

s = 1

s = 5

(e) Matrix Bcsstk18.

4 8 16 32 64 128 256
0

1

2

3

4

5

6

7

8

9

10

NUMBER OF PARTITIONS

(R
E

D
U

N
D

A
N

T
 F

L
O

P
S

) 
/ (

s 
* 

N
E

E
D

E
D

 F
L

O
P

S
)

 

 

Kway + AMML(s) Version1
Kway + AMML(s) Version2
Kway

s = 2

s = 1

s = 5

(f) Matrix Sky2D.

Fig. 6. The ratio of redundant flops to needed flops in the ILU0 matrix powers kernel as a
function of the number of partitions and steps s. The matrices are either reordered using k-way
partitioning (Kway), or k-way partitioning followed by Amml(s) based on Algorithm 3 (Version 1)
or Algorithm 4 (Version 2). The number of partitions varies from 4, 8, 16, 32, 64, 128 to 256
depending on the size of the matrix. The number of steps s is either 1 (red), 2 (blue), 5 (green), or
10 (magenta).
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Fig. 7. The ratio of redundant data to needed data in the ILU0 matrix powers kernel as a
function of the number of partitions and steps s. The matrices are either reordered using k-way
partitioning (Kway), or k-way partitioning followed by Amml(s) based on Algorithm 3 (Version 1)
or Algorithm 4 (Version 2). The number of partitions varies from 4, 8, 16, 32, 64, 128 to 256
depending on the size of the matrix. The number of steps s is either 1 (red), 2 (blue), 5 (green), or
10 (magenta).



C240 LAURA GRIGORI AND SOPHIE MOUFAWAD

Bcsstk18 (Figures 6(e) and 7(e)), the two versions have almost the same performance.
It is clear that as s or the number of partitions increase, the redundant flops and

ghost memory increase. Thus, one has to choose the appropriate number of partitions
and steps s with respect to the problem at hand, to obtain the best performance. In
other words, one has to find a balance between the redundant flops and communication
(number of messages) while taking into consideration the available memory. The
choice of the number of partitions P is related to the concept of surface-to-volume
ratio discussed in [24] which is an indicator of data dependencies. In other words, the
ratio of a subdomain’s vertices with edge-cuts to those without edge-cuts should be
relatively small. On the other hand, values of s should be chosen so that the processor
communicate at most with his neighbors and some factor of his neighbor’s neighbors.
And the smaller the subdomains are (large P ), the smaller s should be and vice versa.

For example, for matrix Nh2D1 of size 40, 000× 40, 000, which corresponds to a
graph of size 200 × 200, for p = 256 with subdomain of size 12 × 13 the surface-
to-volume ratio is around 0.3, which is not very small. Thus for s = 1 or s =
2 the redundant flops computed are 1 or 2 times the flops needed to perform the
multiplication sequentially, which is reasonable (Figure 6(a)). But for s = 5 or s = 10
the ratio is prohibitive (6 and 18 times). Similarly, for s = 10 with p = 16 (50 × 50
subdomains), p = 32 (35 × 36 subdomains), and p = 64 (25 × 25 subdomains) the
redundant flops are 1, 2, and 4 times the sequential version, which is reasonable.
Note that an increase in the computed redundant flops is equivalent to an increase in
the needed memory and the volume of communicated data after computing s basis
vectors. Thus, small values of s might be used in practice.

Table 3

Messages and number of words received for performing s = 1 multiplication per iteration, on
one subdomain αj of a 2D five-point stencil matrix, for GMRES and CA-ILU0 preconditioned
GMRES.

GMRES CA-ILU0 GMRES

y = Ax y = (LU)−1Ax

Each Receives one message from each of its Receives one message from each of its

processor four neighbors of size w = ( n
P
)
1
2 words four neighbors of size w = ( n

P
)
1
2 words

j Receives one message from four other

processors each of size four words

In the case of s = 1, the CA-ILU0 preconditioner can be used with the classi-
cal preconditioned GMRES where the parallelized multiplication of the form y1 =
(LU)−1Ay0 is replaced by the s = 1 version of the ILU0 matrix powers kernel. At the
beginning of the first iteration, each processor fetches its corresponding parts of A and
y0 and then factorizes its part of A and computes its part of y1. Then, before every
iteration of GMRES, one communication phase is needed when y0 is fetched. Table 3
shows the messages and number of words received by processor j on domain αj of a 2D
five-point stencil, for computing y = Ax in GMRES and y = (LU)−1Ax in CA-ILU0
preconditioned GMRES, where the communication pattern in both is similar. We
did not compare CA-ILU0 preconditioned GMRES to ILU0 preconditioned GMRES
since parallelizing the backward and forward substitution can be implemented by us-
ing different approaches. Consider, for example, that the implementation uses nested
dissection. For each of the log(P ) levels of nested dissection, there is need for one
communication phase between processors, in both forward and backward substitution.
Thus, at least log(P ) messages are sent of different sizes. In summary, the communi-
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cation cost of parallelizing the y = (LU)−1Ax in ILU0 preconditioned GMRES is at
least 2 log(p)+4 messages in 2 log(P )+1 communication phases, whereas in CA-ILU0
GMRES, it is of the order of eight messages in one communication phase before the
computations. Thus the communication is reduced by a factor of O(2 log(P )). In
general, for s > 1, the CA-ILU0 preconditioner reduces communication by at least a
factor of O(2s log(P ) + s).

6.3. Comparison between the CA-ILU0 and block Jacobi precondi-
tioners. The block Jacobi preconditioner is one of the simplest parallel precondi-
tioners which avoids communication when performing one multiplication of the form
y = M−1Ax, where

M =

⎛
⎜⎜⎜⎝
A1,1 0 . . . 0
0 A2,2 0 0

0 0
. . . 0

0 . . . 0 AP,P

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
L1,1U1,1 0 . . . 0

0 L2,2U2,2 0 0

0 0
. . . 0

0 . . . 0 LP,PUP,P

⎞
⎟⎟⎟⎠ = LU

is constructed from the diagonal blocks of A. The block Jacobi preconditioner starts
by partitioning the graph of A into P well-balanced partitions π = {Ω1,Ω2, . . . ,ΩP }.
Then each processor i is assigned the set of vertices α

(i)
0 = V (Ωi) and has to compute

y(α
(i)
0 ). Processor i fetches A(α

(i)
0 , :) and x(δ

(i)
1 ), where δ

(i)
1 = Adj(G(A), α

(i)
0 ). Then,

processor i factorizes Ai,i = A(α
(i)
0 , α

(i)
0 ) into Li,i and Ui,i matrices by using complete

or incomplete LU factorization. Since the diagonal blocks of M are independent, it
is possible to perform the LU factorization, and the backward and forward solves in
parallel without communication. Thus our CA-ILU0 preconditioner is very similar to
block Jacobi in the communication pattern for s = 1 only. But for s > 1, the block
Jacobi preconditioner can’t be used with the ILU matrix powers kernel since the

reachable sets β
(i)
j = R(G(U), α

(i)
j−1), γ

(i)
j = R(G(L), β

(i)
j ), and δ

(i)
j = Adj(G(A), γ

(i)
j )

can grow in size rapidly where 1 < j ≤ s.
We compare the convergence behavior of the block Jacobi preconditioner, with k-

way reordering and LU or ILU0 factorization, to the CA-ILU0 preconditioner, where
the input matrix A is reordered using k-way plus Amml(1) reordering. Table 4 shows
the ratio of the norm of the error (Err) between the real solution and the approximate
solution obtained by the different preconditioned GMRES versions for tol = 10−8

(‖x − xapp‖2/‖x‖2), the number of iterations (Iter) needed till convergence, the cor-
rectness (LUErr) of the different factorizations (‖A−LU‖2/‖A‖2), and the introduced
fill-in ratio (Fill) of the block Jacobi–LU ((nnz(L)+nnz(U))/nnz(A); nnz is the num-
ber of nonzero entries). The input matrix is partitioned into 16, 32, 128, 256, 512,
1024, or 2048 parts (Pa) using k-way.

For all the matrices the CA-ILU0 preconditioner has better convergence than
block Jacobi–ILU0. However, the block Jacobi–LU preconditioner has the best con-
vergence when the number of partitions is relatively small, since it is then very similar
to a complete LU preconditioner. But when the fill-in ratio decreases as the number of
partitions increases, the convergence behavior of CA-ILU0 and block Jacobi–LU pre-
conditioner become very similar. For example, the CA-ILU0 preconditioner converges
faster for the Bo1 matrix with 32 partitions, the Bo2 matrix with 256 partitions,
Nh2D1 matrix with 1024 partitions, and Sky3D with 512 and 1024 partitions.

7. Conclusion and future work. In this paper, we have introduced CA-ILU0,
a communication avoiding ILU0 left-preconditioner. First, we have adapted the ma-
trix powers kernel to the ILU preconditioned system to obtain the ILU matrix powers
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Table 4

Comparison between the convergence of CA-ILU0 and a block Jacobi preconditioner.

CA-ILU0 Block Jacobi–ILU0 Block Jacobi–LU
Pa Iter Err LUErr Iter Err LUErr Iter Err LUErr Fill

Bo1
16 51 2E-8 7E-10 62 7E-8 1E-9 49 5E-8 1E-9 6.0
32 52 4E-8 7E-10 67 8E-8 1E-9 57 5E-8 1E-9 3.6

Bo2

32 144 6E-7 8E-10 151 4E-7 7E-10 110 13E-7 6E-10 15.1
128 156 4E-7 1E-9 170 5E-7 4E-9 144 4E-7 4E-9 5.7
256 154 8E-7 1E-9 197 1E-6 4E-9 176 6E-7 4E-9 3.4

Nh2D1

32 173 8E-7 9E-6 193 1E-6 1E-5 116 4E-7 1E-5 14.1
128 179 1E-6 8E-6 196 1E-6 1E-5 139 6E-7 1E-5 7.0
512 184 1E-6 1E-5 221 1E-6 1E-5 181 9E-7 1E-5 3.6
1024 191 1E-6 1E-5 236 2E-6 1E-5 217 1E-6 1E-5 2.5

Nh2D2

32 301 5E-6 2E-6 322 3E-6 2E-6 154 1E-6 2E-6 29.3
128 308 5E-6 2E-6 339 6E-6 2E-6 201 9E-7 2E-6 13.7
1024 314 8E-6 2E-6 369 8E-6 2E-6 292 2E-6 2E-6 5.0
2048 322 4E-6 2E-6 372 5E-6 2E-6 315 3E-6 2E-6 3.6

Sky3D

128 594 9E-5 1E-3 643 1E-4 1E-3 526 1E-4 1E-3 15.5
256 576 1E-4 1E-3 674 2E-4 1E-3 569 1E-4 1E-3 9.5
512 563 8E-5 1E-3 723 3E-4 1E-3 627 1E-4 1E-3 5.9
1024 597 9E-5 1E-3 775 2E-4 1E-3 729 3E-4 1E-3 3.7

kernel. Then we have introduced Amml, a reordering of the matrix A which is ap-
plied once the input matrix is partitioned using k-way graph partitioning with edge
separators or nested dissection with vertex separators. Amml reorders the matrix A
such that s steps of a Krylov subspace solver based on multiplications of the form
yi = (LU)−1Ayi−1 can be performed with no communication. We have shown that the
reordering does not much affect the convergence of the ILU0 preconditioned GMRES,
once the matrix A is reordered using k-way partitioning. Then, we have shown that
the complexity of the CA-ILU0(s) reordering is linear with respect to the number of
vertices of the largest subdomain. We have also shown that the memory requirements
and redundant flops are limited by the same big O function in both CA-GMRES and
CA-ILU0 preconditioned GMRES. For all these reasons, we expect that our parallel
CA-ILU0 preconditioner will be faster in practice than implementations of ILU0 pre-
conditioners based on other reordering strategies. Yet to obtain good performance,
the number of partitions or processors P and the number of steps s have to be cho-
sen carefully to reduce the ghost memory requirements and redundant flops. Hence,
there should be a balance between the avoided communication and the introduced
redundant flops when choosing s and P .

The Amml(s) reordering allows us to both compute and apply the preconditioner
in parallel with no communication, once some ghost data is stored redundantly on
each processor. CA-ILU0 can be used with a classic Krylov subspace solver, in which
case applying the left preconditioner at each iteration can be done in parallel with
no communication. It can also be used with s-step methods, where the ILU0 matrix
powers kernel allows the avoidance of communication during s iterations of the Krylov
subspace solver. In addition, the CA-ILU0 preconditioner can be used for ILU0 right
preconditioned and split preconditioned systems by slightly modifying the ILU matrix
powers kernel and the Amml(s) reordering.

We have compared the convergence of CA-ILU0 preconditioned GMRES for s = 1
with respect to the block Jacobi preconditioned GMRES. The CA-ILU0 precondi-
tioner has a slightly better convergence than block Jacobi. In practice, block Jacobi
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might outperform the CA-ILU0 preconditioner, since it is naturally parallelizable
without any need for performing redundant computations. However, our CA-ILU0
preconditioner is a parallel version of the ILU0 preconditioner that avoids commu-
nication. Thus the output L and U are identical to those obtained from the ILU0
factorization of the Amml(1) reordered matrix A. Hence all the numerical proper-
ties of the ILU0 preconditioner, which do not depend on the ordering of the input
matrix, are true for the CA-ILU0 preconditioner. Moreover, for s > 1 block Jacobi
requires communication when used with s-step methods. On the other hand, the CA-
ILU0 preconditioner with Amml(s) reordering is one of the very few preconditioners
that works with CA-GMRES, and this might render the communication avoiding and
s-step methods more usable.

Our future work will focus on implementing the CA-ILU0 preconditioner in a
parallel environment to evaluate the improvements with respect to existing imple-
mentations of ILU0. It will also focus on extending the method to more general and
powerful incomplete LU factorizations such as ILU(k). To obtain a communication
avoiding ILU(k) preconditioner (CA-ILUk), we will have to devise a new reordering of
the matrix A that will reduce the data dependencies when solving the backward and
forward substitution of the L and U matrices obtained from the ILU(k) factorization.

Appendix A. GMRES convergence for different reorderings. The ma-
trices in Table 5 arise from the boundary value problem of the convection-diffusion
equations −Δu − 2P ∂u

∂x + 2P ∂u
∂y = g on Ω = (0, 1)× (0, 1), used in [5, 11] for testing

preconditioners, where P > 0 and the right-hand side g and the boundary conditions

are determined by the solution u(x, y) = e2P (1−x)−1
e2P −1 + e2Py−1

e2P −1 .

Table 5

The test matrices.

Matrix Size Nonzeros Symmetric 2D/3D Problem
Cd20p1 3243 22273 No 2D Convection diffusion P1 FE
Cd50p1 3638 25008 No 2D Convection diffusion P1 FE
Cd100p1 3946 27142 No 2D Convection diffusion P1 FE
Cd500p1 5993 41225 No 2D Convection diffusion P1 FE
Cd20p2 12905 146807 No 2D Convection diffusion P2 FE
Cd100p2 14606 166226 No 2D Convection diffusion P2 FE
Cd400p2 17599 200293 No 2D Convection diffusion P2 FE

The matrices were generated by Pierre-Henri Tournier using FreeFem++ [22] with
finite element P1 and P2 schemes with an adaptive mesh for P = 20, 50, 100, 400, 500.
Note that the system is scaled.

In Table 6, we show the convergence (Iter) of the ILU0 preconditioned GM-
RES, where the matrices introduced in Table 5 are reordered differently for a dif-
ferent number of partitions (Pa). Note that NO, RCM, ND, Amml(s) V1, Amml(s)
V2 denote natural ordering, reverse Cuthill–McKee reordering, nested dissection, k-
way+Amml(s) reordering (Algorithm 3), and k-way+Amml(s) reordering (Algorithm
4), respectively.
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Table 6

GMRES convergence for different reorderings with respect to number of partitions for the initial
guess y0 = 0 and tol = 10−8.

NO RCM ND Kway Amml(1)V1 Amml(5)V1 Amml(1)V2 Amml(5)V2
Pa Iter Err Iter Err Iter Err Iter Err Iter Err Iter Err Iter Err Iter Err
2 64 2E-7 50 4E-8 51 3E-8 52 1E-7 50 3E-8 54 1E-7
4 64 7E-8 50 3E-8 52 3E-8 53 3E-8 53 5E-8 58 6E-8

Watt2
8 50 3E-8 47 3E-8 65 4E-8 50 2E-8 51 8E-8 54 1E-7 56 2E-8 57 8E-8
16 65 1E-7 51 3E-8 54 3E-8 54 1E-8 57 8E-8 58 8E-8
32 65 1E-7 51 3E-8 52 1E-7 52 1E-7 56 1E-7 56 1E-7
64 63 5E-8 54 1E-7 53 9E-8 52 3E-7 57 1E-7 57 1E-7

2 94 1E-7 59 3E-8 60 4E-8 83 4E-8 60 4E-8 83 8E-8
4 95 9E-8 60 2E-8 65 4E-8 85 1E-7 67 3E-8 89 1E-7

CD20P1
8 59 2E-8 62 4E-8 91 1E-7 59 3E-8 72 9E-8 97 1E-7 73 8E-8 98 1E-7
16 94 1E-7 64 7E-8 76 9E-8 92 1E-7 76 4E-8 92 9E-8
32 91 1E-7 63 6E-8 83 6E-8 89 1E-7 85 5E-8 93 1E-7
64 89 5E-8 63 4E-8 87 5E-8 90 5E-8 90 5E-8 92 5E-8

2 96 1E-7 64 2E-8 66 5E-8 79 1E-7 67 3E-8 79 7E-8
4 98 7E-8 64 5E-8 69 5E-8 79 1E-7 71 4E-8 83 1E-7

CD50P1
8 64 4E-8 66 1E-7 96 1E-7 64 3E-8 71 7E-8 94 8E-8 77 1E-7 98 1E-7
16 94 9E-8 71 2E-8 81 5E-8 98 1E-7 83 8E-8 97 7E-8
32 96 1E-7 72 4E-8 87 7E-8 98 1E-7 92 5E-8 94 1E-7
64 93 7E-8 71 5E-8 87 1E-7 95 1E-7 94 1E-7 95 1E-7

2 102 1E-7 70 1E-7 68 8E-8 78 1E-7 69 7E-8 80 1E-7
4 97 2E-7 71 8E-8 75 1E-7 96 1E-7 74 1E-7 96 1E-7

CD100P1
8 69 8E-8 71 3E-8 100 1E-7 71 8E-8 81 1E-7 107 2E-7 82 1E-7 101 1E-7
16 105 1E-7 77 7E-8 89 6E-8 110 1E-7 89 8E-8 105 1E-7
32 97 1E-7 73 4E-8 92 5E-8 106 1E-7 94 9E-8 105 1E-7
64 96 7E-8 76 6E-8 96 7E-8 98 1E-7 97 7E-8 103 1E-7

2 186 4E-7 93 1E-7 94 1E-7 98 1E-7 94 1E-7 99 1E-7
4 176 7E-7 93 1E-7 98 1E-7 113 2E-7 98 2E-7 119 2E-7

CD500P1
8 92 1E-7 118 1E-7 174 7E-7 93 1E-7 102 1E-7 117 1E-7 105 1E-7 115 2E-7
16 184 2E-7 94 1E-7 107 1E-7 167 1E-7 108 1E-7 180 1E-7
32 190 6E-7 99 1E-7 139 1E-7 188 1E-7 144 1E-7 190 1E-7
64 198 1E-7 102 1E-7 167 2E-7 177 1E-7 161 1E-7 178 1E-7

2 162 3E-7 147 2E-7 151 2E-7 158 2E-7 151 2E-7 154 3E-7
4 163 3E-7 143 2E-7 147 2E-7 156 2E-7 147 2E-7 153 3E-7

CD20P2
8 146 1E-7 155 2E-7 160 3E-7 142 2E-7 148 2E-7 167 3E-7 148 2E-7 161 2E-7
16 158 3E-7 150 2E-7 158 2E-7 170 3E-7 154 2E-7 151 2E-7
32 161 3E-7 150 3E-7 156 2E-7 164 3E-7 152 2E-7 154 3E-7
64 162 3E-7 149 2E-7 163 2E-7 169 2E-7 156 3E-7 159 3E-7

2 177 2E-7 158 2E-7 159 2E-7 159 2E-7 159 3E-7 160 3E-7
4 177 2E-7 152 2E-7 155 1E-7 155 1E-7 159 3E-7 154 3E-7

CD100P2
8 157 2E-7 170 3E-7 183 2E-7 156 2E-7 164 4E-7 178 2E-7 163 2E-7 162 3E-7
16 175 4E-7 153 3E-7 165 3E-7 171 2E-7 163 3E-7 163 3E-7
32 167 3E-7 155 3E-7 164 2E-7 182 2E-7 158 3E-7 162 2E-7
64 178 3E-7 162 3E-7 176 3E-7 184 3E-7 176 3E-7 169 2E-7

2 369 2E-7 277 4E-7 278 4E-7 276 4E-7 278 4E-7 280 4E-7
4 339 3E-7 278 5E-7 279 5E-7 302 3E-7 280 4E-7 282 5E-7

CD400P2
8 278 4E-7 244 2E-7 354 3E-7 275 4E-7 300 5E-7 305 2E-7 301 5E-7 304 5E-7
16 391 2E-7 280 4E-7 308 4E-7 313 2E-7 313 3E-7 293 2E-7
32 353 2E-7 287 4E-7 317 4E-7 327 3E-7 312 5E-7 363 4E-7
64 335 3E-7 279 2E-7 316 3E-7 314 5E-7 289 4E-7 330 3E-7
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