
Avoiding communication
in linear algebra

Laura Grigori
INRIA Saclay

Paris Sud University

Page 2

Motivation
Algorithms spend their time
• in doing useful computations (flops)
• or in moving data

• between different levels of the memory hierarchy
• and between processors

DRAM

Cache

CPU
registers

DRAM

Cache

CPU
registers

Page 3

Motivation
• Time to move data >> time per flop
 Running time =
 #flops * time_per_flop +
 #words_moved / bandwidth +
 #messages * latency

• Gap steadily and exponentially growing over time
 “There is an old network saying: Bandwidth problems can be cured with money.

Latency problems are harder because the speed of light is fixed -- you can’t
bribe God.” Anonymous

 “We are going to hit the memory wall, unless something basic changes”
[W. Wulf, S. McKee, 95]

• And we are also going to hit the “interconnect network wall”

Improvements per year
DRAM Network

23%
5% 15%

26%

Page 4

Motivation

• The communication problem needs to be taken into account
higher in the computing stack

• A paradigm shift in the way the numerical algorithms are
devised is required

• Communication avoiding algorithms - a novel perspective
for numerical linear algebra
• Minimize volume of communication
• Minimize number of messages
• Minimize over multiple levels of memory/parallelism
• Allow redundant computations (preferably as a low order term)

Page 5

Plan
• Motivation

• Selected past work on reducing communication

• Communication complexity of linear algebra operations

• Communication avoiding for dense linear algebra
• LU, LU_PRRP, QR, Rank Revealing QR factorizations

• Often not in ScaLAPACK or LAPACK

• Algorithms for multicore processors

• Communication avoiding for sparse linear algebra
• Sparse Cholesky factorization

• Iterative methods and preconditioning

• Conclusions

Page 6
Ghost data on P0

Selected past work on reducing communication

• Only few examples shown, many references available

A. Tuning
• Overlap communication and computation, at most a factor of 2 speedup

B. Ghosting
• Standard approach in explicit methods
• Store redundantly data from neighboring processors for future computations

Example of a parabolic PDE
 ut = α Δu
with a finite difference,
the solution at a grid point is:
 ui,j+1 = u(xi, tj+1)
 = f(ui-1,j, uij, ui+1,j) t0

t1

t2

t3

t4

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

u13

Initial data on P0

Page 7

Selected past work on reducing communication

C. Same operation, different schedule of the computation

Block algorithms for dense linear algebra
• Barron and Swinnerton-Dyer, 1960

• LU factorization used to solve a system with 31 equations - first
subroutine written for EDSAC 2

• Block LU factorization used to solve a system with 100 equations using
an auxiliary magnetic-tape

• The basis of the algorithm used in LAPACK

 Cache oblivious algorithms for dense linear algebra
• recursive Cholesky, LU, QR (Gustavson ‘97, Toledo ‘97, Elmroth and

Gustavson ‘98, Frens and Wise ‘03, Gustavson ‘97, Ahmed and Pingali ‘00)

Page 8

Selected past work on reducing communication

D. Same algebraic framework, different numerical algorithm

 More opportunities for reducing communication, may affect stability

Dense LU-like factorization (Barron and Swinnerton-Dyer, 60)
• LU-like factorization based on pairwise pivoting and its block version
 PA = L1 L2 …Ln U
• With small modifications, minimizes communication between two levels of

fast-slow memory
• Stable for small matrices, unstable for nowadays matrices

Page 9

Communication Complexity of
Dense Linear Algebra

• Matrix multiply, using 2n3 flops (sequential or parallel)
• Hong-Kung (1981), Irony/Tishkin/Toledo (2004)
• Lower bound on Bandwidth = Ω (#flops / M1/2)
• Lower bound on Latency = Ω (#flops / M3/2)

!

I "B
A I

I

$

%
% %

&

'

(
((

=

I
A I

I

$

%
% %

&

'

(
((
.
I "B

I AB
I

$

%
% %

&

'

(
((

• Same lower bounds apply to LU using reduction
• Demmel, LG, Hoemmen, Langou 2008

• And to almost all direct linear algebra [Ballard, Demmel, Holtz,
Schwartz, 09]

Page 10

Sequential algorithms and communication bounds

RRQR

QR

LU

Cholesky

Minimizing
#words and #messages

Minimizing
 #words (not #messages)

Algorithm

• Only several references shown for block algorithms (LAPACK),
 cache-oblivious algorithms and communication avoiding algorithms

[Gustavson, 97]
[Ahmed, Pingali, 00]

[LG, Demmel, Xiang, 08]
[Khabou, Demmel, LG, Gu, 12]

uses tournament pivoting
[Frens, Wise, 03], 3x flops

 [Demmel, LG, Hoemmen, Langou, 08]
uses different representation of Q

[Branescu, Demmel, LG, Gu, Xiang 11]
uses tournament pivoting, 3x flops

LAPACK

LAPACK (few cases)
[Toledo,97], [Gustavson, 97]

both use partial pivoting

LAPACK (few cases)
[Elmroth,Gustavson,98]

?

Page 11

2D Parallel algorithms and communication bounds

[Branescu, Demmel, LG, Gu, Xiang 11]
uses tournament pivoting, 3x flops

 ?RRQR

 [Demmel, LG, Hoemmen, Langou, 08]
uses different representation of Q

ScaLAPACKQR

 [LG, Demmel, Xiang, 08]
[Khabou, Demmel, LG, Gu, 12]

uses tournament pivoting

ScaLAPACK
uses partial pivoting

LU

ScaLAPACKScaLAPACKCholesky

Minimizing
#words and #messages

Minimizing
 #words (not #messages)

Algorithm

• Only several references shown, block algorithms (ScaLAPACK) and
 communication avoiding algorithms

• If memory per processor = n2 / P, the lower bounds become
 #words_moved ≥ Ω (n2 / P1/2), #messages ≥ Ω (P1/2)

Page 12

Scalability of communication optimal algorithms

• 2D communication optimal algorithms, M = 3⋅n2/P

 (matrix distributed over a P1/2-by- P1/2 grid of processors)
TP = O (n3) γ + Ω (n2 / P1/2) β + Ω (P1/2) α
• Isoefficiency: n3 ∝ P1.5 and n2 ∝ P
• For GEPP, n3 ∝ P2.25 [Grama et al, 93]

• 3D communication optimal algorithms, M = 3⋅P1/3(n2/P)

 (matrix distributed over a P1/3-by- P1/3-by- P1/3 grid of processors)
 TP = O (n3) γ + Ω (n2 / P2/3) β + Ω (log(P)) α
• Isoefficiency: n3 ∝ P and n2 ∝ P2/3

• 2.5D algorithms with M = 3⋅c⋅(n2/P), and 3D algorithms exist for matrix
multiplication and LU factorization
• References: Dekel et al 81, Agarwal et al 90, 95, Johnsson 93, McColl and Tiskin 99,

Irony and Toledo 02, Solomonik and Demmel 2011

Page 13

LU factorization (as in ScaLAPACK pdgetrf)
LU factorization on a P = Pr x Pc grid of processors
For ib = 1 to n-1 step b
 A(ib) = A(ib:n, ib:n)

 (1) Compute panel factorization
 - find pivot in each column, swap rows

 (2) Apply all row permutations
 - broadcast pivot information along the rows
 - swap rows at left and right

(3) Compute block row of U
 - broadcast right diagonal block of L of current panel

 (4) Update trailing matrix
 - broadcast right block column of L
 - broadcast down block row of U

L

U

A(ib)

L

U

A(ib+b)

L

U

A(ib)

L

U

A(ib)

)log(2 rPnO

)log/(2 cPbnO

))log(log/(22 rc PPbnO +

))log(log/(22 rc PPbnO +

#messages

Page 14

TSQR: QR factorization of a tall skinny matrix
using Householder transformations

W =
W0
W1
W2
W3

R00
R10
R20
R30

R01

R11

R02

• QR decomposition of m x b matrix W, m >> b
• P processors, block row layout

• Classic Parallel Algorithm
• Compute Householder vector for each column
• Number of messages ∝ b log P

• Communication Avoiding Algorithm
• Reduction operation, with QR as operator
• Number of messages ∝ log P

J. Demmel, LG, M. Hoemmen, J. Langou, 08

Page 15

Parallel TSQR

QR

 R00V00`W0

R10V10W1

R20V20W2

R30V30W3

R00
R10

V01 R01

R20
R30

V11 R11

P0

P1

P2

P3

V02 R02R01
R11

QR

QR

QR

QR

QR

QR

References: Golub, Plemmons, Sameh 88, Pothen, Raghavan, 89, Da Cunha,
 Becker, Patterson, 02

Page 16

CAQR for general matrices

• Use TSQR for panel factorizations
• Update the trailing matrix - triggered by the reduction tree used
for the panel factorization

Page 17
Q is represented implicitly as a product

!!
!
!
!

"

#

$$
$
$
$

%

&

!!
!
!
!

"

#

$$
$
$
$

%

&

=

!!
!
!
!

"

#

$$
$
$
$

%

&

=

30

20

10

00

30

20

10

00

3

2

1

0

.

R
R
R
R

Q
Q

Q
Q

W
W
W
W

W

!!
"

#
$$
%

&
!!
"

#
$$
%

&
=

!!
!
!
!

"

#

$$
$
$
$

%

&

11

01

11

01

30

20

10

00

.
R
R

Q
Q

R
R
R
R

0202
11

01 RQ
R
R

=!!
"

#
$$
%

&

Flexibility of TSQR and CAQR algorithms

W =
W0
W1
W2
W3

R00
R10
R20
R30

R01

R11

R02Parallel:

W =
W0
W1
W2
W3

R01 R02

R00

R03
Sequential:

W =
W0
W1
W2
W3

R00
R01

R01

R11
R02

R11

R03

Dual Core:

Reduction tree will depend on the underlying architecture,
could be chosen dynamically

Source slide: J. Demmel

Page 18

Performance of TSQR vs Sca/LAPACK

• Parallel
• Intel Xeon (two socket, quad core machine), 2010

• Up to 5.3x speedup (8 cores, 105 x 200)
• Pentium III cluster, Dolphin Interconnect, MPICH, 2008

• Up to 6.7x speedup (16 procs, 100K x 200)
• BlueGene/L, 2008

• Up to 4x speedup (32 procs, 1M x 50)
• QR computed locally using recursive algorithm (Elmroth-Gustavson)

– enabled by TSQR

• See [Demmel, LG, Hoemmen, Langou, SISC 12], [Donfack, LG, IPDPS
10].

Page 19

Modeled Speedups of CAQR vs ScaLAPACK

Petascale
 up to 22.9x

IBM Power 5
 up to 9.7x

“Grid”
 up to 11x

 Petascale machine with 8192 procs, each at 500 GFlops/s, a bandwidth of 4 GB/s.
./102,10,102 9512 wordsss !!! "=="= #$%

Page 20

Obvious generalization of TSQR to LU

• Block parallel pivoting:
• uses a binary tree and is optimal in the parallel case

• Block pairwise pivoting:
• uses a flat tree and is optimal in the sequential case
• used in PLASMA for multicore architectures and FLAME for out-of-core algorithms and

for multicore architectures

W =
W0
W1
W2
W3

U00
U10
U20
U30

U01

U11

U02

W=
W0
W1
W2
W3

U01 U02

U00

U03

Page 21

Stability of the LU factorization
• The backward stability of the LU factorization of a matrix A of size n-by-n

 depends on the growth factor

 where aij
k are the values at the k-th step.

• gW ≤ 2n-1 , but in practice it is on the order of n2/3 -- n1/2

• Two reasons considered to be important for the average case stability [Trefethen and
Schreiber, 90] :

 - the multipliers in L are small,

 - the correction introduced at each elimination step is of rank 1.

!

gW =
maxi, j ,k aij

k

maxi, j aij

!

L " U
#
$ (1+ 2(n2 % n)gw) A #

Page 22

Block parallel pivoting

• Unstable for large number of processors P

• When P=number rows, it corresponds to parallel pivoting, known to be unstable
(Trefethen and Schreiber, 90)

Page 23

Block pairwise pivoting

• Results shown for random matrices
• Will become unstable for large matrices W=

W0
W1
W2
W3

U01 U02

U00

U03

Page 24

Tournament pivoting - the overall idea

• At each iteration of a block algorithm

 , where

• Preprocess W to find at low communication cost good pivots for the LU
factorization of W, return a permutation matrix P.

• Permute the pivots to top, ie compute PA.
• Compute LU with no pivoting of W, update trailing matrix.

!

W =
A11
A21

"

$

%

&
'

!

A =
A11 A21
A21 A22

"

$

%

&
'

!

}
}

b
n " b

!

b n " b
} }

!

PA =
L11
L21 In"b

$
%

&

'
(
U11 U12

A22 " L21U12

$
%

&

'
(

Page 25

Tournament pivoting

time

P0

P1

P2

P3

!

2 4
0 1
2 0
1 2

"

$
$
$
$

%

&

'
'
'
'

=(0L0U0

!

2 0
0 0
4 1
1 0

"

$
$
$
$

%

&

'
'
'
'

=(1L1U1

!

0 1
1 4
0 0
0 2

"

$
$
$
$

%

&

'
'
'
'

=(2L2U2

!

2 1
0 2
1 0
4 2

"

$
$
$
$

%

&

'
'
'
'

=(3L3U3

!

2 4
2 0
"

$

%

&
'

!

4 1
2 0
"

$

%

&
'

!

1 4
0 2
"

$

%

&
'

!

4 2
0 2
"

$

%

&
'

!

2 4
2 0
4 1
2 0

"

$
$
$
$

%

&

'
'
'
'

=(0L0U0

!

1 4
0 2
4 2
0 2

"

$
$
$
$

%

&

'
'
'
'

=(2L2U 2

!

4 1
2 4
"

$

%

&
'

!

4 2
1 4
"

$

%

&
'

!

4 1
2 4
4 2
1 4

"

$
$
$
$

%

&

'
'
'
'

=(0L0U 0

!

4 1
1 4
"

$

%

&
'

!

W0

!

"0
TW0

!

W0

!

"0
T
W 0

!

W 0

!

"0
TW 0

!

W1

!

"1
TW1

!

W2

!

"2
TW2

!

W2

!

"2
T
W 2

!

W3

!

"3
TW3

Good pivots for
factorizing W

Page 26

Growth factor for binary tree based CALU

• Random matrices from a normal distribution
• Same behaviour for all matrices in our test, and |L| <= 4.2

Page 27

Stability of CALU (experimental results)

Summer School Lecture 4 27

• Results show ||PA-LU||/||A||, normwise and componentwise backward
errors, for random matrices and special ones

• See [LG, Demmel, Xiang, 2010] for details
• BCALU denotes binary tree based CALU and FCALU denotes flat tree based CALU

Page 28

Our “proof of stability” for CALU

• CALU as stable as GEPP in following sense:
 CALU process on a matrix A is equivalent to GEPP process on a larger

matrix G whose entries are blocks of A and blocks of zeros.

• Example of one step of tournament pivoting:

• Proof possible by using original rows of A during tournament pivoting (not the
computed rows of U).

!

A =

A11 A12
A21 A22
A31 A32

"

$
$
$

%

&

'
'
'

!

G =

A11 A12
A21 A21

"A31 A32

$

%
%
%

&

'

(
(
(

A11
A21
A31

A11

A21

A11

tournament pivoting:

Page 29

Growth factor of different pivoting strategies
• Matrix of size m-by-n, reduction tree of height H=log(P).
• (CA)LU_PRRP select pivots using strong rank revealing QR (A. Khabou, J.

Demmel, LG, M. Gu, 2012)
• “In practice” means observed/expected/conjectured values.

• For a matrix of size 107-by-107 (using petabytes of memory)
n1/2 = 103.5

• When will Linpack have to use the QR factorization for solving linear systems ?

Better bounds

In practice

Upper bound

(n/b)2/3 -- (n/b)1/2(n/b)2/3 -- (n/b)1/2n2/3 -- n1/2n2/3 -- n1/2

(1+2b)(n/b)(1+2b)(n/b)log(P)2n-12n(log(P)+1)-1

LU_PRRPCALU_PRRPGEPPCALU

Page 30

 Performance vs ScaLAPACK

• Parallel TSLU (LU on tall-skinny matrix)
• IBM Power 5

• Up to 4.37x faster (16 procs, 1M x 150)
• Cray XT4

• Up to 5.52x faster (8 procs, 1M x 150)

• Parallel CALU (LU on general matrices)
• Intel Xeon (two socket, quad core)

• Up to 2.3x faster (8 cores, 10^6 x 500)
• IBM Power 5

• Up to 2.29x faster (64 procs, 1000 x 1000)
• Cray XT4

• Up to 1.81x faster (64 procs, 1000 x 1000)

• Details in SC08 (LG, Demmel, Xiang), IPDPS’10 (S. Donfack, LG).

Page 31

Scheduling CALU’s Task Dependency Graph
• Static scheduling

+ Good locality of data - Ignores noise

• Dynamic scheduling
+ Keeps cores busy - Poor usage of data locality
 - Can have large dequeue overhead

Page 32

Lightweight scheduling

• A self-adaptive strategy to provide
• A good trade-off between load balance, data locality, and dequeue overhead.
• Performance consistency
• Shown to be efficient for regular mesh computation [B. Gropp and V. Kale]

S. Donfack, LG, B. Gropp, V. Kale, 2012

Combined static/dynamic scheduling:
• A thread executes in priority its

statically assigned tasks
• When no task ready, it picks a

ready task from the dynamic part
• The size of the dynamic part is

guided by a performance model

Page 33

Impact of data layout on performance
Data layouts:
• CM : Column major order
• BCL : Each thread stores its
 data using CM
• 2l-BL : Each thread stores its
 data in blocks

Four socket, twelve cores machine based on AMD Opteron processor (U. of Tennessee).

Page 34

Best performance of CALU on multicore architectures

• Reported performance for PLASMA uses LU with block pairwise pivoting.

Static scheduling

time

Static + 10% dynamic scheduling

100% dynamic scheduling

Page 35

Plan
• Motivation

• Selected past work on reducing communication

• Communication complexity of linear algebra operations

• Communication avoiding for dense linear algebra
• LU, LU_PRRP, QR, Rank Revealing QR factorizations

• Often not in ScaLAPACK or LAPACK

• Algorithms for multicore processors

• Communication avoiding for sparse linear algebra
• Sparse Cholesky factorization

• Iterative methods and preconditioning

• Conclusions

Page 36

Sparse Cholesky factorization for 2D/3D regular grids
• Matrix A from a finite difference operator on a regular grid of dimension
 s≥2 with ks nodes.

• Its Cholesky L factor contains a dense
 lower triangular matrix of size ks-1×ks-1.

 # words_moved ≥ Ω((k3(s-1)/(2P)) /Μ1/2)
 # messages ≥ Ω((k 3(s-1)/(2P)) /Μ3/2)

• PSPASES with an optimal layout minimizes communication
• Uses nested dissection to reorder the matrix
• Distributes the matrix using the subtree-to-subcube algorithm

• Sequential multifrontal algorithm minimizes communication
• Every dense multifrontal matrix is factored using an optimal dense Cholesky

• But in general for sparse matrix operations, the known lower bounds on
communication can become vacuous

Page 37

Communication in Krylov subspace methods

 Iterative methods to solve Ax =b

• Find a solution xk from x0 + Kk (A, r0), where Kk (A, r0) = span {r0, A r0, …, Ak-1 r0}
such that the Petrov-Galerkin condition b - Axk ⊥ Lk is satisfied.

• For numerical stability, an orthonormal basis {q1, q2,…, qk} for Kk (A, r0) is
computed (CG, GMRES, BiCGstab,…)

• Each iteration requires
• Sparse matrix vector product
• Dot products for the orthogonalization process

• S-step Krylov subspace methods
• Unroll s iterations, orthogonalize every s steps

• Van Rosendale ‘83, Walker ‘85, Chronopoulous and Gear ‘89, Erhel ‘93, Toledo ‘95, Bai, Hu,
Reichel ‘91 (Newton basis), Joubert and Carey ‘92 (Chebyshev basis), etc.

• Recent references: G. Atenekeng, B. Philippe, E. Kamgnia (to enable multiplicative Schwarz
preconditioner), J. Demmel, M. Hoemmen, M. Mohiyuddin, K. Yellick (to minimize communication,
next slide)

Page 38

S-step Krylov subspace methods
• To avoid communication, unroll s steps, ghost necessary data,

• generate a set of vectors W for the Krylov subspace Kk (A, r0)
• orthogonalize the vectors using TSQR(W)

Example: 5 point stencil 2D grid
 partitioned on 4 processors

Domain and ghost data
to compute Ax
with no communication

Domain and ghost data
to compute A2 x
with no communication

• A factor of O(s) less data movement in the memory hierarchy
• A factor of O(s) less messages in parallel

Page 39

Research opportunities and limitations

Length of the basis “s” is limited by
• Size of ghost data
• Loss of precision

Preconditioners: few identified so far to work with s-step methods
• Highly decoupled preconditioners: Block Jacobi
• Hierarchical, semiseparable matrices (M. Hoemmen, J. Demmel)

A look at three classes of preconditioners
• Incomplete LU factorizations (joint work with S. Moufawad)
• Two level preconditioners in DDM
• Deflation techniques through preconditioning

O(s n/P)+
O(s2 (n/P)2/3)+
O(s3 (n/P)1/3)

O(s n/P)+
O(s (n/P)2/3)+
O(s2 (n/P)1/3)

CA-
GMRES

O(s n/P)O(s n/P)GMRES
FlopsMemorys-steps

Cost for a 3D regular grid, 7 pt stencil

Page 40

Compute xi = (LU)-1 A xi-1 using 3 steps:
1. Compute f = A xi-1

2. Forward substitution: solve Lz = f
3. Backward substitution: solve Uxi = z

ILU0 with nested dissection and ghosting

Let α0 be the set of equations to be solved by one processor
For j = 1 to s do

 Find δj = Adj (G(A), γj)
 Set αj = δj
end

Ghost data required:
 x(δ), A(γ,δ),
 L(γ,γ), U(β, β)Find βj = ReachableVertices (G(U), αj-1)

Find γj = ReachableVertices (G(L), βj)

5 point stencil on a 2D grid

⇒ Half of the work
performed on one processor

Page 41

CA-ILU0 with alternating reordering and ghosting

• Reduce volume of ghost data by reordering the vertices:
• First number the vertices at odd distance from the separators
• Then number the vertices at even distance from the separators

• CA-ILU0 computes a standard ILU0 factorization

5 point stencil on a 2D grid

Page 42

Two level preconditioners

In the unified framework of (Tang et al. 09), let :
 P := I - A Q, Q := Z E-1 ZT, E := ZT A Z
where
 M is the first level preconditioner (eg based on additive Schwarz)
 Z is the deflation subspace matrix of full rank
 E is the coarse grid correction, a small dense invertible matrix
 P is the deflation matrix

Examples of preconditioners:

 PADD = M-1 + Z E-1 ZT, PADEF2 = PT M-1 + Z E-1 ZT (Mandel 1993)

• DDM - Z and ZT are the restriction and prolongation operators based
on subdomains, E is a coarse grid, P is a subspace correction

• Deflation - Z contains the vectors to be deflated
• Multigrid - interpretation possible

Page 43

Two level preconditioners

PADD for a Poisson-like problem, using
Z defined as in (Nicolaides 1987):

!

Z =

1"1 0 L 0
0 1"2

L 0
M M O M

0 0 L 1"P

$

%
%
%
%

&

'

(
(
(
(

Courtesy of F. Nataf

=

Z E-1 ZT (Axi) Z E-1 (ZT Axi)

Ghosting requires
replicating A on each processor

Page 44

Conclusions

• Introduced a new class of communication avoiding algorithms that
minimize communication
• Attain theoretical lower bounds on communication

• Minimize communication at the cost of redundant computation

• Are often faster than conventional algorithms in practice

• Remains a lot to do for sparse linear algebra
• Communication bounds, communication optimal algorithms

• Numerical stability of s-step methods

• Preconditioners - limited by the memory size, not flops

• And BEYOND
• Our homework for the next years !

Page 45

Conclusions

• Many previous results
• Only several cited, many references given in the papers
• Flat trees algorithms for QR factorization, called tiled algorithms used in the context of

• Out of core - Gunter, van de Geijn 2005
• Multicore, Cell processors - Buttari, Langou, Kurzak and Dongarra (2007, 2008),

Quintana-Orti, Quintana-Orti, Chan, van Zee, van de Geijn (2007, 2008)

• Upcoming related talks at this conference:
• MS50: Innovative algorithms for eigenvalue and singular value decomposition, Friday
• MS59: Communication in Numerical Linear Algebra, Friday PM
• CP15: A Class of Fast Solvers for Dense Linear Systems on Hybrid GPU-multicore

Machines, M. Baboulin, Friday PM
• CP15: Communication-Avoiding QR: LAPACK Kernels Description, Implementation,

Performance and Example of Application, R. James, Friday PM

Page 46

Collaborators, funding
Collaborators:

• A. Branescu, INRIA, S. Donfack, INRIA, A. Khabou, INRIA, M. Jacquelin, INRIA,
S. Moufawad, INRIA, H. Xiang, University Paris 6

• J. Demmel, UC Berkeley, B. Gropp, UIUC, M. Gu, UC Berkeley, M. Hoemmen,
UC Berkeley, J. Langou, CU Denver, V. Kale, UIUC

Funding: ANR Petal and Petalh projects, ANR Midas, Digiteo Xscale NL,
COALA INRIA funding

Further information:
 http://www-rocq.inria.fr/who/Laura.Grigori/

Page 47

References

Results presented from:
• J. Demmel, L. Grigori, M. F. Hoemmen, and J. Langou, Communication-optimal parallel and sequential

QR and LU factorizations, UCB-EECS-2008-89, 2008, published in SIAM journal on Scientific
Computing, Vol. 34, No 1, 2012.

• L. Grigori, J. Demmel, and H. Xiang, Communication avoiding Gaussian elimination, Proceedings of
the IEEE/ACM SuperComputing SC08 Conference, November 2008.

• L. Grigori, J. Demmel, and H. Xiang, CALU: a communication optimal LU factorization algorithm, SIAM.
J. Matrix Anal. & Appl., 32, pp. 1317-1350, 2011.

• M. Hoemmen’s Phd thesis, Communication avoiding Krylov subspace methods, 2010.
• L. Grigori, P.-Y. David, J. Demmel, and S. Peyronnet, Brief announcement: Lower bounds on

communication for sparse Cholesky factorization of a model problem, ACM SPAA 2010.
• S. Donfack, L. Grigori, and A. Kumar Gupta, Adapting communication-avoiding LU and QR

factorizations to multicore architectures, Proceedings of IEEE International Parallel & Distributed
Processing Symposium IPDPS, April 2010.

• S. Donfack, L. Grigori, W. Gropp, and V. Kale, Hybrid static/dynamic scheduling for already optimized
dense matrix factorization , Proceedings of IEEE International Parallel & Distributed Processing
Symposium IPDPS, 2012.

• A. Khabou, J. Demmel, L. Grigori, and M. Gu, LU factorization with panel rank revealing pivoting and
its communication avoiding version, LAWN 263, 2012.

• L. Grigori, S. Moufawad, Communication avoiding incomplete LU preconditioner, in preparation, 2012

