
SIAM J. SCI. COMPUT. c© 2016 The U.S. Government
Vol. 38, No. 6, pp. C624–C651

EXPLOITING MULTIPLE LEVELS OF PARALLELISM IN SPARSE
MATRIX-MATRIX MULTIPLICATION∗

ARIFUL AZAD† , GREY BALLARD‡ , AYDIN BULUÇ† , JAMES DEMMEL§ , LAURA

GRIGORI¶, ODED SCHWARTZ‖, SIVAN TOLEDO#, AND SAMUEL WILLIAMS†

Abstract. Sparse matrix-matrix multiplication (or SpGEMM) is a key primitive for many
high-performance graph algorithms as well as for some linear solvers, such as algebraic multigrid.
The scaling of existing parallel implementations of SpGEMM is heavily bound by communication.
Even though 3D (or 2.5D) algorithms have been proposed and theoretically analyzed in the flat
MPI model on Erdős–Rényi matrices, those algorithms had not been implemented in practice and
their complexities had not been analyzed for the general case. In this work, we present the first
implementation of the 3D SpGEMM formulation that exploits multiple (intranode and internode)
levels of parallelism, achieving significant speedups over the state-of-the-art publicly available codes
at all levels of concurrencies. We extensively evaluate our implementation and identify bottlenecks
that should be subject to further research.

Key words. parallel computing, numerical linear algebra, sparse matrix-matrix multiplication,
2.5D algorithms, 3D algorithms, multithreading, SpGEMM, 2D decomposition, graph algorithms

AMS subject classifications. 05C50, 05C85, 65F50, 68W10

∗Submitted to the journal’s Software and High-Performance Computing section October 5, 2015;
accepted for publication (in revised form) August 11, 2016; published electronically November 8,
2016. The U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish
or reproduce the published form of this manuscript, or allow others to do so, for U.S. Government
purposes.

http://www.siam.org/journals/sisc/38-6/M104253.html
Funding: This material is based upon work supported by the U.S. Department of Energy,

Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics program
under contract DE-AC02-05CH11231. This research was supported in part by an appointment to
the Sandia National Laboratories Truman Fellowship in National Security Science and Engineering,
sponsored by Sandia Corporation (a wholly owned subsidiary of Lockheed Martin Corporation) as
Operator of Sandia National Laboratories under its U.S. Department of Energy Contract DE-AC04-
94AL85000. The research of some of the authors was supported by the U.S. Department of Energy
Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics program
under award DE-SC0010200, by the U.S. Department of Energy Office of Science, Office of Advanced
Scientific Computing Research, X-Stack program under awards DE-SC0008699, DE-SC0008700, and
AC02-05CH11231, and by DARPA award HR0011-12-2-0016, with contributions from Intel, Oracle,
and MathWorks. Research is supported by grants 1878/14 and 1901/14 from the Israel Science
Foundation (founded by the Israel Academy of Sciences and Humanities) and grant 3-10891 from the
Ministry of Science and Technology, Israel. Research is also supported by the Einstein Foundation
and the Minerva Foundation. This work was supported by the HUJI Cyber Security Research Center
in conjunction with the Israel National Cyber Bureau in the Prime Minister’s Office. This paper is
supported by the Intel Collaborative Research Institute for Computational Intelligence (ICRI-CI).
This research was supported by a grant from the United States-Israel Binational Science Foundation
(BSF), Jerusalem, Israel. This research used resources of the National Energy Research Scientific
Computing Center, which is supported by the Office of Science of the U.S. Department of Energy
under contract DE-AC02-05CH11231, and resources of the Oak Ridge Leadership Facility at the Oak
Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of
Energy under contract DE-AC05-00OR22725.
†CRD, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (azad@lbl.gov,

abuluc@lbl.gov, swwilliams@lbl.gov).
‡Computer Science Department, Wake Forest University, Winston Salem, NC 94551

(ballard@wfu.edu).
§EECS, University of California, Berkeley, Berkeley, CA 94720 (demmel@eecs.berkeley.edu).
¶INRIA Paris-Rocquencourt, Alpines, Paris, 75005, France (laura.grigori@inria.fr).
‖The Hebrew University, Rothberg A405, Jerusalem, Israel (odedsc@cs.huji.ac.il).
#Blavatnik School of Computer Science, Tel Aviv University, Ramot Aviv, Tel-Aviv 69978, Israel

(stoledo@tau.ac.il).

C624

http://www.siam.org/journals/sisc/38-6/M104253.html
mailto:azad@lbl.gov
mailto:abuluc@lbl.gov
mailto:swwilliams@lbl.gov
mailto:ballard@wfu.edu
mailto:demmel@eecs.berkeley.edu
mailto:laura.grigori@inria.fr
mailto:odedsc@cs.huji.ac.il
mailto:stoledo@tau.ac.il


MULTIPLE LEVELS OF PARALLELISM IN SpGEMM C625

DOI. 10.1137/15M104253X

1. Introduction. Multiplication of two sparse matrices (SpGEMM) is a key
operation for high-performance graph computations in the language of linear alge-
bra [31, 40]. Examples include graph contraction [25], betweenness centrality [13],
Markov clustering [47], peer pressure clustering [43], triangle counting [4], and cycle
detection [49]. SpGEMM is also used in scientific computing. For instance, it is often
a performance bottleneck for Algebraic Multigrid (AMG), where it is used in the set-
up phase for restricting and interpolating matrices [7]. Schur complement methods in
hybrid linear solvers [48] also require fast SpGEMM. In electronic structure calcula-
tions, linear-scaling methods exploit Kohn’s “nearsightedness” principle of electrons
in many-atom systems [33]. SpGEMM and its approximate versions are often the
workhorse of these computations [8, 10].

We describe new parallel implementations of the SpGEMM kernel by exploit-
ing multiple levels of parallelism. We provide the first complete implementation and
large-scale results of a “three-dimensional (3D) algorithm” that asymptotically re-
duces communication costs compared to the state-of-the-art two-dimensional (2D)
algorithms. The name “3D” derives from the parallelization across all three dimen-
sions of the iteration space. While 2D algorithms like Sparse SUMMA [14] are based
on a 2D decomposition of the output matrix with computation following an “owner
computes” rule, a 3D algorithm also parallelizes the computation of individual out-
put matrix entries. Our 3D formulation relies on splitting (as opposed to replicating)
input submatrices across processor layers.

While previous work [5] analyzed the communication costs of a large family of
parallel SpGEMM algorithms and provided lower-bounds on random matrices, it did
not present any experimental results. In particular, the following questions were left
unanswered:
• What is the effect of different communication patterns on relative scalability of

these algorithms? The analysis was performed in terms of “the number of words
moved per processor,” which did not take into account important factors such as
network contention, use of collectives, the relative sizes of the communicators, etc.

• What is the effect of in-node multithreading? By intuition, one can expect a positive
effect due to reduced network contention and automatic data aggregation as a result
of in-node multithreading, but those have not been evaluated before.

• What is the role of local data structures and local algorithms? In particular, what
is the right data structure to store local sparse matrices in order to multiply them
fast using a single thread and multiple threads? How do we merge local triples
efficiently during the reduction phases?

• How do the algorithms perform on real-world matrices, such as those with skewed
degree distributions?

This paper addresses these questions by presenting the first implementation of
the 3D SpGEMM formulation that exploits both the additional third processor grid
dimension and the in-node multithreading aspect. In particular, we show that the
third processor grid dimension navigates a tradeoff between communication of the
input matrices and communication of the output matrix. We also show that in-
node multithreading, with efficient shared-memory parallel kernels, can significantly
enhance scalability. In terms of local data structures and algorithms, we use a priority
queue to merge sparse vectors for in-node multithreading. This eliminates thread
scaling bottlenecks which were due to asymptotically increased working set size, as
well as the need to modify the data structures for cache efficiency. To answer the



C626 AZAD ET AL.

last question, we benchmark our algorithms on real-world matrices coming from a
variety of applications. Our extensive evaluation via large-scale experiments exposes
bottlenecks and provides new avenues for research.

Section 3 summarizes earlier results on various parallel SpGEMM formulations.
Section 4 presents the distributed-memory algorithms implemented for this work, as
well as the local data structures and operations in detail. In particular, our new
3D algorithm, Split-3D-SpGEMM, is presented in section 4.4. Section 5 gives an
extensive performance evaluation of these implementations using large scale parallel
experiments, including a performance comparison with similar primitives offered by
other publicly available libraries such as Trilinos and the Intel Math Kernel Library
(MKL). Various implementation decisions and their effects on performance are also
detailed.

2. Notation. Let A ∈ Sm×k be a sparse rectangular matrix of elements from a
semiring S. We use nnz (A) to denote the number of nonzero elements in A. When
the matrix is clear from context, we drop the parenthesis and simply use nnz . For
sparse matrix indexing, we use the convenient MATLAB colon notation, where A(:, i)
denotes the ith column, A(i, :) denotes the ith row, and A(i, j) denotes the element at
the (i, j)th position of matrix A. Array and vector indices are 1-based throughout this
paper. The length of an array I, denoted by len(I), is equal to its number of elements.
For one-dimensional (1D) arrays, I(i) denotes the ith component of the array. I(j : k)
defines the range I(j), I(j + 1), . . . , I(k) and is also applicable to matrices.

We use flops(A,B), pronounced “flops,” to denote the number of nonzero arith-
metic operations required when computing the product of matrices A and B. When
the operation and the operands are clear from context, we simply use flops. We ac-
knowledge that semiring operations do not have to be on floating-point numbers (e.g.,
they can be on integers or Booleans) but we nevertheless use flops as opposed to ops
to be consistent with existing literature.

In our analysis of parallel running time, the latency of sending a message over
the communication interconnect is α, and the inverse bandwidth is β, both expressed
as multiples of the time for a floating-point operation (also accounting for the cost of
cache misses and memory indirections associated with that floating point operation).
Notation f(x) = Θ(g(x)) means that f is bounded asymptotically by g both above
and below. We index a 3D process grid with P (i, j, k). Each 2D slice of this grid
P (:, :, k) with the third dimension fixed is called a process “layer” and each 1D slice
of this grid P (i, j, :) with the first two dimensions fixed is called a process “fiber.”

3. Background and related work. The classical serial SpGEMM algorithm
for general sparse matrices was first described by Gustavson [27], and was subsequently
used in MATLAB [24] and CSparse [19]. For computing the product C = AB, where
A ∈ Sm×l, B ∈ Sl×n, and C ∈ Sm×n, Gustavson’s algorithm runs in O(flops +
nnz +m + n) time, which is optimal when flops is larger than nnz , m, and n. It
uses the popular compressed sparse column (CSC) format for representing its sparse
matrices. Algorithm 1 gives the pseudocode for this columnwise serial algorithm for
SpGEMM.

McCourt, Smith, and Zhang [41] target ABT and RART operations in the spe-
cific context of AMG. A coloring of the output matrix C finds structurally orthogonal
columns that can be computed simultaneously. Two columns are structurally orthog-
onal if the inner product of their structures (to avoid numerical cancellation) is zero.
They use matrix colorings to restructure BT and RT into dense matrices by merging
nonoverlapping sparse columns that do not contribute to the same nonzero in the



MULTIPLE LEVELS OF PARALLELISM IN SpGEMM C627

Algorithm 1 Columnwise formulation of serial matrix multiplication.

1: procedure Columnwise-SpGEMM(A,B,C)
2: for k ← 1 to n do
3: for j where B(j, k) 6= 0 do
4: C(:, k)← C(:, k) + A(:, j) ·B(j, k)

output matrix. They show that this approach would incur less memory traffic than
performing sparse inner products by a factor of n/ncolor, where ncolor is the number
of colors used for matrix coloring. However, they do not analyze the memory traf-
fic of other formulations of SpGEMM, which are known to outperform sparse inner
products [15]. In particular, a columnwise formulation of SpGEMM using compressed
sparse column (CSC) incurs only O(nnz /L+ flops) cache misses, where L is the size
of the cache line. Consider the matrix representing the Erdős–Rényi graph G(n, p),
where each edge (nonzero) in the graph (matrix) is present with probability p inde-
pendently from each other. For p = d/n where d � n, in expectation nd nonzeros
are uniformly distributed in an n-by-n sparse matrix. In that case, SpGEMM does
O(d2n) cache misses compared to the O(dnncolor) cache misses of the algorithm by
McCourt, Smith, and Zhang. Hence, the columnwise approach not only bypasses the
need for coloring, it also performs better for d ≤ ncolor, which is a common case. Fur-
thermore, their method requires precomputing the nonzero structure of the output
matrix, which is asymptotically as hard as computing SpGEMM without coloring in
the first place.

There has been a flurry of activity developing algorithms and implementations
of SpGEMM for Graphics Processing Units (GPUs). Among those, the algorithm of
Gremse et al. [26] uses the row-wise formulation of SpGEMM. By contrast, Dalton
et al. [18] uses the data-parallel ESC (expansion, sorting, and contraction) formula-
tion, which is based on outer products. One downside of the ESC formulation is that
expansion might create O(flops) intermediate storage in the worst case, depending
on the number of additions performed immediately in shared memory when possible,
which might be asymptotically larger than the sizes of the inputs and outputs com-
bined. The recent work of Liu and Vinter is currently the fastest implementation on
GPUs and it also addresses heterogenous CPU-GPU processors [36].

In distributed memory, under many definitions of scalability, all known parallel
SpGEMM algorithms are unscalable due to increased communication costs relative
to arithmetic operations. For instance, there is no way to keep the parallel efficiency
(PE ) fixed for any constant 1 ≥ PE > 0 as we increase the number of proces-
sors [34]. Recently, two attempts have been made to model the communication costs
of SpGEMM in a more fine grained manner. Akbudak and Aykanat [3] proposed
the first hypergraph model for outerproduct formulation of SpGEMM. Unfortunately,
a symbolic SpGEMM computation has to be performed initially, as the hypergraph
model needs full access to the computational pattern that forms the output matrix.
Ballard et al. [6] recently proposed hypergraph models for a class of SpGEMM al-
gorithms more general than Akbudak and Aykanat considered. Their models also
require the sparsity structure of the output matrix and the number of vertices in the
hypergraph is O(flops), making the approach impractical.

In terms of in-node parallelism via multithreading, there has been relatively little
work. Gustavson’s algorithm is not thread scalable because its intermediate working
set size is O(n) per thread, requiring a total of O(nt) intermediate storage, which can



C628 AZAD ET AL.

be larger than the matrices themselves for high thread counts. This intermediate data
structure is called the sparse accumulator (SPA) [24]. Nevertheless, it is possible to
get good performance out of a multithreaded parallelization of Gustavson’s algorithm
in current platforms, provided that accesses to SPA are further “blocked” for matrices
with large dimensions, in order to decrease cache miss rates. In a recent work, this is
achieved by partitioning the data structure of the second matrix B by columns [42].

We also mention that there has been significant research devoted to dense matrix
multiplication in distributed-memory settings. In particular, the development of so-
called 3D algorithms for dense matrix multiplication spans multiple decades; see [21,
30, 39, 44] and the references therein. Many aspects of our 3D algorithm for sparse
matrix multiplication are derived from the dense case, though there are important
differences as we detail below.

4. Distributed-memory SpGEMM. We categorize algorithms based on how
they partition “work” (scalar multiplications) among processes, as we first advocated
in 2013 [5]. The work required by SpGEMM can be conceptualized by a cube that
is sparsely populated by “voxels” that correspond to nonzero scalar multiplications.
The algorithmic categorization is based on how these voxels are assigned to processes,
which is illustrated in Figure 1. 1D algorithms assign a block of n-by-n-by-1 “layers” of
this cube to processes. In practice, this is realized by having each process store a block
of rows or columns of an m-by-n sparse matrix, though the 1D/2D/3D categorization
is separate from the data distribution. With correctly chosen data distributions, 1D
algorithms communicate entries of only one of the three matrices.

(a) 1D (b) 2D (c) 3D

Fig. 1. Partitioning the work cube to processes. Image reproduced for clarity [5].

2D algorithms assign a set of 1-by-1-by-n “fibers” of this cube to processes. In
many practical realizations of 2D algorithms, processes are logically organized as a
rectangular p = pr×pc process grid, so that a typical process is named P (i, j). Subma-
trices are assigned to processes according to a 2D block decomposition: For a matrix
M ∈ Sm×n, processor P (i, j) stores the submatrix Mij of dimensions (m/pr)×(n/pc)
in its local memory. With consistent data distributions, 2D algorithms communicate
entries of two of the three matrices.

3D algorithms assign subcubes (with all three dimensions shorter than n) to
processes, which are typically organized on a p = pr × pc × pl grid and indexed by
P (i, j, k). 3D algorithms communicate entries of A and B, as well as the (partial sums
of the) intermediate products of C. While many ways of assigning submatrices to
processes on a 3D process grid exist, including replicating each Aij along the process
fiber P (i, j, :), our work focuses on a memory-friendly split decomposition. In this
formulation, P (i, j, k) owns the following m/pr × n/(pcpl) submatrix of A ∈ Sm×n:

A(im/pr : (i+ 1)m/pr − 1, jn/pc + kn/(pcpl) : jn/pc + (k + 1)n/(pcpl)− 1).



MULTIPLE LEVELS OF PARALLELISM IN SpGEMM C629

The distribution of matrices B and C are analogous. This distribution is memory
friendly because it does not replicate input or output matrix entries, which is in
contrast to many 3D algorithms where the input or the output is explicitly replicated.

4.1. Sparse SUMMA algorithm. We briefly remind the reader of the Sparse
SUMMA algorithm [11] for completeness as it will form the base of our 3D discussion.
Sparse SUMMA is based on one formulation of the dense SUMMA algorithm [23]. The
processes are logically organized on a pr× pc process grid. The algorithm proceeds in
stages where each stage involves the broadcasting of n/pr×b submatrices of A by their
owners along their process row, and the broadcasting of b × n/pc submatrices of B
by their owners along their process column. The recipients multiply the submatrices
they received to perform a rank-b update on their piece of the output matrix C. The
rank-b update takes the form of a merge in the case of sparse matrices; several rank-b
updates can be done together using a multiway merge as described in section 4.3. We
will refer to this as a “SUMMA stage” for the rest of this paper. Here, b is a blocking
parameter, which can be as large as the inner submatrix dimension. A more complete
description of the algorithm and its general implementation for rectangular matrices
and process grids can be found in an earlier work [14].

4.2. In-node multithreaded SpGEMM algorithm. Our previous work [12]
shows that the standard compressed sparse column or row (CSC or CSR) data struc-
tures are too wasteful for storing the local submatrices arising from a 2D decompo-
sition. This is because the local submatrices are hypersparse, meaning that the ratio
of nonzeros to dimension asymptotically approaches zero as the number of proces-
sors increase. The total memory across all processors for the CSC format would be
O(n
√
p+ nnz ), as opposed to O(n+ nnz ) memory to store the whole matrix in CSC

on a single processor.
This observation applies to 3D algorithms as well because their execution is rem-

iniscent of running a 2D algorithm on each processor layer P (:, :, k). Thus, local data
structures used within 2D and 3D algorithms must respect hypersparsity.

Similarly, any algorithm whose complexity depends on matrix dimension, such as
Gustavson’s serial SpGEMM algorithm, is asymptotically too wasteful to be used as
a computational kernel for multiplying the hypersparse submatrices. We use Heap-
SpGEMM, first presented as Algorithm 2 of our earlier work [12], which operates on
the strictly O(nnz ) doubly compressed sparse column (DCSC) data structure, and its
time complexity does not depend on the matrix dimension. DCSC [12] is a further
compressed version of CSC where repetitions in the column pointers array, which arise
from empty columns, are not allowed. Only columns that have at least one nonzero
are represented, together with their column indices. DCSC is essentially a sparse
array of sparse columns, whereas CSC is a dense array of sparse columns. Although
not part of the essential data structure, DCSC can support fast column indexing by
building an AUX array that contains pointers to nonzero columns (columns that have
at least one nonzero element) in linear time.

Our HeapSpGEMM uses a heap-assisted column-by-column formulation whose
time complexity is

nzc(B)∑
j=0

O
(
flops(C(:, j)) log nnz (B(:, j))

)
,

where nzc(B) is the number of columns of B that are not entirely zero, and flops(C(:
, j)) is the number of nonzero multiplications and additions required to generate the



C630 AZAD ET AL.

B"

= x"

C" A"
Heap%size%
nnz(B(:,i))%

Fig. 2. Multiplication of sparse matrices stored by columns [12]. Columns of A are accumulated
as specified by the nonzero entries in a column of B using a priority queue (heap) indexed by the
row indices. The contents of the heap are stored into a column of C once all required columns are
accumulated.

jth column of C. The execution of this algorithm is illustrated in Figure 2, which
differs from Gustavson’s formulation in its use of a heap (priority queue) as opposed
to a SPA.

Our formulation is more suitable for multithreaded execution where we parallelize
over the columns of C, and each thread computes A times a subset of the columns
of B. SPA is an O(n) data structure; hence a multithreaded parallelization over
columns of C of the SPA-based algorithm would require O(nt) space for t threads.
By contrast, since each heap in HeapSpGEMM is of size O(nnz (B(:, j)), the total
temporary memory requirements of our multithreaded algorithm are always strictly
smaller than the space required to hold one of the inputs, namely B.

4.3. Multithreaded multiway merging and reduction. Each stage of Sparse
SUMMA generates partial result matrices that are summed together at the end of all
stages to obtain the final result C. In the 3D algorithm discussed in section 4.4, we
also split C across fibers of 3D grid, and the split submatrices are summed together by
each process on the fiber. To efficiently perform these two summations, we represent
the intermediate matrices as lists of triples, where each triple (i, j, val) stores the row
index, column index, and value of a nonzero entry, respectively. Each list of triples
is kept sorted lexicographically by the (j, i) pair so that the jth column comes before
the (j+1)st column. We then perform the summation of sparse matrices by merging
the lists of triples that represent the matrices. The merging also covers the reduction
of triples with repeated indices.

To perform a k-way merge on k lists of triples T1, T2, . . . , Tk, we maintain a heap
of size k that stores the current lexicographically minimum entry, based on (j, i) pairs,
in each list of triples. In addition to keeping triples, the heap also stores the index
of the source list from where each triple was inserted into the heap. The multiway
merge routine finds the minimum triple (i∗, j∗, val∗) from the heap and merges it into
the result. When the previous triple in the merged list has the same pair of indices
(i∗, j∗), the algorithm simply adds the values of these two triples, reducing the index-
value pairs with repeated indices. If (i∗, j∗, val∗) is originated from Tl, the next triple



MULTIPLE LEVELS OF PARALLELISM IN SpGEMM C631

A::1$

A::2$

A::3$

n pc

Al
lto

Al
l%

Al
lto

Al
l%

C int
ijk = Ailk

l=1

p/c

∑ Bljk

A$ B$ Cint$ C%

x$

x$

x$

=$

=$

=$

!$

!$

!$

Fig. 3. Execution of the Split-3D-SpGEMM algorithm for sparse matrix-matrix multiplication
C = A ·B on a

√
p/c×

√
p/c× c process grid. Matrices A, B, and Cint are shown during the first

stage of the algorithm execution (the broadcast and the local update, i.e., one “SUMMA stage”).

The transition from Cint to C happens via an all-to-all followed by a local merge, after all
√

p/c
SUMMA stages are completed.

from Tl is inserted into the heap. Hence, the time complexity of a k-way merge is

k∑
l=1

O
(
nnz (Tl) log k

)
,

where nnz (Tl) is the number of nonzero entries in Tl. When multithreading is em-
ployed, each thread merges a subset of columns from k lists of triples using the same
k-way merge procedure described earlier. If a thread is responsible for columns jp to
jq, these column indices are identified from each list via a binary search. For better
load balance, we ensure there is enough parallel slackness [46] by splitting the lists
into more parts than the number of threads and merging the columns in each part
by a single thread. In our experiments, we created 4t parts when using t threads and
employed dynamic thread scheduling.

4.4. Split-3D-SpGEMM algorithm. Our parallel algorithm is an iterative
3D algorithm that splits the submatrices along the third process grid dimension (of
length pl). This way, while there is no direct relationship between the size of the third
process dimension and the extra memory required for the input, the extra memory
required by the output is sparsity-structure dependent. If the output is sparse enough
so that there are few or no intermediate products with repeated indices, then no extra
memory is required. Recall that entries with repeated indices arise when more than
one scalar multiplication aikbkj that results in a nonzero value contributes to the same
output element cij . The pseudocode of our algorithm, Split-3D-SpGEMM, is shown

in Algorithm 2 for the simplified case of pr = pc =
√
p/c and pl = c. The execution

of the algorithm is illustrated in Figure 3.
The Broadcast(Airk, P (i, :, k)) syntax means that the owner of Airk becomes



C632 AZAD ET AL.

Algorithm 2 Operation C← AB using Split-3D-SpGEMM.

Input: A ∈ Sm×l,B ∈ Sl×n: matrices on a
√
p/c×

√
p/c× c process grid

Output: C ∈ Sm×n: the product AB, similarly distributed
1: procedure Split-3D-SpGEMM(A,B,C)
2: locinndim = l/

√
pc . inner dimension of local submatrices

3: for all processes P (i, j, k) in parallel do

4: B̂ijk ← AlltoAll(Bij:, P (i, j, :)) . redistribution of B across layers

5: for r = 1 to
√
p/c do . r is the broadcasting process column and row

6: for q = 1 to locinndim /b do . b evenly divides locinndim
7: locindices = (q − 1)b : qb− 1
8: Arem ← Broadcast(Airk(:, locindices), P (i, :, k))

9: Brem ← Broadcast(B̂rjk(locindices, :), P (:, j, k))
10: Cint

ij: ← Cint
ij: + HeapSpGEMM(Arem,Brem)

11: Cint
ijk ← AlltoAll(Cint

ij: , P (i, j, :))

12: Cijk ← LocalMerge(Cint
ijk)

the root and broadcasts its submatrix to all the processes on the ith process row of
the kth process layer. Similarly for Broadcast(B̂rjk, P (:, j, k)), the owner of B̂rjk

broadcasts its submatrix to all the processes on the jth process column of the kth
process layer. In line 7, we find the local column (for A) and row (for B̂) ranges
for matrices that are to be broadcast during that iteration. They are significant only
during the broadcasting processes, which can be determined implicitly from the first
parameter of Broadcast. In practice, we index B̂ by columns as opposed to rows in
order to obtain the best performance from the column-based DCSC data structure. To
achieve this, B̂ gets locally transposed during redistribution in line 4. Using DCSC,
the expected cost of fetching b consecutive columns of a matrix A is b plus the size
(number of nonzeros) of the output. Therefore, the algorithm asymptotically has the
same computation cost for all blocking parameters b.

Cint
ij: is the intermediate submatrix that contains nonzeros that can potentially

belong to all the processes on the (i, j)th fiber P (i, j, :). The AlltoAll call in
line 11 packs those nonzeros and sends them to their corresponding owners in the
(i, j)th fiber. This results in Cint

ijk for each process P (i, j, k), which contains only the

nonzeros that belong to that process. Cint
ijk possibly contains repeated indices (i.e.,

multiple entries with the same index) that need to be merged and summed by the
LocalMerge call in line 12, resulting in the final output.

In contrast to dense matrix algorithms [21, 30, 39, 44], our sparse 3D formulation
requires a more lenient trade-off between bandwidth-related communication costs and
memory requirements. As opposed to increasing the storage requirements by a factor
of pl, the relative cost of the 3D formulation is nnz (Cint)/nnz (C), which is always
upper bounded by flops(A,B)/nnz (C).

4.5. Communication analysis of the Split-3D-SpGEMM algorithm. For
our complexity analysis, the previous work [5] assumed that nonzeros of sparse n-by-
n input matrices are independently and identically distributed, with d > 0 nonzeros
per row and column on the average. The sparsity parameter d simplifies analysis
by making different terms in the complexity comparable to each other. However, in
order to capture the performance of more general matrix-matrix multiplication, we
will analyze parallel complexity directly in terms of flops and the number of nonzeros



MULTIPLE LEVELS OF PARALLELISM IN SpGEMM C633

in A,B, and C without resorting to the sparsity parameter d.
Our algorithm can run on a wide range of configurations on a virtual 3D p =

pr×pc×pl process grid. To simplify the analysis, we again assume that each 2D layer
of the 3D grid is square, i.e., pr = pc, and we use c to denote the third dimension.
Thus, we assume a

√
p/c×

√
p/c× c process grid.

The communication in Algorithm 2 consists of collective operations being per-
formed on disjoint process fibers: simultaneous broadcasts in the first two process
grid dimensions at line 8 and line 9, and simultaneous all-to-alls in the third pro-
cess grid dimension at line 4 and line 11. We use the notation Tbcast(w, p̂, ν, µ) and
Ta2a(w, p̂, ν, µ) to denote the costs of broadcast and all-to-all, where w is the size of
the data (per processor) in matrix elements, p̂ is the number of processes participating
in the collective, ν is the number of simultaneous collectives, and µ is the number of
processes per node. Parameters ν and µ capture resource contention: the number of
simultaneous collectives affects contention for network bandwidth, and the number of
processes per node affects contention for the network interface card on each node.

In general, these cost functions can be approximated via microbenchmarks for a
given machine and MPI implementation, though they can vary over different node
allocations as well. If we ignore resource contention, with ν = 1 and µ = 1, then the
costs are typically modeled [17] as

Tbcast(w, p̂, 1, 1) = α · log p̂+ β · w p̂− 1

p̂

and

Ta2a(w, p̂, 1, 1) = α · (p̂− 1) + β · w p̂− 1

p̂
.

The all-to-all cost assumes a point-to-point algorithm, minimizing bandwidth cost at
the expense of higher latency cost; see [5, section 2.2] for more details on the tradeoffs
within all-to-all algorithms.

The time spent in communication is then given by

Ta2a

(
nnz (B)

p
, c,

p

c
, µ

)
+
n

bc
·Tbcast

(
b

n
· nnz (A)√

p/c
,
√
p/c,
√
pc, µ

)

+
n

bc
·Tbcast

(
b

n
· nnz (B)√

p/c
,
√
p/c,
√
pc, µ

)

+ Ta2a

(
flops(A,B)

p
, c,

p

c
, µ

)
.

The amount of data communicated in the first three terms is the average over all
processes and is accurate only if the nonzeros of the input matrices are evenly dis-
tributed across all blocks. The amount of data communicated in the last term is an
upper bound on the average; the number of output matrix entries communicated by
each process is likely less than the number of flops performed by that process (due to
the reduction of locally repeated indices prior to communication). A lower bound for
the last term is given by replacing flops(A,B) with nnz (C).



C634 AZAD ET AL.

Table 1
Overview of Evaluated Platforms. 1Only 12 threads were used. 2Memory bandwidth is measured

using the STREAM copy benchmark per node.

Cray XK7 (Titan) Cray XC30 (Edison)
Core AMD Interlagos Intel Ivy Bridge

Clock (GHz) 2.2 2.4
Private cache (KB) 16+2048 32+256

DP GFlop/s/core 8.8 19.2
Socket arch. Opteron 6172 Xeon E5-2695 v2

Cores per socket 16 12
Threads per socket 16 241

L3 cache per socket 2×8 MB 30 MB
Node arch. Hypertransport QPI (8 GT/s)

Sockets/node 1 2
STREAM BW2 31 GB/s 104 GB/s

Memory per node 32 GB 64 GB
Interconnect Gemini (3D Torus) Aries (Dragonfly)

If we ignore resource contention, the communication cost is

α ·O
( n
bc

log(p/c) + c
)

+ β ·O
(
nnz (A) + nnz (B)

√
pc

+
flops(A,B)

p

)
,

where we have assumed that nnz (B) ≤ flops(A,B). Note that this expression matches
the costs for Erdős–Rényi matrices, up to the choice of the all-to-all algorithm [5],
where nnz (A) ≈ nnz (B) ≈ dn and flops(A,B) ≈ d2n.

We make several observations based on this analysis of the communication. First,
increasing c (the number of layers) results in less time spent in broadcast collectives
and more time spent in all-to-all collectives (note that if c = 1, then no communi-
cation occurs in all-to-all). Second, increasing b (the blocking parameter) results in
fewer collective calls but the same amount of data communicated; thus, b navigates a
tradeoff between latency cost and local memory requirements (as well as greater pos-
sibility to overlap local computation and communication). Third, for a fixed number
of cores, lower µ (higher value of t) will decrease network interface card contention
and therefore decrease communication time overall.

5. Experimental results. We evaluate our algorithms on two supercomputers:
Cray XC30 at NERSC (Edison) [22] and Cray XK6 at ORNL (Titan) [45]. Architec-
tural details of these computers are listed in Table 1. In our experiments, we ran only
on the CPUs and did not utilize Titan’s GPU accelerators.

In both supercomputers, we used Cray’s MPI implementation, which is based on
MPICH2. Both chip architectures achieve memory parallelism via hardware prefetch-
ing. On Titan, we compiled our code using GCC C++ compiler version 4.6.2 with
-O2 -fopenmp flags. On Edison, we compiled our code using the Intel C++ compiler
(version 14.0.2) with the options -O2 -no-ipo -openmp. In order to ensure better
memory affinity to NUMA nodes of Edison and Titan, we used -cc depth or -cc

numa node options when submitting jobs. For example, to run the 3D algorithm on
a 8×8×4 process grid with 6 threads, we use the following options on Edison: aprun
-n 256 -d 6 -N 4 -S 2 -cc depth. In our experiments, we always allocate cores
needed for a particular configuration of 3D algorithms, i.e., to run the 3D algorithm
on
√
p/c×

√
p/c× c process grid with t threads per process, we allocate pt cores and

run p MPI processes on the allocated cores.
Several software libraries support SpGEMM. For GPUs, CUSP and CUSparse im-



MULTIPLE LEVELS OF PARALLELISM IN SpGEMM C635

Name

Spy plot

Dimensions nnz/row

Description Nonzeros symmetric

mouse gene 45K×45K 642

Gene network 28.9M X

ldoor 952K×952K 48.8

structural problem 46.5M X

dielFilterV3real 1.1M×1.1M 81.2

electromagnetics problem 89.3M X

cage15 5.15M×5.15M 19.3

DNA electrophoresis 99.2M

delaunay n24 16.77M×16.77M 6

Delaunay triangulation 100.6M X

nlpkkt160 8.34M×8.34M 27.5

indefinite KKT matrix 229.5M X

HV15R 2.01M×2.01 141.5

3D engine fan 283M

NaluR3 17.6M×17.6M 26.9

Low Mach fluid flow 474M X

it-2004 41.29M×41.29M 27.8

web crawl of .it domain 1,150M

Fig. 4. Structural information on the sparse matrices used in our experiments. All matrices
are from the University of Florida sparse matrix collection [20], except NaluR3, which is a matrix
from low Mach number, turbulent reacting flow problem [35]. For the Florida matrices, we consider
the explicit zero entries to be nonzeros and update the nnz of the matrices accordingly.

plement SpGEMM. For shared-memory nodes, MKL implements SpGEMM. Trilinos
package implements distributed memory SpGEMM [29], which uses a 1D decomposi-
tion for its sparse matrices. In this paper, we compared the performance of 2D and
3D algorithms with SpGEMM in the Cray–Trilinos package (version 11.6.1.0) avail-
able in NERSC computers, which features significant performance improvements over
earlier versions. Sparse SUMMA is the 2D algorithm that had been published be-
fore [11] without in-node multithreading, and Split-3D-SpGEMM is the 3D algorithm
first presented here. Sometimes we will drop the long names and just use 2D and 3D
for abbreviation.

In our experiments, we used both synthetically generated matrices as well as real



C636 AZAD ET AL.

Table 2
Statistics about squaring real matrices and multiplying each matrix with its restriction operator R.

Matrix (A) nnz(A) nnz(A2) nnz(R) nnz(RTA) nnz(RTAR)

mouse gene 28,967,291 482,594,045 45,101 2,904,560 402,200
ldoor 46,522,475 145,422,935 952,203 2,308,794 118,093
dielFilterV3real 89,306,020 688,649,400 1,102,824 4,316,781 100,126
cage15 99,199,551 929,023,247 5,154,859 46,979,396 17,362,065
delaunay n24 100,663,202 347,322,258 16,777,216 41,188,184 15,813,983
nlpkkt160 229,518,112 1,241,294,184 8,345,600 45,153,930 3,645,423
HV15R 283,073,458 1,768,066,720 2,017,169 10,257,519 1,400,666
NaluR3 473,712,505 2,187,662,967 17,598,889 77,245,697 7,415,297
it-2004 1,150,725,436 14,045,664,641 41,291,594 89,870,859 26,847,490

matrices from several different sources. In section 5.2, we benchmark square matrix
multiplication. We use R-MAT [16], the Recursive MATrix generator, to generate
three different classes of synthetic matrices: (a) G500 matrices representing graphs
with skewed degree distributions from Graph 500 benchmark [1], (b) SSCA matri-
ces from HPCS Scalable Synthetic Compact Applications graph analysis (SSCA#2)
benchmark [2], and (c) ER matrices representing Erdős–Rényi random graphs. We
use the following R-MAT seed parameters to generate these matrices: (a) a = .57,
b = c = .19, and d = .05 for G500, (b) a = .6 and b = c = d = .4/3 for SSCA, and
(c) a = b = c = d = .25 for ER. A scale n synthetic matrix is 2n-by-2n. On average,
G500 and ER matrices have 16 nonzeros, and SSCA matrices have 8 nonzeros per row
and column. We applied a random symmetric permutation to the input matrices to
balance the memory and the computational load. In other words, instead of storing
and computing C = AB, we compute PCPT = (PAPT)(PBPT). All of our experi-
ments are performed on double-precision floating-point inputs, and matrix indices are
stored as 64-bit integers.

In section 5.3, we benchmark the matrix multiplication corresponding to the re-
striction operation that is used in AMG. Since AMG on graphs coming from physical
problems is an important case, we include several matrices from the Florida Sparse
Matrix collection [20] in our experimental analysis. In addition, since AMG restric-
tion is computationally isomorphic to the graph contraction operation performed by
multilevel graph partitioners [28], we include a few matrices representing real-world
graphs.

The characteristics of the real test matrices are shown in Figure 4. Statistics about
squaring real matrices and multiplying each matrix with its restriction operator R
are given in Table 2.

5.1. Intranode performance. Our 3D algorithm exploits intranode parallelism
in two computationally intensive functions: (a) local HeapSpGEMM performed by
each MPI process at every SUMMA stage and (b) multiway merge performed at the
end of all SUMMA stages. As mentioned before, HeapSpGEMM returns a set of
intermediate triples that are kept in memory and merged at the end of all SUMMA
stages. In this section, we only show the intranode scalability of these two functions
and compare them against an MKL and a GNU routine.

5.1.1. Multithreaded HeapSpGEMM performance. We study intranode
scalability of local SpGEMM by running a single MPI process on a socket of a node
and varying the number of threads from one to the maximum number of threads
available in a socket. We compare the performance of HeapSpGEMM with MKL
routine mkl csrmultcsr. To expedite the multiway merge that is called on the output



MULTIPLE LEVELS OF PARALLELISM IN SpGEMM C637

1 2 4 8 16
0.0625

0.125

0.25

0.5

1

2

4

8

16

32

64

Number of Threads

T
im

e 
(s

ec
)

 

 

MKL
HeapSpGEMM

(a) Scale 16 G500 × G500

1 2 4 8 16
0.25

0.5

1

2

4

Number of Threads

T
im

e 
(s

ec
)

 

 

MKL
HeapSpGEMM

(b) cage12 × cage12

Fig. 5. Thread scaling of our HeapSpGEMM and the MKL routine mkl csrmultcsr on 1, 3, 6, 12
threads (with column indices sorted in the increasing order for each row) when squaring a matrix
on a single socket of Edison.

1 2 4 8 16

0.5

1

2

4

Number of Threads

T
im

e 
(s

ec
)

 

 

GNU Multiway Merge
Our Multiway Merge

(a) 4-way merge

1 2 4 8 16
0.5

1

2

4

Number of Threads

T
im

e 
(s

ec
)

 

 

GNU Multiway Merge
Our Multiway Merge

(b) 16-way merge

Fig. 6. Thread scaling of our multiway merge and GNU multiway merge routine
gnu parallel::multiway merge augmented with a procedure that reduces repeated indices: (a) in

squaring scale 21 G500 matrix on 4 × 4 process grid and (b) in squaring scale 26 G500 matrix on
16× 16 process grid on Edison.

of HeapSpGEMM, we always keep column indices sorted in the increasing order for
each row. Hence, we ask mkl csrmultcsr to return sorted output. We show the
performance of HeapSpGEMM and MKL in Figure 5, where these functions are
used to multiply (a) two randomly generated scale 16 G500 matrices and (b) Cage12
matrix by itself. On 12 threads of Edison, HeapSpGEMM achieves 8.5× speedup
for scale 16 G500 and 8.7× speedup for Cage12, whereas MKL achieves 7.1× speedup
for scale 16 G500 and 9.2× speed for Cage12. Hence, HeapSpGEMM scales as well
as MKL. However, for these matrices, HeapSpGEMM runs faster than MKL on any
concurrency with up to 33-fold performance improvement for G500 matrices.

5.1.2. Multithreaded multiway merge performance. On a
√
p/c×

√
p/c×c

process grid, each MPI process performs two multiway merge operations. The first
one merges

√
p/c lists of triples computed in

√
p/c stages of SUMMA and the second

one merges c lists of triples after splitting the previously merged list across layers.
Since both merges are performed by the same function, we experimented with the



C638 AZAD ET AL.

intranode performance of multiway merge on a single layer (c=1). For this experiment,
we allocate 12p cores on Edison and run SUMMA on a

√
p ×√p process grid. Each

MPI process is run on a socket using up to 12 available threads. Figure 6 shows
the merge time needed by MPI rank 0 for a 4-way merge and a 16-way merge when
multiplying two G500 matrices on a 4 × 4 and a 16 × 16 grid, respectively. We
compare the performance of our multiway merge with a GNU multiway merge routine
gnu parallel::multiway merge. However, the latter merge routine simply merges

lists of triples, keeping them sorted by column and row indices, but does not reduce
triples with the same (row, column) pair. Hence, we reduce the repeated indices
returned by gnu parallel::multiway merge by a multithreaded reduction function
and report the total runtime. From Figure 6 we observe that our routine performs
both 4-way and 16-way merges faster than the augmented GNU multiway merge for
G500 matrices. On 12 threads of Edison, our multiway merge attains 8.3× speedup for
4-way merge and 9.5× speedup for 16-way merge. By contrast, the augmented GNU
merge attains 5.4× and 6.2× speedups for 4-way and 16-way merges, respectively. We
observe similar performances for other matrices as well.

5.2. Square sparse matrix multiplication. In the first set of experiments,
we square real matrices from Table 4 and multiply two structurally similar randomly
generated matrices. This square multiplication is representative of the expansion
operation used in the Markov clustering algorithm [47]. We explore an extensive set
of parameters of Sparse SUMMA (2D) and Split-3D-SpGEMM (which is the main
focus of this work), identify optimum parameters on difference levels of concurrency,
empirically explain where Split-3D-SpGEMM gains performance, and then show the
scalability of Split-3D-SpGEMM for a comprehensive set of matrices.

5.2.1. Performance of different variants of 2D and 3D algorithms. At
first, we investigate the impact of multithreading and the 3D algorithm on the perfor-
mance of SpGEMM. For this purpose, we fix the number of cores p and multiply two
sparse matrices with different combinations of thread counts t and number of layers c.
Figure 7 shows strong scaling of squaring of nlpkkt160 matrix on Edison. On lower
concurrency (< 256 cores), multithreading improves the performance of 2D algorithm,
e.g., about 1.5× performance improvement with 6 threads on 256 cores in Figure 7.
However, there is little to no benefit in using a 3D algorithm over a multithreaded
2D algorithm on lower concurrency because the processor grid in a layer becomes too
small for 3D algorithms.

For better resolution on higher concurrency, we have not shown the runtime of
2D algorithms before 64 cores in Figure 7. For the completeness of our discussion, we
briefly discuss the performance of our algorithm on lower concurrency and compare
it against MKL and MATLAB. MATLAB uses an efficient CSC implementation of
Gustavson’s algorithm. The 2D nonthreaded algorithm takes about 800 seconds on
a single core and attains about 50× speedup when we go from 1 core to 256 cores,
and the 2D algorithm with 6 threads attains about 25× speedup when we go from 6
cores to 216 cores. By contrast, on a single core, MKL and MATLAB take about 500
and 830 seconds, respectively, to square randomly permuted nlpkkt160 matrix (in
MATLAB, we keep explicit zero entries1 to obtain the same number of nonzeros shown
in Table 2). Therefore, the serial performance of Sparse SUMMA (2D) is comparable
to that of MKL and MATLAB. The best single node performance is obtained by

1The default MATLAB behavior is to remove entries with zero values when constructing a matrix
using its sparse(i,j,v).



MULTIPLE LEVELS OF PARALLELISM IN SpGEMM C639

64 256 1024 4096 16384
0.25

1

4

16

Number of Cores

T
im

e 
(s

ec
)

nlpkkt160 x nlpkkt160 (on Edison)

 

 

2D (t=1)
2D (t=3)
2D (t=6)
3D (c=4, t=1)
3D (c=4, t=3)
3D (c=8, t=1)
3D (c=8, t=6)
3D (c=16, t=6)

2D
#threads

increasing

3D
#layers &
#threads

 increasing

Fig. 7. Strong scaling of different variants of 2D (Sparse SUMMA) and 3D (Split-3D-
SpGEMM) algorithms when squaring of nlpkkt160 matrix on Edison. Performance benefits of
the 3D algorithm and multithreading can be realized on higher concurrency. The 2D nonthreaded
algorithm attains about 50× speedup when we go from 1 core to 256 cores, and 2D algorithm with 6
threads attains about 25× speedup when we go from 6 cores to 216 cores (not shown in the figure).

multithreaded SpGEMM. Using 24 threads on 24 cores of a single node of Edison,
MKL, and HeapSPGEMM take about 32 and 30 seconds, respectively. We note that
the above performance numbers depend significantly on nonzero structures of the
input matrices. Here, we select nlpkkt160 matrix for discussion because the number
of nonzeros in the square of nlpkkt160 is about 1.2 billion (cf. Table 2), requiring
about 28GB of memory to store the result, which is close to the available single node
memory of Edison.

The performance benefits of the 3D algorithm and multithreading become more
dominant on higher concurrency. In Figure 7, when we increase p from 256 to 16,384
(64× increase), nonthreaded 2D and 3D (c=16, t=6) algorithms run 4× and 22×
faster, respectively. Consequently, on 16,384 cores, Split-3D-SpGEMM with c=16, t=6
multiplies nlpkkt160 matrix 8× faster than nonthreaded 2D algorithm. We observe
a similar trend for other real and randomly generated matrices as well. For example,
Split-3D-SpGEMM with c=16, t=6 runs 10× faster than the Sparse SUMMA (2D)
algorithm when squaring of NaluR3 on 32,764 cores of Edison (see Figure 8), and Split-
3D-SpGEMM with c=16, t=8 runs 9.5× faster than 2D algorithm when multiplying
two scale 26 RMAT matrices on 65,536 cores of Titan (see Figure 9).

In fact, on higher concurrency, the time Split-3D-SpGEMM takes to multiply two
square matrices decreases gradually with the increase of c and t as indicated on the
right side of Figure 7. This trend is also observed in Figures 8 and 9. Therefore, we
expect that using more threads and layers will be beneficial to improve performance



C640 AZAD ET AL.

512 1024 2048 4096 8192 16384 32768
0.5

1

2

4

8

16

32

Number of Cores

T
im

e 
(s

ec
)

 NaluR3 x NaluR3 (on Edison)

 

 

2D (t=1)
2D (t=6)
3D (c=8, t=1)
3D (c=8, t=6)
3D (c=16, t=6)

Fig. 8. Strong scaling of different variants of 2D and 3D algorithms when squaring of NaluR3
matrix on Edison. 3D algorithms are an order of magnitude faster than 2D algorithms on higher
concurrency.

1024 2048 4096 8192 16384 32768 65536
1

2

4

8

16

32

Number of Cores

T
im

e 
(s

ec
)

Scale 26 G500 x G500 (on Titan)

 

 

2D (t=1)
2D (t=8)
3D (c=8, t=1)
3D (c=8, t=8)
3D (c=16, t=8)

Fig. 9. Strong scaling of different variants of 2D and 3D algorithms on Titan when multiplying
two scale 26 G500 matrices. The 3D algorithm and multithreading improve performance of SpGEMM
on higher concurrency.

on even higher concurrency.

5.2.2. Breakdown of runtime. To understand the performance of Split-3D-
SpGEMM, we break down the time spent in communication and computation when
multiplying two G500 graphs of scale 26 and show them in Figure 10 for 8,192 cores



MULTIPLE LEVELS OF PARALLELISM IN SpGEMM C641

c=1 c=2 c=4 c=8 c=16
0

2

4

6

8

10

t=
1

t=
1

t=
1

t=
1

t=
1

t=
2

t=
2

t=
2

t=
2

t=
2

t=
4

t=
4

t=
4

t=
4

t=
4

t=
8

t=
8

t=
8

t=
8

t=
8

T
im

e 
(s

ec
)

 

 

Broadcast
AlltoAll
Local Multiply
Merge Layer
Merge Fiber
Other

Fig. 10. Breakdown of runtime spent by Split-3D-SpGEMM for various (c, t) configurations on
8, 192 cores of Titan when multiplying two scale 26 G500 matrices. The broadcast time (the most
dominating term on high concurrency) decreases gradually with the increase of both c and t, which
is the primary catalyst behind the improved performance of multithreaded 3D algorithms.

c=1 c=2 c=4 c=8 c=16
0

1

2

3

4

5

6

7 t=
1

t=
1

t=
1

t=
1

t=
1

t=
2

t=
2

t=
2

t=
2

t=
2

t=
4

t=
4

t=
4

t=
4

t=
4

t=
8

t=
8

t=
8

t=
8

t=
8

T
im

e 
(s

ec
)

 

 

Broadcast
AlltoAll
Local Multiply
Merge Layer
Merge Fiber
Other

Fig. 11. Breakdown of runtime spent by Split-3D-SpGEMM for various (c, t) configurations on
32, 768 cores of Titan when multiplying two scale 26 G500 matrices.

and Figure 11 for 32,768 cores on Titan. Here, “Broadcast” refers to the time needed
to broadcast pieces of A and B within each layer, “AlltoAll” refers to the communi-
cation time needed to communicate pieces of C across layers, “Local Multiply” is the
time needed by multithreaded HeapSpGEMM, “Merge Layer” is the time to merge√
p/c lists of triples computed in

√
p/c stages of SUMMA within a layer, and “Merge

Fiber” is the time to merge c lists of triples after splitting pieces of C across processor
fibers. For a fixed number of cores, the broadcast time gradually decreases with the
increase of both c and t, because as we increase c and/or t, the number of MPI pro-
cesses participating in broadcast within each process layer decreases. For example,
in Figure 11, the broadcast time decreases by more than 5× from the leftmost bar



C642 AZAD ET AL.

256 484 1,024 2,025 4,096 8,100 16,384 32,761
0

5

10

15

20

25

30

35

40

Number of Cores

T
im

e 
(s

ec
)

 

 

Broadcast
AlltoAll
Local Multiply
Merge Layer
Merge Fiber
Other

(a) NaluR3 × NaluR3 (c = 1, t = 1)

384 864 1,536 3,456 7,776 16,224 31,104
0

2

4

6

8

10

12

14

Number of Cores

T
im

e 
(s

ec
)

 

 

Broadcast
AlltoAll
Local Multiply
Merge Layer
Merge Fiber
Other

(b) NaluR3 × NaluR3 (c = 16, t = 6)

Fig. 12. Breakdown of runtime spent by (a) Sparse SUMMA (2D) algorithm with c = 1, t = 1
and (b) Split-3D-SpGEMM algorithm with c = 16, t = 6 to square NaluR3 on Edison.

512 1024 2048 4096 8192 16384 32768
0.125

0.25

0.5

1

2

4

8

16

32

Number of Cores

T
im

e 
(s

ec
)

 

 

ldoor
delaunay_n24
cage15
dielFilterV3real
mouse_gene
HV15R
it−2004

Fig. 13. Strong scaling of Split-3D-SpGEMM with c = 16, t = 6 when squaring real matrices
on Edison. Large (e.g., it-2004) and dense (e.g., mouse gene and HV15R) matrices scale better than
small and sparse (e.g., delaunay n24) matrices.

to the rightmost bar. Since broadcast is the dominating term on higher concurrency,
reducing it improves the overall performance of SpGEMM. However, for a fixed num-
ber of cores, the All2All time increases with c due to the increased processor count
on the fiber. The All2All time also increases with t because each MPI process owns
a bigger portion of the data, increasing the All2All communication cost per process.
Therefore, increased All2All time might nullify the advantage of reduced broadcast
time when we increase c and t, especially on lower concurrency. For example, using
c>4 does not reduce the total communication time on 8,192 as shown in Figure 10.

Figures 10 and 11 reveal that shorter communication time needed by Split-3D-
SpGEMM makes it faster than Sparse SUMMA (2D) on higher concurrency. Fig-
ure 12(b) demonstrates that both communication and computation time scale well
for Split-3D-SpGEMM with c = 16, t = 6 when squaring NaluR3 on Edison. By
contrast, communication time does not scale well for Sparse SUMMA (Figure 12(a)),
which eventually limits the scalability of 2D algorithms on higher concurrency.

5.2.3. Strong scaling of Split-3D-SpGEMM. In this subsection, we show
the strong scaling of Split-3D-SpGEMM with the best parameters on higher concur-



MULTIPLE LEVELS OF PARALLELISM IN SpGEMM C643

2048 4096 8192 16384 32768 65536
0.25

0.5

1

2

4

8

16

32

Number of Cores

T
im

e 
(s

ec
)

G500 x G500 (on Titan with c=16, t=8)

 

 

Scale 24
Scale 25
Scale 26
Scale 27

Fig. 14. Strong scaling of Split-3D-SpGEMM with c = 16, t = 8 on Titan when multiplying two
G500 matrices.

2048 4096 8192 16384 32768 65536
0.5

1

2

4

8

16

32

Number of Cores

T
im

e 
(s

ec
)

ER x ER (on Titan with c=16, t=8 )

 

 

Scale 24
Scale 25
Scale 26
Scale 27

(a) ER

512 1024 2048 4096 8192 16384 32768 65536
0.125

0.25

0.5

1

2

4

8

16

32

Number of Cores

T
im

e 
(s

ec
)

SSCA x SSCA (on Titan with c=16, t=8 )

 

 

Scale 24
Scale 25
Scale 26
Scale 27

(b) SSCA

Fig. 15. Strong scaling of Split-3D-SpGEMM with c = 16, t = 8 on Titan when multiplying two
matrices (a) ER and (b) SSCA.

rency (c = 16, t = 6 on Edison, and c = 16, t = 8 on Titan) when multiplying real
and random matrices. Figure 13 shows the strong scaling of Split-3D-SpGEMM when
squaring seven real matrices on Edison. When we go from 512 to 32,768 cores (64×
increase of cores), the average speedup of all matrices in Table 4 is about 27× (min:
9× for delaunay n24, max: 52× for mouse gene, standard deviation: 16). We ob-
serve that Split-3D-SpGEMM scales better when multiplying larger (e.g., it-2004)
and denser (e.g., mouse gene and HV15R) matrices because of the availability of more
work. By contrast, delaunay n24 is the sparsest matrix in Table 4 with 6 nonzeros
per column, and Split-3D-SpGEMM does not scale well beyond 8,192 processor when
squaring this matrix.

Next, we discuss strong scaling of Split-3D-SpGEMM for randomly generated
square matrices whose dimensions range from 224 to 227. Figures 14, 15a, and 15b
show the strong scaling of multiplying two structurally similar random matrices from
classes G500, ER, and SSCA, respectively. Once again, Split-3D-SpGEMM scales



C644 AZAD ET AL.

better when multiplying larger (e.g., scale 27) and denser matrices (G500 and ER
matrices have 16 nonzeros per row, but SSCA matrices have 8 nonzeros per row).
Multiplying matrices with more nonzeros per row and column is expected to yield
better scalability for these matrices.

5.3. Multiplication with the restriction operator. Multilevel methods are
widely used in the solution of numerical and combinatorial problems. Such methods
construct smaller problems by successive coarsening. The simplest coarsening is graph
contraction: a contraction step chooses two or more vertices in the original graph G
to become a single aggregate vertex in the contracted graph G′. The edges of G that
used to be incident to any of the vertices forming the aggregate become incident to the
new aggregate vertex in G′. Constructing coarser representations in AMG or graph
partitioning [28] is a generalized graph contraction operation. This operation can
be performed by multiplying the matrix representing the original fine domain (grid,
graph, or hypergraph) by the restriction operator from the left and by the transpose
of the restriction from the right [25].

In our experiments, we construct the restriction matrix R using distance-2 max-
imal independent set computation, as described by Bell, Dalton, Olson [7]. An inde-
pendent set in a graph G(V,E) is a subset of its vertices in which no two are neighbors.
A maximal independent set (MIS) is an independent set that is not a subset of any
other independent set. MIS-2 is a generalization of MIS where no two vertices are
distance-2 neighbors. In this scheme, each aggregate is defined by a vertex in MIS-2
and consists of the union of that vertex with its distance-1 neighbors.

The linear algebraic formulation of Luby’s randomized MIS algorithm [37] was
originally described earlier [38]. Here, we generalize it to distance-2 case, which is
shown in Algorithm 3 at a high level. MxV signifies matrix-vector multiplication.
EwiseAdd performs elementwise addition between two vectors, which amounts to a
union operation among the index sets of those vectors. EwiseMult is the element-
wise multiplication, which amounts to an intersection operation among the index
sets. For both EwiseAdd and EwiseMult, wherever the index sets of two vectors
overlap, the values for the overlapping indices are “added” according to the binary
function that is passed as the third parameter. Line 5 finds the smallest random
value among a vertex’s neighbors using the semiring, where scalar multiplication is
overloaded with the operation that returns the second operand and the scalar addition
is overloaded with the minimum operation. Line 6 extends this to find the smallest
random value among the 2-hop neighborhood. Line 8 returns the new additions to
MIS-2 if the random value of the second vector (cands) is smaller. Line 9 removes
those new additions, newS, from the set of candidates. The rest of the computation
is self-explanatory.

Once the set mis2 is computed, we construct the restriction matrix R by having
each column represent the union of a vertex in mis2 with its distance-1 neighborhood.
The neighborhood is calculated using another MxV operation. The remaining sin-
gletons are assigned to an aggregate randomly in order to ensure good load balance.
Consequently, R is of dimension n× size(mis2).

5.3.1. Performance of multiplying a matrix with the restriction oper-
ator. Figure 16 shows the strong scaling of different variants of 2D and 3D algo-
rithms when computing RTA with NaluR3 matrix on Edison. Split-3D-SpGEMM
with c = 16, t = 6 attains 7.5× speedup when we go from 512 cores to 32,768 cores,
but other variants of 2D and 3D algorithms achieve lower speedups. Comparing
the scaling of squaring NaluR3 from Figure 8, we observe moderate scalability of



MULTIPLE LEVELS OF PARALLELISM IN SpGEMM C645

Algorithm 3 Pseudocode for MIS-2 computation in the language of matrices.

Input: A ∈ Sn×n, cands ∈ S1×n
Output: mis2 ∈ S1×n: distance-2 maximal independent set, empty in the beginning

1: procedure MIS2(A, cands,mis2)
2: cands = 1 : n . all vertices are initially candidates
3: while nnz(cands) > 0 do
4: Apply(cands,Rand()) . generate random values
5: minadj1←MxV(A, cands,Semiring(min, select2nd))
6: minadj2←MxV(A,minadj1,Semiring(min, select2nd))
7: minadj← EwiseAdd(minadj1,minadj2,Min()) . union of minimums
8: newS← EwiseMult(minadj, cands, Is2ndSmaller())
9: cands← EwiseMult(cands, newS, select1st())

10: newS adj1←MxV(A, newS,Semiring(min, select2nd))
11: newS adj2←MxV(A, newS adj1,Semiring(min, select2nd))
12: newS adj← EwiseAdd(newS adj1, newS adj2,Any()) . union of neighbors
13: cands← EwiseMult(cands, newS adj, select1st())
14: mis2← EwiseAdd(mis2, newS, select1st()) . add newS to mis2

512 1024 2048 4096 8192 16384 32768
0.25

0.5

1

2

4

8

16

Number of Cores

T
im

e 
(s

ec
)

 RTA with NaluR3 (on Edison)

 

 

2D (t=1)
2D (t=6)
3D (c=8, t=1)
3D (c=8, t=6)
3D (c=16, t=6)

Fig. 16. Strong scaling of different variants of 2D and 3D algorithms to compute RTA for
NaluR3 matrix on Edison.

all variants of 2D and 3D algorithms when multiplying NaluR3 with the restriction
matrix. This is because the number of nonzeros in RTA is only 77 million, whereas
nnz (A2) = 2.1 billion for NaluR3 matrix (see Table 2). Hence, unlike squaring NaluR3,
RTA computation does not have enough work to utilize thousands of cores. However,
the performance gap between 2D and 3D algorithms is larger when computing RTA.
Figure 16 shows that Split-3D-SpGEMM with c = 16, t = 6 runs 8× and 16× faster
than the nonthreaded 2D algorithm on 512 and 32,768 cores, respectively.

Figure 17 shows the breakdown of runtime spent by Split-3D-SpGEMM (c =
16, t = 6) to compute RTA for (a) nlpkkt160 and (b) NaluR3 matrices on Edison.



C646 AZAD ET AL.

384 864 1,536 3,456 7,776 16,224 31,104
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of Cores

T
im

e 
(s

ec
)

 

 

Broadcast
AlltoAll
Local Multiply
Merge Layer
Merge Fiber
Other

(a) nlpkkt160

384 864 1,536 3,456 7,776 16,224 31,104
0

0.5

1

1.5

2

2.5

Number of Cores

T
im

e 
(s

ec
)

 

 

Broadcast
AlltoAll
Local Multiply
Merge Layer
Merge Fiber
Other

(b) NaluR3

Fig. 17. Breakdown of runtime spent by Split-3D-SpGEMM to compute RTA for (a) nlpkkt160
and (b) NaluR3 matrices with c = 16, t = 6 on Edison. Both communication and computation time
scale well as we increase the number of cores.

512 1024 2048 4096 8192 16384 32768
0.03125

0.0625

0.125

0.25

0.5

1

2

4

Number of Cores

T
im

e 
(s

ec
)

 

 

ldoor
mouse_gene
dielFilterV3real
delaunay_n24
cage15
HV15R
it−2004

Fig. 18. Strong scaling of Split-3D-SpGEMM to compute RTA with c = 16, t = 6 for seven
real matrices on Edison.

We observe that when computing RTA, Split-3D-SpGEMM spends a small fraction
of total runtime in the multiway merge routine. For example, on 384 cores in Fig-
ure 17(b), 37% of total time is spent on computation, and only about 7% of total
time is spent on multiway merge. This is because nnz (RTA) is smaller than nnz(A)
for NaluR3 matrix (also true for other matrices in Table 2). Therefore, in computing
RTA, nnz (RTA) dominates the runtime of multiway merge while nnz (A) dominates
the local multiplication, making the former less computationally intensive. Hence,
despite good scaling of local multiplication, the overall runtime is dominated by com-
munication even on lower concurrency, thereby limiting the overall scaling on tens of
thousands of cores. By contrast, Split-3D-SpGEMM spends 64% of its total runtime
in computation (with 40% of the total runtime spent in multiway merge) when squar-
ing NaluR3 on 384 cores of Edison (Figure 17(b)). Hence, the squaring of matrices
shows better strong scaling than multiplying matrices with restriction operators.



MULTIPLE LEVELS OF PARALLELISM IN SpGEMM C647

384 864 1,536 3,456 7,776 16,224
0

0.02

0.04

0.06

0.08

0.1

0.12

Number of Cores

T
im

e 
(s

ec
)

 

 

Broadcast
AlltoAll
Local Multiply
Merge Layer
Merge Fiber
Other

(a) nlpkkt160

384 864 1,536 3,456 7,776 16,224
0

0.05

0.1

0.15

0.2

0.25

Number of Cores

T
im

e 
(s

ec
)

 

 

Broadcast
AlltoAll
Local Multiply
Merge Layer
Merge Fiber
Other

(b) NaluR3

Fig. 19. Breakdown of runtime spent by Split-3D-SpGEMM to multiply RTA and R for (a)
nlpkkt160 and (b) NaluR3 matrices with c = 16, t = 6 on Edison.

4 16 64 256 1024 4096
0.25

1

4

16

64

Number of Cores

T
im

e 
(s

ec
)

 

 

EpetraExt
2D (t=1)
3D (c=8, t=6)

(a) nlpkkt160

4 16 64 256 1024 4096
0.5

2

8

32

128

Number of Cores

T
im

e 
(s

ec
)

 

 

EpetraExt
2D (t=1)
3D (c=8, t=6)

(b) NaluR3

Fig. 20. Comparison of Trilinos’s EpetraExt package with 2D and 3D algorithms when com-
puting AR for nlpkkt160 and NaluR3 matrices on Edison.

Finally, Figure 18 shows the strong scaling of Split-3D-SpGEMM (c = 16, t = 6) to
compute RTA for other real matrices. Split-3D-SpGEMM attains moderate speedups
of up to 10× when we go from 512 cores to 32,768 cores because of low computational
intensity in the computation of RTA.

5.3.2. Performance of multiplying RTA and R. Figure 19 shows the scaling
and breakdown of runtime spent by Split-3D-SpGEMM (c = 16, t = 6) to multiply
RTA and R for (a) nlpkkt160 and (b) NaluR3 matrices on Edison. Even though
(RTA)R computation can still obtain limited speedups on higher concurrency, the
runtimes in Figure 19 and the number of nonzeros in RTAR suggest that we might
want to perform this multiplication on lower concurrency if necessary without degrad-
ing the overall performance.

5.4. Comparison with Trilinos. We compared the performance of our algo-
rithms with the distributed-memory SpGEMM available in the EpetraExt package
of Trilinos. We observed that SpGEMM in EpetraExt runs up to 3× faster when
we compute AR instead of RTA, especially on lower concurrency. Hence, we only
consider the runtime of AR so that we compare against the best configuration of



C648 AZAD ET AL.

EpetraExt. By contrast, our 2D and 3D algorithms are less sensitive to the order of
matrix multiplication, with less than 1.5× performance improvement in computing
AR over RTA. We use a random partitioning of rows to processors for EpetraExt
runs.

Figure 20 shows the strong scaling of EpetraExt’s SpGEMM implementation and
our 2D/3D algorithms when computing AR on Edison. On low concurrency, Epe-
traExt runs slower than the 2D algorithm, but the former eventually outperforms the
latter on higher concurrency. However, on all concurrencies, the 3D algorithm with
c = 8, t = 6 runs at least twice as fast as EpetraExt for these two matrices. We
note that these matrices are structured with good separators, where 1D decomposi-
tion as used in EpetraExt usually performs better. However, given the limitations of
1D decomposition for matrices without good separators, EpetraExt is not expected
to perform well for graphs with power-law distributions [9]. We have tried scale 24
Graph500 matrices in EpetraExt, but received segmentation fault in I/O. We also
tried other larger matrices, but EpetraExt could not finish reading the matrices from
files in 24 hours, the maximum allocation limit for small jobs in Edison. Hence, we
compare with EpetraExt on problems where it excels (AMG style reduction with
matrices having good separators) and even there our 3D algorithm does comparably
better. We could have separated the diagonal for better scaling performance [14], but
we decided not to, as it would break the “black box” nature of our algorithm.

6. Conclusions and future work. We presented the first implementation of
the 3D parallel formulation of sparse matrix-matrix multiplication (SpGEMM). Our
implementation exploits internode parallelism within a third processor grid dimension
as well as thread-level parallelism within the node. It achieves higher performance
compared to other available formulations of distributed-memory SpGEMM, without
compromising flexibility in the numbers of processors that can be utilized. In partic-
ular, by varying the third processor dimension as well as the number of threads, one
can run our algorithm on many processor counts.

The percentage of time spent in communication (data movement) is significantly
lower in our new implementation compared to a 2D implementation. This is advan-
tageous for multiple reasons. First, the bandwidth for data movement is expected
to increase at a slower rate than other system components, providing a future bot-
tleneck. Second, communication costs more energy than computation [32, Figure 5].
Lastly, communication can be hidden by overlapping it with local computation, up to
the time it takes to do the local computation. For example, up to 100% performance
increase can be realized with overlapping if the communication costs 50% of overall
time. However, if the communication costs 80% of the time, then overlapping can only
increase performance by up to 25%. Overlapping communication with computation
as well as exploiting task-based programming models are subjects for future work.

Our 3D implementation inherits many desirable properties of the 2D matrix de-
composition, such as resiliency against matrices with skewed degree distribution that
are known to be very challenging for traditional 1D distributions and algorithms.
However, the 3D formulation also avoids some of the pitfalls of 2D algorithms, such
as their relatively poor performance on structured matrices (due to load imbalance
that occurs on the processor on the diagonal), by exploiting parallelism along the third
dimension. This enabled our algorithm to beat a highly tuned 1D implementation
(the new EpetraExt) on structured matrices, without resorting to techniques such as
matrix splitting that were previously required of the 2D algorithm for mitigating the
aforementioned load imbalance [14].



MULTIPLE LEVELS OF PARALLELISM IN SpGEMM C649

Our experimental results indicate that at large concurrencies, performance of
the internode communication collectives becomes the determinant factor in overall
performance. Even though work on the scaling of collectives on subcommunicators
is under way, we believe that the effects of simultaneous communication on several
subcommunicators are not well studied and should be the subject of further research.

Acknowledgment. We sincerely thank the anonymous reviewers whose feed-
back greatly improved the presentation and clarity of this paper.

REFERENCES

[1] Graph500 Benchmark, www.graph500.org.
[2] SSCA Benchmark, http://www.graphanalysis.org/benchmark/.
[3] K. Akbudak and C. Aykanat, Simultaneous input and output matrix partitioning for outer-

product–parallel sparse matrix-matrix multiplication, SIAM J. Sci. Comput., 36 (2014),
pp. C568–C590, doi:10.1137/13092589X.

[4] A. Azad, A. Buluç, and J. R. Gilbert, Parallel triangle counting and enumeration using
matrix algebra, in Proceedings of the IPDPSW, Workshop on Graph Algorithm Build-
ing Blocks (GABB), IEEE, Washington, DC, 2015, pp. 804–811, https://doi.org/10.1109/
IPDPSW.2015.75.

[5] G. Ballard, A. Buluç, J. Demmel, L. Grigori, B. Lipshitz, O. Schwartz, and S. Toledo,
Communication optimal parallel multiplication of sparse random matrices, in Proceed-
ings of the 25th Annual ACM Symposium on Parallelism in Algorithms and Archi-
tectures (SPAA 2013), Montreal, Canada, ACM, New York, 2013, pp. 222–231, https:
//doi.org/10.1145/2486159.2486196.

[6] G. Ballard, A. Druinsky, N. Knight, and O. Schwartz, Brief announcement: Hypergraph
partitioning for parallel sparse matrix-matrix multiplication, in Proceedings of the 27th
ACM on Symposium on Parallelism in Algorithms and Architectures (SPAA), ACM, New
York, 2015, pp. 86–88, https://doi.org/10.1145/2755573.2755613.

[7] N. Bell, S. Dalton, and L. N. Olson, Exposing fine-grained parallelism in algebraic multi-
grid methods, SIAM J. Sci. Comput., 34 (2012), pp. C123–C152, https://doi.org/10.1137/
110838844.

[8] N. Bock and M. Challacombe, An optimized sparse approximate matrix multiply for matri-
ces with decay, SIAM J. Sci. Comput., 35 (2013), pp. C72–C98, https://doi.org/10.1137/
120870761.

[9] E. G. Boman, K. D. Devine, and S. Rajamanickam, Scalable matrix computations on large
scale-free graphs using 2d graph partitioning, in Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis, ACM, New York,
2013, 50, https://doi.org/10.1145/2503210.2503293.

[10] U. Borštnik, J. VandeVondele, V. Weber, and J. Hutter, Sparse matrix multiplication:
The distributed block-compressed sparse row library, Parallel Comput., 40 (2014), pp. 47–
58.

[11] A. Buluç and J. R. Gilbert, Challenges and advances in parallel sparse matrix-matrix mul-
tiplication, in Proceedings of the 37th International Conference on Parallel Processing,
ICPP’08, Portland, OR, IEEE, Washington, DC, 2008, pp. 503–510, https://doi.org/10.
1109/ICPP.2008.45.

[12] A. Buluç and J. R. Gilbert, On the representation and multiplication of hypersparse ma-
trices, in Proceedings of the IEEE International Symposium on Parallel & Distributed
Processing IPDPS’08, IEEE Computer Society, 2008, pp. 1–11.

[13] A. Buluç and J. R. Gilbert, The Combinatorial BLAS: Design, implementation, and appli-
cations, Int. J. High Perform. Comput. Appl., 25 (2011), pp. 496–509.

[14] A. Buluç and J. R. Gilbert, Parallel sparse matrix-matrix multiplication and indexing:
Implementation and experiments, SIAM J. Sci. Comput., 34 (2012), pp. C170–C191,
https://doi.org/10.1137/110848244.

[15] A. Buluç, J. R. Gilbert, and V. B. Shah, Implementing sparse matrices for graph algorithms,
in Graph Algorithms in the Language of Linear Algebra, J. Kepner and J. R. Gilbert, eds.,
SIAM, Philadelphia, 2011, https://doi.org/10.1137/1.9780898719918.ch13.

[16] D. Chakrabarti, Y. Zhan, and C. Faloutsos, R-MAT: A recursive model for graph mining,
in SDM, M. W. Berry, U. Dayal, C. Kamath, and D. B. Skillicorn, eds., SIAM, Philadelphia,
2004, https://doi.org/10.1137/1.9781611972740.43.

www.graph500.org
http://www.graphanalysis.org/benchmark/
doi:10.1137/13092589X
https://doi.org/10.1109/IPDPSW.2015.75
https://doi.org/10.1109/IPDPSW.2015.75
https://doi.org/10.1145/2486159.2486196
https://doi.org/10.1145/2486159.2486196
https://doi.org/10.1145/2755573.2755613
https://doi.org/10.1137/110838844
https://doi.org/10.1137/110838844
https://doi.org/10.1137/120870761
https://doi.org/10.1137/120870761
https://doi.org/10.1145/2503210.2503293
https://doi.org/10.1109/ICPP.2008.45
https://doi.org/10.1109/ICPP.2008.45
https://doi.org/10.1137/110848244
https://doi.org/10.1137/1.9780898719918.ch13
https://doi.org/10.1137/1.9781611972740.43


C650 AZAD ET AL.

[17] E. Chan, M. Heimlich, A. Purkayastha, and R. A. van de Geijn, Collective communication:
Theory, practice, and experience, Concurr. Comput., 19 (2007), pp. 1749–1783, https:
//doi.org/cpe.v19:13.

[18] S. Dalton, L. Olsen, and N. Bell, Optimizing sparse matrix-matrix multiplication for the
GPU, ACM Trans. Math. Softw., 41 (2015), 25.

[19] T. A. Davis, Direct Methods for Sparse Linear Systems, SIAM, Philadelphia, 2006.
[20] T. A. Davis and Y. Hu, The University of Florida sparse matrix collection, ACM Trans. Math.

Softw., 38 (2011), 1.
[21] E. Dekel, D. Nassimi, and S. Sahni, Parallel matrix and graph algorithms, SIAM J. Comput.,

10 (1981), pp. 657–675, https://doi.org/10.1137/0210049.
[22] Edison Website, http://www.nersc.gov/users/computational-systems/edison.
[23] R. A. V. D. Geijn and J. Watts, SUMMA: Scalable universal matrix multiplication

algorithm, Concurr. Comput., 9 (1997), pp. 255–274, https://doi.org/10.1002/(SICI)
1096-9128(199704)9:4〈255::AID-CPE250〉3.0.CO;2-2.

[24] J. R. Gilbert, C. Moler, and R. Schreiber, Sparse matrices in MATLAB: Design and
implementation, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 333–356, https://doi.org/10.
1137/0613024.

[25] J. R. Gilbert, S. Reinhardt, and V. B. Shah, A unified framework for numerical and
combinatorial computing, Comput. Sci. Eng., 10 (2008), pp. 20–25, https://doi.org/10.
1109/MCSE.2008.45.

[26] F. Gremse, A. Hofter, L. O. Schwen, F. Kiessling, and U. Naumann, GPU-accelerated
sparse matrix-matrix multiplication by iterative row merging, SIAM J. Sci. Comput., 37
(2015), pp. C54–C71, https://doi.org/10.1137/130948811.

[27] F. G. Gustavson, Two fast algorithms for sparse matrices: Multiplication and permuted trans-
position, ACM Trans. Math. Softw., 4 (1978), pp. 250–269.

[28] B. Hendrickson and R. Leland, A multilevel algorithm for partitioning graphs, in Proceedings
of the 1995 ACM/IEEE Conference on Supercomputing (Supercomputing ’95), New York,
ACM, New York, 1995, 28, https://doi.org/10.1145/224170.224228.

[29] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda,
R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K.
Thornquist, R. S. Tuminaro, J. M. Willenbring, A. Williams, and K. S. Stanley,
An overview of the Trilinos project, ACM Trans. Math. Softw., 31 (2005), pp. 397–423.

[30] D. Irony, S. Toledo, and A. Tiskin, Communication lower bounds for distributed-memory
matrix multiplication, J. Parallel Distrib. Comput., 64 (2004), pp. 1017–1026, https://doi.
org/10.1016/j.jpdc.2004.03.021.

[31] J. Kepner and J. Gilbert, eds., Graph Algorithms in the Language of Linear Algebra, SIAM,
Philadelphia, 2011, https://doi.org/10.1137/1.9780898719918.

[32] P. Kogge and J. Shalf, Exascale computing trends: Adjusting to the “new normal” for
computer architecture, Comput. Sci. Eng., 15 (2013), pp. 16–26, https://doi.org/10.1109/
MCSE.2013.95.

[33] W. Kohn, Density functional and density matrix method scaling linearly with the number of
atoms, Phys. Rev. Lett., 76 (1996), pp. 3168–3171, https://doi.org/10.1103/PhysRevLett.
76.3168.

[34] V. P. Kumar and A. Gupta, Analyzing scalability of parallel algorithms and architectures, J.
Parallel Distrib. Comput., 22 (1994), pp. 379–391, https://doi.org/10.1006/jpdc.1994.1099.

[35] P. Lin, M. Bettencourt, S. Domino, T. Fisher, M. Hoemmen, J. Hu, E. Phipps,
A. Prokopenko, S. Rajamanickam, C. Siefert, et al., Towards extreme-scale sim-
ulations for low mach fluids with second-generation trilinos, Parallel Process. Lett., 24
(2014), 1442005.

[36] W. Liu and B. Vinter, A framework for general sparse matrix-matrix multiplication on GPUs
and heterogeneous processors, J. Parallel Distrib. Comput., 85 (2015), pp. 47–61, https:
//doi.org/10.1016/j.jpdc.2015.06.010.

[37] M. Luby, A simple parallel algorithm for the maximal independent set problem, SIAM J.
Comput., 15 (1986), pp. 1036–1053, https://doi.org/10.1137/0215074.

[38] A. Lugowski, S. Kamil, A. Buluç, S. Williams, E. Duriakova, L. Oliker, A. Fox, and
J. R. Gilbert, Parallel processing of filtered queries in attributed semantic graphs, J.
Parallel Distrib. Comput., 79 (2015), pp. 115–131, https://doi.org/10.1016/j.jpdc.2014.08.
010.

[39] R. v. d. G. M. Schatz, J. Poulson, Scalable Universal Matrix Multiplication Algorithms: 2D
and 3D Variations on a Theme, Tech. report, UT Austin, Austin, TX, 2013.

https://doi.org/cpe.v19:13
https://doi.org/cpe.v19:13
https://doi.org/10.1137/0210049
http://www.nersc.gov/users/computational-systems/edison
https://doi.org/10.1002/(SICI)1096-9128(199704)9:4<255::AID-CPE250>3.0.CO;2-2
https://doi.org/10.1002/(SICI)1096-9128(199704)9:4<255::AID-CPE250>3.0.CO;2-2
https://doi.org/10.1137/0613024
https://doi.org/10.1137/0613024
https://doi.org/10.1109/MCSE.2008.45 
https://doi.org/10.1109/MCSE.2008.45 
https://doi.org/10.1137/130948811
https://doi.org/10.1145/224170.224228
https://doi.org/10.1016/j.jpdc.2004.03.021
https://doi.org/10.1016/j.jpdc.2004.03.021
https://doi.org/10.1137/1.9780898719918
https://doi.org/10.1109/MCSE.2013.95
https://doi.org/10.1109/MCSE.2013.95
https://doi.org/10.1103/PhysRevLett.76.3168
https://doi.org/10.1103/PhysRevLett.76.3168
https://doi.org/10.1006/jpdc.1994.1099
https://doi.org/10.1016/j.jpdc.2015.06.010
https://doi.org/10.1016/j.jpdc.2015.06.010
https://doi.org/10.1137/0215074
https://doi.org/10.1016/j.jpdc.2014.08.010
https://doi.org/10.1016/j.jpdc.2014.08.010


MULTIPLE LEVELS OF PARALLELISM IN SpGEMM C651

[40] T. Mattson, D. Bader, J. Berry, A. Buluç, J. Dongarra, C. Faloutsos, J. Feo,
J. Gilbert, J. Gonzalez, B. Hendrickson, et al., Standards for graph algorithm prim-
itives, in Proceedings of the High Performance Extreme Computing Conference (HPEC),
2013, IEEE, Washington, DC, pp. 1–2, https://doi.org/10.1109/HPEC.2013.6670338.

[41] M. McCourt, B. Smith, and H. Zhang, Sparse matrix-matrix products executed through
coloring, SIAM J. Matrix Anal. Appl., 36 (2015), pp. 90–109, https://doi.org/10.1137/
13093426X.

[42] M. M. A. Patwary, N. R. Satish, N. Sundaram, J. Park, M. J. Anderson, S. G. Vad-
lamudi, D. Das, S. G. Pudov, V. O. Pirogov, and P. Dubey, Parallel efficient sparse
matrix-matrix multiplication on multicore platforms, in High Performance Computing,
Springer, Basel, 2015, pp. 48–57, https://doi.org/10.1007/978-3-319-20119-1 4.

[43] V. B. Shah, An Interactive System for Combinatorial Scientific Computing with an Emphasis
on Programmer Productivity, Ph.D. thesis, University of California, Santa Barbara, 2007.

[44] E. Solomonik and J. Demmel, Communication-Optimal Parallel 2.5d Matrix Multiplication
and lu-Factorization Algorithms, in Euro-Par 2011 Parallel Processing, Lecture Notes in
Comput. Sci. 6853, Springer, Berlin, Heidelberg, 2011, pp. 90–109, https://doi.org/10.
1007/978-3-642-23397-5 10.

[45] Titan Website, https://www.olcf.ornl.gov/titan/.
[46] L. G. Valiant, Optimally universal parallel computers, in Opportunities and Constraints of

Parallel Computing, Springer-Verlag, New York, 1989, pp. 155–158, https://doi.org/10.
1007/978-1-4613-9668-0 39.

[47] S. van Dongen, Graph Clustering by Flow Simulation, Ph.D. thesis, University of Utrecht,
Utrecht, The Netherlands, 2000.

[48] I. Yamazaki and X. Li, On techniques to improve robustness and scalability of a parallel
hybrid linear solver, in High Performance Computing for Computational Science VECPAR,
2010, Lecture Notes in Comput. Sci. 6449, Springer, Berlin, Heidelberg, 2011, pp. 421–434,
https://doi.org/10.1007/978-3-642-19328-6 38.

[49] R. Yuster and U. Zwick, Detecting short directed cycles using rectangular matrix multipli-
cation and dynamic programming, in Proceedings of the Fifteenth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA ’04), SIAM, Philadelphia, 2004, pp. 254–260.

https://doi.org/10.1109/HPEC.2013.6670338 
https://doi.org/10.1137/13093426X
https://doi.org/10.1137/13093426X
https://doi.org/10.1007/978-3-319-20119-1_4
https://doi.org/10.1007/978-3-642-23397-5_10
https://doi.org/10.1007/978-3-642-23397-5_10
https://www.olcf.ornl.gov/titan/
https://doi.org/10.1007/978-1-4613-9668-0_39
https://doi.org/10.1007/978-1-4613-9668-0_39
https://doi.org/10.1007/978-3-642-19328-6_38

	Introduction
	Notation
	Background and related work
	Distributed-memory SpGEMM
	Sparse SUMMA algorithm
	In-node multithreaded SpGEMM algorithm
	Multithreaded multiway merging and reduction
	Split-3D-SpGEMM algorithm
	Communication analysis of the Split-3D-SpGEMM algorithm

	Experimental results
	Intranode performance
	Multithreaded HeapSpGEMM performance
	Multithreaded multiway merge performance

	Square sparse matrix multiplication
	Performance of different variants of 2D and 3D algorithms
	Breakdown of runtime
	Strong scaling of Split-3D-SpGEMM

	Multiplication with the restriction operator
	Performance of multiplying a matrix with the restriction operator
	Performance of multiplying RTA and R

	Comparison with Trilinos

	Conclusions and future work
	References

