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Motivation
Algorithms spend their time
•  in doing useful computations (flops)
•  or in moving data

• between different levels of the memory hierarchy
• and between processors
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CPU
registers



Page 3

Motivation
• Time to move data >> time per flop
   Running time =
      #flops               * time_per_flop +
      #words_moved / bandwidth +
      #messages      * latency

• Gap steadily and exponentially growing over time
 “There is an old network saying: Bandwidth problems can be cured with money.

Latency problems are harder because the speed of light is fixed -- you can’t
bribe God.” Anonymous

  “We are going to hit the memory wall, unless something basic changes”
[W. Wulf, S. McKee, 95]

• And we are also going to hit the “interconnect network wall”

Improvements per year
DRAM Network

23%
5% 15%

26%



Page 4

Motivation

• The communication problem needs to be taken into account
higher in the computing stack

• A paradigm shift in the way the numerical algorithms are
devised is required

• Communication avoiding algorithms - a novel perspective
for numerical linear algebra
• Minimize volume of communication
• Minimize number of messages
• Minimize over multiple levels of memory/parallelism
• Allow redundant computations (preferably as a low order term)
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Plan
• Motivation

• Selected past work on reducing communication

• Communication complexity of linear algebra operations

• Communication avoiding for dense linear algebra
• LU, LU_PRRP, QR, Rank Revealing QR factorizations

• Often not in ScaLAPACK or LAPACK

• Algorithms for multicore processors

• Communication avoiding for sparse linear algebra
• Sparse Cholesky factorization

• Iterative methods and preconditioning

• Conclusions
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Ghost data on P0

Selected past work on reducing communication

• Only few examples shown, many references available

A. Tuning
• Overlap communication and computation, at most a factor of 2 speedup

B. Ghosting
• Standard approach in explicit methods
• Store redundantly data from neighboring processors for future computations

Example of a parabolic PDE
        ut = α Δu
with a finite difference,
the solution at a grid point is:
   ui,j+1 = u(xi, tj+1)
           = f(ui-1,j, uij, ui+1,j ) t0

t1

t2

t3

t4

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

u13

Initial data on P0
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Selected past work on reducing communication

C. Same operation, different schedule of the computation

Block algorithms for dense linear algebra
• Barron and Swinnerton-Dyer, 1960

• LU factorization used to solve a system with 31 equations - first
subroutine written for EDSAC 2

• Block LU factorization used to solve a system with 100 equations using
an auxiliary magnetic-tape

• The basis of the algorithm used in LAPACK

     Cache oblivious algorithms for dense linear algebra
• recursive Cholesky, LU, QR (Gustavson ‘97, Toledo ‘97, Elmroth and

Gustavson ‘98, Frens and Wise ‘03, Gustavson ‘97, Ahmed and Pingali ‘00)
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Selected past work on reducing communication

D. Same algebraic framework, different numerical algorithm

  More opportunities for reducing communication, may affect stability

Dense LU-like factorization (Barron and Swinnerton-Dyer, 60)
• LU-like factorization based on pairwise pivoting and its block version
      PA = L1 L2 …Ln U
• With small modifications, minimizes communication between two levels of

fast-slow memory
• Stable for small matrices, unstable for nowadays matrices
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Communication Complexity of
Dense Linear Algebra

• Matrix multiply,  using 2n3 flops (sequential or parallel)
• Hong-Kung (1981), Irony/Tishkin/Toledo (2004)
• Lower bound on Bandwidth = Ω (#flops / M1/2 )
• Lower bound on Latency     = Ω (#flops / M3/2 )
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• Same lower bounds apply to LU using reduction
• Demmel, LG, Hoemmen, Langou 2008

• And to almost all direct linear algebra [Ballard, Demmel, Holtz,
Schwartz, 09]
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Sequential algorithms and communication bounds

RRQR

QR

LU

Cholesky

Minimizing
#words and #messages

Minimizing
 #words (not #messages)

Algorithm

•  Only several references shown for block algorithms (LAPACK),
   cache-oblivious algorithms and communication avoiding algorithms

[Gustavson, 97]
[Ahmed, Pingali, 00]

[LG, Demmel, Xiang, 08]
[Khabou, Demmel, LG, Gu, 12]

uses tournament pivoting
[Frens, Wise, 03], 3x flops

 [Demmel, LG, Hoemmen, Langou, 08]
uses different representation of Q

[Branescu, Demmel, LG, Gu, Xiang 11]
uses tournament pivoting, 3x flops

LAPACK

LAPACK (few cases)
[Toledo,97], [Gustavson, 97]

both use partial pivoting

LAPACK (few cases)
[Elmroth,Gustavson,98]

?
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2D Parallel algorithms and communication bounds

[Branescu, Demmel, LG, Gu, Xiang 11]
uses tournament pivoting, 3x flops

 ?RRQR

 [Demmel, LG, Hoemmen, Langou, 08]
uses different representation of Q

ScaLAPACKQR

 [LG, Demmel, Xiang, 08]
[Khabou, Demmel, LG, Gu, 12]

uses tournament pivoting

ScaLAPACK
uses partial pivoting

LU

ScaLAPACKScaLAPACKCholesky

Minimizing
#words and #messages

Minimizing
 #words (not #messages)

Algorithm

•  Only several references shown, block algorithms (ScaLAPACK) and
   communication avoiding algorithms

•  If memory per processor = n2 / P, the lower bounds become
    #words_moved ≥ Ω ( n2 / P1/2 ),    #messages ≥ Ω ( P1/2 )
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Scalability of communication optimal algorithms

• 2D communication optimal algorithms, M = 3⋅n2/P

   (matrix distributed over a P1/2-by- P1/2 grid of processors)
TP = O ( n3 ) γ + Ω ( n2 / P1/2 ) β + Ω ( P1/2 ) α
• Isoefficiency:    n3 ∝ P1.5  and  n2 ∝ P
• For GEPP, n3 ∝ P2.25 [Grama et al, 93]

• 3D communication optimal algorithms, M = 3⋅P1/3(n2/P)

    (matrix distributed over a P1/3-by- P1/3-by- P1/3 grid of processors)
 TP = O ( n3 ) γ + Ω ( n2 / P2/3 ) β + Ω ( log(P) ) α
• Isoefficiency:     n3 ∝ P  and  n2 ∝ P2/3

• 2.5D algorithms with M = 3⋅c⋅(n2/P), and 3D algorithms exist for matrix
multiplication and LU factorization
• References: Dekel et al 81, Agarwal et al 90, 95, Johnsson 93, McColl and Tiskin 99,

Irony and Toledo 02,  Solomonik and Demmel 2011
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LU factorization (as in ScaLAPACK pdgetrf)
LU factorization on a P = Pr x Pc grid of processors
For ib = 1 to n-1 step b
     A(ib)  = A(ib:n, ib:n)

 (1) Compute panel factorization
        - find pivot in each column, swap rows

 (2) Apply all row permutations
       - broadcast pivot information along the rows
        - swap rows at left and right

(3) Compute block row of U
      - broadcast right diagonal block of L of current panel

 (4) Update trailing matrix
       - broadcast right block column of L
        - broadcast down block row of U

L

U

A(ib)

L

U

A(ib+b)

L

U

A(ib)

L

U

A(ib)

)log( 2 rPnO

)log/( 2 cPbnO

))log(log/( 22 rc PPbnO +

))log(log/( 22 rc PPbnO +

#messages
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TSQR: QR factorization of a tall skinny matrix
using Householder transformations

W =
W0
W1
W2
W3

R00
R10
R20
R30

R01

R11

R02

•  QR decomposition of m x b matrix W,  m >> b
• P processors, block row layout

•  Classic Parallel Algorithm
• Compute Householder vector for each column
• Number of messages ∝ b log P

• Communication Avoiding Algorithm
• Reduction operation, with QR as operator
• Number of messages ∝ log P

J. Demmel, LG, M. Hoemmen, J. Langou, 08
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Parallel TSQR

QR

 R00V00`W0

R10V10W1

R20V20W2

R30V30W3

R00
R10

V01 R01

R20
R30

V11 R11

P0

P1

P2

P3

V02 R02R01
R11

QR

QR

QR

QR

QR

QR

References: Golub, Plemmons, Sameh 88, Pothen, Raghavan, 89, Da Cunha, 
                    Becker, Patterson, 02 
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CAQR for general matrices

•  Use TSQR for panel factorizations
•  Update the trailing matrix - triggered by the reduction tree used
for the panel factorization
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Q is represented implicitly as a product
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Flexibility of TSQR and CAQR algorithms

W =
W0
W1
W2
W3

R00
R10
R20
R30

R01

R11

R02Parallel:

W =
W0
W1
W2
W3

R01 R02

R00

R03
Sequential:

W =
W0
W1
W2
W3

R00
R01

R01

R11
R02

R11

R03

Dual Core:

Reduction tree will depend on the underlying architecture,
could be chosen dynamically

Source slide: J. Demmel
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Performance of TSQR vs Sca/LAPACK

• Parallel
• Intel Xeon (two socket, quad core machine), 2010

• Up to 5.3x speedup (8 cores, 105 x 200)
• Pentium III cluster, Dolphin Interconnect, MPICH, 2008

• Up to 6.7x speedup (16 procs, 100K x 200)
• BlueGene/L, 2008

• Up to 4x speedup (32 procs, 1M x 50)
• QR computed locally using recursive algorithm (Elmroth-Gustavson)

– enabled by TSQR

• See [Demmel, LG, Hoemmen, Langou, SISC 12], [Donfack, LG, IPDPS
10].
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Modeled Speedups of CAQR vs ScaLAPACK

Petascale
      up to 22.9x

IBM Power 5
      up to 9.7x

“Grid”
      up to 11x

 Petascale machine with 8192 procs, each at 500 GFlops/s, a bandwidth of 4 GB/s.
./102,10,102 9512 wordsss !!! "=="= #$%
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Obvious generalization of TSQR to LU

• Block parallel pivoting:
• uses a binary tree and is optimal in the parallel case

• Block pairwise pivoting:
• uses a flat tree and is optimal in the sequential case
• used in PLASMA for multicore architectures and FLAME for out-of-core algorithms and

for multicore architectures

W =
W0
W1
W2
W3

U00
U10
U20
U30

U01

U11

U02

W=
W0
W1
W2
W3

U01 U02

U00

U03
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Stability of the LU factorization
• The backward stability of the LU factorization of a matrix A of size n-by-n

      depends on the growth factor

                                              where aij
k are the values at the k-th step.

•  gW ≤ 2n-1 , but in practice it is on the order of n2/3 -- n1/2

• Two reasons considered to be important for the average case stability [Trefethen and
Schreiber, 90] :

     - the multipliers in L are small,

     - the correction introduced at each elimination step is of rank 1.

! 

gW =
maxi, j ,k aij

k

maxi, j aij

! 

L " U
#
$ (1+ 2(n2 % n)gw ) A #
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Block parallel pivoting

• Unstable for large number of processors P

• When P=number rows, it corresponds to parallel pivoting, known to be unstable
(Trefethen and Schreiber, 90)
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Block pairwise pivoting

• Results shown for random matrices
• Will become unstable for large matrices W=

W0
W1
W2
W3

U01 U02

U00

U03
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Tournament pivoting - the overall idea

• At each iteration of a block algorithm

                                   , where

• Preprocess W to find at low communication cost good pivots for the LU
factorization of W, return a permutation matrix P.

• Permute the pivots to top, ie compute PA.
• Compute LU with no pivoting of W, update trailing matrix.
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Tournament pivoting

time

P0

P1

P2

P3
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Growth factor for binary tree based CALU

• Random matrices from a normal distribution
• Same behaviour for all matrices in our test, and  |L| <= 4.2
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Stability of CALU (experimental results)

Summer School Lecture 4 27

• Results show ||PA-LU||/||A||, normwise and componentwise backward
errors, for random matrices and special ones

• See [LG, Demmel, Xiang, 2010] for details
• BCALU denotes binary tree based CALU and FCALU denotes flat tree based CALU
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Our “proof of stability” for CALU

• CALU as stable as GEPP in following sense:
   CALU process on a matrix A is equivalent to GEPP process on a larger

matrix G whose entries are blocks of A and blocks of zeros.

• Example of one step of tournament pivoting:

• Proof possible by using original rows of A during tournament pivoting (not the
computed rows of U).
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Growth factor of different pivoting strategies
• Matrix of size m-by-n, reduction tree of height H=log(P).
• (CA)LU_PRRP select pivots using strong rank revealing QR (A. Khabou, J.

Demmel, LG, M. Gu, 2012)
• “In practice” means observed/expected/conjectured values.

• For a matrix of size 107-by-107 (using petabytes of memory)
n1/2 = 103.5

• When will Linpack have to use the QR factorization for solving linear systems ?

Better bounds

In practice

Upper bound

(n/b)2/3 -- (n/b)1/2(n/b)2/3 -- (n/b)1/2n2/3 -- n1/2n2/3 -- n1/2

(1+2b)(n/b)(1+2b)(n/b)log(P)2n-12n(log(P)+1)-1

LU_PRRPCALU_PRRPGEPPCALU
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 Performance vs ScaLAPACK

• Parallel TSLU (LU on tall-skinny matrix)
• IBM Power 5

• Up to 4.37x faster (16 procs, 1M x 150)
• Cray XT4

• Up to 5.52x faster (8 procs, 1M x 150)

• Parallel CALU (LU on general matrices)
• Intel Xeon (two socket, quad core)

• Up to 2.3x faster (8 cores, 10^6 x 500)
• IBM Power 5

• Up to 2.29x faster (64 procs, 1000 x 1000)
• Cray XT4

• Up to 1.81x faster (64 procs, 1000 x 1000)

• Details in SC08 (LG, Demmel, Xiang), IPDPS’10 (S. Donfack, LG).



Page 31

Scheduling CALU’s Task Dependency Graph
• Static scheduling

+   Good locality of data              -    Ignores noise

• Dynamic scheduling
+   Keeps cores busy                  -    Poor usage of data locality
                                                    -    Can have large dequeue overhead
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Lightweight scheduling

• A self-adaptive strategy to provide
• A good trade-off between load balance, data locality, and dequeue overhead.
• Performance consistency
• Shown to be efficient for regular mesh computation [B. Gropp and V. Kale]

S. Donfack, LG, B. Gropp, V. Kale, 2012

Combined static/dynamic scheduling:
• A thread executes in priority its

statically assigned tasks
• When no task ready, it picks a

ready task from the dynamic part
• The size of the dynamic part is

guided by a performance model
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Impact of data layout on performance
Data layouts:
•  CM   : Column major order
•  BCL  : Each thread stores its
           data using CM
•  2l-BL : Each thread stores its
           data in blocks

Four socket, twelve cores machine based on AMD Opteron processor (U. of Tennessee).
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Best performance of CALU on multicore architectures

•   Reported performance for PLASMA uses LU with block pairwise pivoting.

Static scheduling

time

Static + 10% dynamic scheduling

100% dynamic scheduling
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Plan
• Motivation

• Selected past work on reducing communication

• Communication complexity of linear algebra operations

• Communication avoiding for dense linear algebra
• LU, LU_PRRP, QR, Rank Revealing QR factorizations

• Often not in ScaLAPACK or LAPACK

• Algorithms for multicore processors

• Communication avoiding for sparse linear algebra
• Sparse Cholesky factorization

• Iterative methods and preconditioning

• Conclusions
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Sparse Cholesky factorization for 2D/3D regular grids
• Matrix A from a finite difference operator on a regular grid of dimension
     s≥2 with ks nodes.

• Its Cholesky L factor contains a dense
     lower triangular matrix of size ks-1×ks-1.

     # words_moved ≥ Ω((k3(s-1)/(2P)) /Μ1/2)
     # messages ≥ Ω((k 3(s-1)/(2P)) /Μ3/2)

• PSPASES with an optimal layout minimizes communication
• Uses nested dissection to reorder the matrix
• Distributes the matrix using the subtree-to-subcube algorithm

• Sequential multifrontal algorithm minimizes communication
• Every dense multifrontal matrix is factored using an optimal dense Cholesky

• But in general for sparse matrix operations, the known lower bounds on
communication can become vacuous
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Communication in Krylov subspace methods

   Iterative methods to solve Ax =b

• Find a solution xk from x0 + Kk (A, r0), where Kk (A, r0) = span {r0, A r0, …, Ak-1 r0}
such that the Petrov-Galerkin condition b - Axk ⊥ Lk is satisfied.

• For numerical stability, an orthonormal basis {q1, q2,…, qk} for Kk (A, r0) is
computed (CG, GMRES, BiCGstab,…)

• Each iteration requires
• Sparse matrix vector product
• Dot products for the orthogonalization process

• S-step Krylov subspace methods
• Unroll s iterations, orthogonalize every s steps

• Van Rosendale ‘83, Walker ‘85, Chronopoulous and Gear ‘89, Erhel ‘93, Toledo ‘95, Bai, Hu,
Reichel ‘91 (Newton basis), Joubert and Carey ‘92 (Chebyshev basis), etc.

• Recent references: G. Atenekeng, B. Philippe, E. Kamgnia (to enable multiplicative Schwarz
preconditioner), J. Demmel, M. Hoemmen, M. Mohiyuddin, K. Yellick (to minimize communication,
next slide)
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S-step Krylov subspace methods
• To avoid communication, unroll s steps, ghost necessary data,

• generate a set of vectors W for the Krylov subspace Kk (A, r0)
• orthogonalize the vectors using TSQR(W)

Example: 5 point stencil 2D grid
       partitioned on 4 processors

Domain and ghost data 
to compute Ax 
with no communication

Domain and ghost data 
to compute A2 x 
with no communication

•    A factor of O(s) less data movement in the memory hierarchy
•    A factor of O(s) less messages in parallel
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Research opportunities and limitations

Length of the basis “s” is limited by
• Size of ghost data
• Loss of precision

Preconditioners: few identified so far to work with s-step methods
• Highly decoupled preconditioners: Block Jacobi
• Hierarchical, semiseparable matrices (M. Hoemmen, J. Demmel)

A look at three classes of preconditioners
• Incomplete LU factorizations (joint work with S. Moufawad)
• Two level preconditioners in DDM
• Deflation techniques through preconditioning

O(s n/P)+
O(s2 (n/P)2/3)+
O(s3 (n/P)1/3)

O(s n/P)+
O(s (n/P)2/3)+
O(s2 (n/P)1/3)

CA-
GMRES

O(s n/P)O(s n/P)GMRES
FlopsMemorys-steps

Cost for a 3D regular grid, 7 pt stencil
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Compute xi = (LU)-1 A xi-1 using 3 steps:
1. Compute f = A xi-1

2. Forward substitution: solve Lz = f
3. Backward substitution: solve Uxi = z

ILU0 with nested dissection and ghosting

Let α0 be the set of equations to be solved by one processor
For j = 1 to s do

    Find δj = Adj (G(A), γj) 
    Set αj = δj
end 

Ghost data required: 
  x(δ), A(γ,δ), 
  L(γ,γ), U(β, β)Find βj = ReachableVertices (G(U), αj-1)

Find γj = ReachableVertices (G(L), βj)

5 point stencil on a 2D grid

⇒ Half of the work 
performed on one processor 
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CA-ILU0 with alternating reordering and ghosting

• Reduce volume of ghost data by reordering the vertices:
• First number the vertices at odd distance from the separators
• Then number the vertices at even distance from the separators

• CA-ILU0 computes a standard ILU0 factorization

5 point stencil on a 2D grid
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Two level preconditioners

In the unified framework of (Tang et al. 09), let :
         P := I - A Q,      Q := Z E-1 ZT,     E := ZT A Z
where
   M is the first level preconditioner (eg based on additive Schwarz)
   Z is the deflation subspace matrix of full rank
   E is the coarse grid correction, a small dense invertible matrix
   P is the deflation matrix

Examples of preconditioners:

     PADD = M-1 + Z E-1 ZT,     PADEF2 = PT M-1 + Z E-1 ZT  (Mandel 1993)

• DDM - Z and  ZT are the restriction and prolongation operators based
on subdomains, E is a coarse grid, P is a subspace correction

• Deflation - Z contains the vectors to be deflated
• Multigrid - interpretation possible
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Two level preconditioners

PADD for a Poisson-like problem, using
Z defined as in (Nicolaides 1987):

  

! 

Z =

1"1 0 L 0
0 1"2

L 0
M M O M

0 0 L 1"P
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Courtesy of F. Nataf

=

Z      E-1                 ZT                   (Axi)           Z     E-1 (ZT Axi) 

Ghosting requires 
replicating A on each processor
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Conclusions

• Introduced a new class of communication avoiding algorithms that
minimize communication
• Attain theoretical lower bounds on communication

• Minimize communication at the cost of redundant computation

• Are often faster than conventional algorithms in practice

• Remains a lot to do for sparse linear algebra
• Communication bounds, communication optimal algorithms

• Numerical stability of s-step methods

• Preconditioners - limited by the memory size, not flops

• And BEYOND
• Our homework for the next years !
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Conclusions

• Many previous results
• Only several cited, many references given in the papers
• Flat trees algorithms for QR factorization, called tiled algorithms used in the context of

• Out of core - Gunter, van de Geijn 2005
• Multicore, Cell processors - Buttari, Langou, Kurzak and Dongarra (2007, 2008),

Quintana-Orti, Quintana-Orti, Chan, van Zee, van de Geijn (2007, 2008)

• Upcoming related talks at this conference:
• MS50: Innovative algorithms for eigenvalue and singular value decomposition, Friday
• MS59: Communication in Numerical Linear Algebra, Friday PM
• CP15: A Class of Fast Solvers for Dense Linear Systems on Hybrid GPU-multicore

Machines, M. Baboulin, Friday PM
• CP15: Communication-Avoiding QR: LAPACK Kernels Description, Implementation,

Performance and Example of Application, R. James, Friday PM
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