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A CLASS OF EFFICIENT LOCALLY CONSTRUCTED
PRECONDITIONERS BASED ON COARSE SPACES\ast 

HUSSAM AL DAAS\dagger AND LAURA GRIGORI\dagger 

Abstract. In this paper we present a class of robust and fully algebraic two-level preconditioners
for symmetric positive definite (SPD) matrices. We introduce the notion of algebraic local symmetric
positive semidefinite splitting of an SPD matrix and we give a characterization of this splitting. This
splitting leads to construct algebraically and locally a class of efficient coarse spaces which bound
the spectral condition number of the preconditioned system by a number defined a priori. We also
introduce the \tau -filtering subspace. This concept helps compare the dimension minimality of coarse
spaces. Some PDEs-dependant preconditioners correspond to a special case. The examples of the
algebraic coarse spaces in this paper are not practical due to expensive construction. We propose
a heuristic approximation that is not costly. Numerical experiments illustrate the efficiency of the
proposed method.
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1. Introduction. The conjugate gradient (CG) method [8] is a widely known
Krylov iterative method for solving large linear systems of equations of the form

(1.1) Ax = b,

where A \in \BbbR n\times n is a symmetric positive definite (SPD) matrix, b \in \BbbR n is the right-
hand side, and x \in \BbbR n is the vector of unknowns. It finds at iteration j the approxi-
mate solution xj \in x0+Kj(A, r0) that minimizes the A-norm of the error \| x\ast  - xj\| A,
where x0 is the initial guess, r0 = b - Ax0, Kj(A, r0) is the Krylov subspace of dimen-
sion j related to A and r0, x\ast is the exact solution of (1.1), and \| .\| A is the A-norm.
The convergence of this method is well studied in the literature [16]. The rate of
convergence depends on the condition number of the matrix A. Letting \kappa = \lambda n

\lambda 1
be

the spectral condition number of A, where \lambda n and \lambda 1 are the largest and the smallest
eigenvalues of A, respectively, the error at iteration j satisfies the following inequality:

(1.2) \| x\ast  - xj\| A \leq \| x\ast  - x0\| A
\biggl( \surd 

\kappa  - 1\surd 
\kappa + 1

\biggr) j

.

We suppose that the graph of the matrix is partitioned into a number of subdo-
mains by using a k-way partitioning method [10]. To enhance the convergence, it is
common to solve the preconditioned system

(1.3) M - 1Ax = M - 1b.

Block Jacobi, additive Schwarz, restricted additive Schwarz, etc., are widely used
preconditioners. These preconditioners are called one-level preconditioners. They
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correspond to solving subproblems on subdomains. In [2, 3] the authors prove that the
largest eigenvalue of the preconditioned system by the additive Schwarz preconditioner
is bounded by a number that is independent of the number of subdomains. However,
no control is guaranteed for the smallest eigenvalue of the preconditioned matrix.
Furthermore, when the number of subdomains increases, the smallest eigenvalue might
become even smaller. Thus, the number of iterations to reach convergence typically
increases. This occurs since this type of preconditioner employs only local information
and does not include global information. For this reason, these preconditioners are
usually combined with a second-level preconditioner, which corresponds to a coarse
space correction or deflation. In principle, it is meant to annihilate the impact of
the smallest eigenvalues of the operator. Different strategies exist in the literature to
add this level. In [20], the authors compare different strategies of applying two-level
preconditioners. In [2, 21, 12, 18, 3, 6, 11], the authors propose different methods
for constructing a coarse space correction. Coarse spaces can be categorized into
two types, analytic and algebraic. Analytic coarse spaces depend on the underlying
problem from which the matrix A is issued. Algebraic coarse spaces depend only on
the coefficient matrix A and do not require information from the underlying problem
from which A arises. Based on the underlying partial differential equation (PDE) and
its discretization, several methods that propose analytic coarse spaces are described
in the literature [3, 2, 21, 12, 18].

In most cases, a generalized (or standard) eigenvalue problem is solved in each
subdomain. Every subdomain then contributes to the construction of the coarse space
by adding certain eigenvectors. These methods are efficient in several applications.
Nevertheless, the dependence on the analytic information makes it impossible to be
made in a pure algebraic way. Algebraic coarse space correction can be found in the
literature [6, 11]. However, the construction of the coarse space can be even more
costly than solving the linear system (1.1). In this paper we discuss a class of robust
preconditioners that are based on locally constructed coarse spaces. We characterize
the local eigenvalue problems that allow us to construct an efficient coarse space
related to the additive Schwarz preconditioner. The paper is organized as follows.
In section 2 we review general theory of one- and two-level preconditioners, and in
section 3 we present our main result. We introduce the notion of algebraic local
symmetric positive semidefinite (SPSD) splitting of an SPD matrix. For a simple
case, given the block SPD matrix

B =

\left(  B11 B12

B21 B22 B23

B32 B33

\right)  ,

the local SPSD splitting of B with respect to the first block means finding two SPSD
matrices B1, B2 of the form

B1 =

\left(  B11 B12

B21 \ast 

\right)  
and

B2 =

\left(  \ast B23

B32 B33

\right)  ,

where \ast represents a nonzero block matrix such that B = B1 + B2. We characterize
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all possible local SPSD splittings. Then we introduce the \tau -filtering subspace. Given
two SPSD matrices A,B, a \tau -filtering subspace Z makes the following inequality hold:

(u - Pu)
\top 
B (u - Pu) \leq u\top Au \forall u,

where P is an orthogonal projection on Z. Based on the local SPSD splitting and the
\tau -filtering subspace, we propose in section 4 an efficient coarse space, which bounds
the spectral condition number by a given number defined a priori. Furthermore,
we show how the coarse space can be chosen such that its dimension is minimal.
The resulting spectral condition number depends on three parameters. The first
parameter depends on the sparsity of the matrix, namely, the minimum number of
colors kc needed to color subdomains such that two subdomains of the same color are
disjoint; see Lemma 2.7 [2, Theorem 12]. The second parameter km depends on the
algebraic local SPSD splitting. It is bounded by the number of subdomains. For a
special case of splitting it can be chosen to be the maximal number of subdomains
that share a degree of freedom (DOF). The third parameter is chosen such that the
spectral condition number is bounded by the user-defined upper bound. In all stages
of the construction of this coarse space, no information is necessary but the coefficient
matrix A and the desired bound on the spectral condition number. We show how the
coarse space constructed analytically by the method GenEO [17, 3] corresponds to a
special case of our characterization. We also discuss the extreme cases of the algebraic
local SPSD splitting and the corresponding coarse spaces. We explain how these two
choices are expensive to construct in practice. Afterward, we propose a practical
strategy to compute efficiently an approximation of the coarse space. In section 5
we present numerical experiments to illustrate the theoretical and practical impact of
our work. At the end, we give our conclusion in section 6.

To facilitate the comparison with GenEO we follow the presentation in [3, Chap-
ter 7].

Notation. Let A \in \BbbR n\times n denote a symmetric positive definite matrix. We use
MATLAB notation. Let S1, S2 \subset \{ 1, . . . , n\} be two sets of indices. The concatenation
of S1 and S2 is represented by [S1, S2]. We note that the order of the concatenation is
important. A(S1, :) is the submatrix of A formed by the rows whose indices belong to
S1. A(:, S1) is the submatrix of A formed by the columns whose indices belong to S1.
A(S1, S2) := (A(S1, :)) (:, S2). The identity matrix of size n is denoted In. We suppose
that the graph of A is partitioned into N nonoverlapping subdomains, where N \ll n.
The coefficient matrix A is represented as (aij)1\leq i,j\leq n. Let \scrN = \{ 1, . . . , n\} and let

\scrN i,0 for i \in \{ 1, . . . , N\} be the subsets of \scrN such that \scrN i,0 stands for the subset of
the DOF in the subdomain i. We refer to \scrN i,0 as the interior DOF in the subdomain
i. Let \Delta i for i \in \{ 1, . . . , N\} be the subset of \scrN that represents the neighbors DOF
of the subdomain i, i.e., the DOFs of distance = 1 from the subdomain i through the
graph of A. We refer to \Delta i as the overlapping DOF in the subdomain i. We denote
\scrN i = [\scrN i,0, \Delta i] \forall i \in \{ 1, . . . , N\} , the concatenation of the interior and the overlapping
DOF of the subdomain i. We denote \scrC i \forall i \in \{ 1, . . . , N\} , the complementary of \scrN i

in \scrN , i.e., \scrC i = \scrN \setminus \scrN i. We note ni,0 the cardinality of the set \scrN i,0, \delta i the cardinality
of \Delta i, and ni the cardinality of the set \scrN i \forall i \in \{ 1, . . . , N\} . Let Ri,0 \in \BbbR ni,0\times n be
defined as Ri,0 = In (\scrN i,0, : ). Let Ri,\delta \in \BbbR \delta i\times n be defined as Ri,\delta = In (\Delta i, : ). Let
Ri \in \BbbR ni\times n be defined as Ri = In (\scrN i, : ). Let Ri,c \in \BbbR (n - ni)\times n be defined as Ri,c =
In (\scrC i, : ). Let \scrP i = In ([\scrN i,0,\Delta i, \scrC i], : ) \in \BbbR n\times n be a permutation matrix associated
to the subdomain i \forall i \in \{ 1, . . . , N\} . We denote Di \in \BbbR ni,\times ni , i = 1, . . . , N , any
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nonnegative diagonal matrix such that

(1.4) In =

N\sum 
i=1

R\top 
i DiRi.

We refer to (Di)1\leq i\leq N as the algebraic partition of unity. Let n0 be a positive integer,

n0 \ll n. Let V0 \in \BbbR n\times n0 be a tall and skinny matrix of full rank. We denote \scrS the
subspace spanned by the columns of V0. This subspace will stand for the coarse space.
We denote R0 the projection operator on \scrS . We denote R\top 

0 the interpolation operator
from \scrS to the global space. Let R1 be the operator defined by

R1 :

N\prod 
i=1

\BbbR ni \rightarrow \BbbR n,

(ui)1\leq i\leq N \mapsto \rightarrow 
N\sum 
i=1

R\top 
i ui.

(1.5)

In the same way we define R2 by taking into account the coarse space correction

R2 :

N\prod 
i=0

\BbbR ni \rightarrow \BbbR n,

(ui)0\leq i\leq N \mapsto \rightarrow 
N\sum 
i=0

R\top 
i ui.

(1.6)

We note that the subscripts 1 and 2 in R1 and R2 refer to one-level and two-
level interpolation operators, respectively. The following example of two-subdomains-
partitioned A illustrates our notation. Let A be given as

A =

\left(    
a11 a12
a21 a22 a23

a32 a33 a34
a43 a44

\right)    .

Then, \scrN = \{ 1, 2, 3, 4\} . The sets of interior DOF of subdomains are \scrN 1,0 = \{ 1, 2\} ,
\scrN 2,0 = \{ 3, 4\} . The sets of overlapping DOF of subdomains are \Delta 1 = \{ 3\} , \Delta 2 = \{ 2\} .
The sets of concatenation of the interior DOF and the overlapping DOF of subdomains
are \scrN 1 = \{ 1, 2, 3\} , \scrN 2 = \{ 3, 4, 2\} . The restriction operator on the interior DOF of
subdomains is

R1,0 =

\biggl( 
1 0 0 0
0 1 0 0

\biggr) 
, R2,0 =

\biggl( 
0 0 1 0
0 0 0 1

\biggr) 
.

The restriction operator on the overlapping DOF of subdomains is

R1,\delta =
\bigl( 
0 0 1 0

\bigr) 
, R2,\delta =

\bigl( 
0 1 0 0

\bigr) 
.

The restriction operator on the concatenation of the interior DOF and the overlapping
DOF is

R1 =

\left(  1 0 0 0
0 1 0 0
0 0 1 0

\right)  , R2 =

\left(  0 0 1 0
0 0 0 1
0 1 0 0

\right)  .
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The permutation matrix associated with each subdomain is

\scrP 1 =

\left(    
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

\right)    , \scrP 2 =

\left(    
0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0

\right)    .

The permuted matrix associated with each subdomain is

\scrP 1A\scrP \top 
1 =

\left(    
a11 a12
a21 a22 a23

a32 a33 a34
a43 a44

\right)    , \scrP 2A\scrP \top 
2 =

\left(    
a33 a34 a32
a43 a44
a23 a22 a21

a12 a11

\right)    .

Finally, the algebraic partition of unity can be defined as

D1 =

\left(  1 0 0
0 1

2 0
0 0 1

2

\right)  , D2 =

\left(  1
2 0 0
0 1 0
0 0 1

2

\right)  .

We note that the reordering of lines in the partition of unity matrices (Di)1\leq i\leq N has
to be adapted with the lines reordering of (Ri)1\leq i\leq N such that (1.4) holds.

2. Background. In this section, we start by presenting three lemmas that help
compare two symmetric positive definite (or semidefinite) matrices. Then, we review
generalities of one- and two-level additive Schwarz preconditioners.

2.1. Auxiliary lemmas. Lemma 2.1 can be found in [3, Lemma 7.3, p. 164].
This lemma helps prove the effect of the additive Schwarz preconditioner on the largest
eigenvalues of the preconditioned operator.

Lemma 2.1. Let A1, A2 \in \BbbR n\times n be two symmetric positive definite matrices.
Suppose that there is a constant cu > 0 such that

(2.1) v\top A1v \leq cu v
\top A2v \forall v \in \BbbR n.

Then the eigenvalues of A - 1
2 A1 are strictly positive and bounded from above by cu.

Lemma 2.2 is widely known in the community of domain decomposition by the
fictitious subspace lemma. We announce it following an analog presentation as in [3,
Lemma 7.4, p. 164].

Lemma 2.2 (fictitious subspace lemma). Let A \in \BbbR nA\times nA , B \in \BbbR nB\times nB be two
symmetric positive definite matrices. Let R be an operator defined as

R : \BbbR nB \rightarrow \BbbR nA ,

v \mapsto \rightarrow Rv,
(2.2)

and let R\top be its transpose. Suppose that the following conditions hold:
1. The operator R is surjective.
2. There exists cu > 0 such that

(2.3) (Rv)
\top 
A (Rv) \leq cu v\top Bv \forall v \in \BbbR nB .

3. There exists cl > 0 such that \forall vnA
\in \BbbR nA ,\exists vnB

\in \BbbR nB | vnA
= RvnB

and

(2.4) cl v
\top 
nB

BvnB
\leq (RvnB

)
\top 
A (RvnB

) = v\top nA
AvnA

.

Then, the spectrum of the operator RB - 1R\top A is contained in the segment [cl, cu].
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Proof. We refer the reader to [3, Lemma 7.4, p. 164] or [14, 13, 4] for a detailed
proof.

We note that there is a general version of Lemma 2.2 for infinite dimensions. This
lemma plays a crucial role in bounding the condition number of our preconditioned
operator. The operator R will stand for the interpolation operator. The matrix
B will stand for the block diagonal operator of local subdomain problems. It is
important to note that in the finite dimension the existence of the constants cu and
cl are guaranteed. This is not the case in the infinite dimension spaces. In the finite
dimension case, the hard part in the fictitious subspace lemma is to find R such that
cu/cl is independent of the number of subdomains. When R and B are chosen to form
the one- or two-level additive Schwarz operator, the first two conditions are satisfied
for an upper bound cu independent of the number of subdomains. An algebraic proof
which depends only on the coefficient matrix can be found in [3]. However, the third
condition is still an open question if no information from the underlying PDE is used.
In this paper we address the problem of defining algebraically a surjective interpolation
operator of the two-level additive Schwarz operator such that the third condition
holds for a cl independent of the number of subdomains. This is related to the
stable decomposition property, which was introduced in [9]. Later, in [3], the authors
proposed a stable decomposition with the additive Schwarz. This decomposition was
based on the underlying PDE. Thus, when only the coefficient matrix A is known,
this decomposition is not possible to be computed.

The two following lemmas will be applied to choose the local vectors that con-
tribute to the coarse space. They are based on low rank corrections. In [3], the
authors present two lemmas [3, Lemma 7.6, p. 167, and Lemma 7.7, p. 168] similar to
the following lemmas. The rank correction proposed in their version is not of minimal
rank. We modify these two lemmas to obtain the smallest rank correction.

Lemma 2.3. Let A, B \in \BbbR m\times m be two symmetric positive semidefinite matrices.
Let ker(A), range(A) denote the null space and the range of A, respectively. Let
ker(B) denote the kernel of B. Letting L = ker(A) \cap ker(B), we note L\bot ker(A)

the orthogonal complementary of L in ker(A). Let P0 be an orthogonal projection on
range(A). Let \tau be a strictly positive real number. Consider the generalized eigenvalue
problem,

P0BP0uk = \lambda kAuk,

uk \in range(A),

\lambda k \in \BbbR .
(2.5)

Let P\tau be an orthogonal projection on the subspace

Z = L\bot ker(A) \oplus span \{ uk | \lambda k > \tau \} ,

and then the following inequality holds:

(2.6) (u - P\tau u)
\top 
B (u - P\tau u) \leq \tau u\top Au \forall u \in \BbbR m.

Furthermore, Z is the subspace of smallest dimension such that (2.6) holds.

Proof. Let mA = dim(range(A)). Let

\lambda 1 \leq \cdot \cdot \cdot \leq \lambda m\tau \leq \tau < \lambda m\tau +1 \leq \cdot \cdot \cdot \leq \lambda mA

be the eigenvalues of the generalized eigenvalue problem (2.5). Let

u1, . . . , um\tau 
, um\tau +1, . . . , umA
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be the corresponding eigenvectors, A-orthonormalized. Let kB = dim(ker(B) \cap 
ker(A)), kA = dim(ker(A)) = m  - mA. Let v1, . . . , vkB

be an orthogonal basis of
L and let vkB+1, . . . , vkA

be an orthogonal basis of L\bot ker(A) such that v1, . . . , vkA
is

an orthogonal basis of ker(A). The symmetry of A and B permits one to have

u\top 
i Auj = \delta ij , 1 \leq i, j \leq mA,

u\top 
i Buj = \lambda i\delta ij , 1 \leq i, j \leq mA,

v\top i vj = \delta ij , 1 \leq i, j \leq kA,

L = span \{ v1, . . . , vkB
\} ,

L\bot ker(A) = span \{ vkB+1, . . . , vkA
\} ,

where \delta ij stands for the Kronecker symbol. For a vector u \in \BbbR m we can write

P0u =

mA\sum 
k=1

(u\top 
k AP0u)uk.

Then, we have

P\tau u = u - P0u - 
kB\sum 
k=1

(v\top k u)vk +

mA\sum 
k=m\tau +1

(u\top 
k AP0u)uk.

Thus,

u - P\tau u =

kB\sum 
k=1

(v\top k u)vk +

m\tau \sum 
k=1

(u\top 
k AP0u)uk.

Hence, the left side of (2.6) can be written as

(u - P\tau u)
\top 
B (u - P\tau u)

=

\Biggl( 
kB\sum 
k=1

(v\top k u)vk +

m\tau \sum 
k=1

(u\top 
k AP0u)uk

\Biggr) \top 

B

\Biggl( 
kB\sum 
k=1

(v\top k u)vk +

m\tau \sum 
k=1

(u\top 
k AP0u)uk

\Biggr) 
,

=

\Biggl( 
kB\sum 
k=1

(v\top k u)vk +

m\tau \sum 
k=1

(u\top 
k AP0u)uk

\Biggr) \top \Biggl( m\tau \sum 
k=1

\lambda k(u
\top 
k AP0u)Auk

\Biggr) 
,

=

\Biggl( 
kB\sum 
k=1

(v\top k u)Avk +

m\tau \sum 
k=1

(u\top 
k AP0u)Auk

\Biggr) \top \Biggl( m\tau \sum 
k=1

\lambda k(u
\top 
k AP0u)uk

\Biggr) 
,

=

\Biggl( 
m\tau \sum 
k=1

(u\top 
k AP0u)Auk

\Biggr) \top \Biggl( m\tau \sum 
k=1

\lambda k(u
\top 
k AP0u)uk

\Biggr) 
,

=

\left(  \sum 
k| \lambda k\leq \tau 

(u\top 
k AP0u)uk

\right)  \top \left(  \sum 
k| \lambda k\leq \tau 

\lambda k(u
\top 
k AP0u)Auk

\right)  ,

=

\left(  \sum 
k| \lambda k\leq \tau 

\sum 
j| \lambda j\leq \tau 

(u\top 
k AP0u)u

\top 
k

\bigl( 
\lambda j(u

\top 
j AP0u)Auj

\bigr) \right)  ,

=
\sum 

k| \lambda k\leq \tau 

(u\top 
k AP0u)

2\lambda k.
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We obtain (2.6) by remarking that

\sum 
k| \lambda k\leq \tau 

(u\top 
k AP0u)

2\lambda k \leq \tau 

mA\sum 
k=1

(u\top 
k AP0u)

2,

= \tau 

mA\sum 
k=1

(u\top 
k AP0u)(u

\top 
k AP0u),

= \tau (P0u)
\top AP0u,

= \tau u\top Au.

There remains the minimality of the dimension of Z. First, note that

u\top Bu > \tau u\top Au \forall u \in Z.

To prove the minimality, suppose that there is a subspace Z1 of dimension less than the
dimension of Z. By this assumption, there is a nonzero vector w \in (Z \cap Z1)

\bot Z , where

(Z \cap Z1)
\bot Z is the orthogonal complementary of (Z \cap Z1) in Z, such that w \bot Z1. By

construction, we have
w\top Bw > \tau w\top Aw.

This contradicts (2.6) and the minimality is proved.

Lemma 2.4. Let A \in \BbbR m\times m be a symmetric positive matrix and B \in \BbbR m\times m be
an SPD matrix. Let ker(A), range(A) denote the null space and the range of A,
respectively. Let P0 be an orthogonal projection on range(A). Let \tau be a strictly
positive real number. Consider the following generalized eigenvalue problem:

(2.7) Auk = \lambda kBuk.

Let P\tau be an orthogonal projection on the subspace

Z = span

\biggl\{ 
uk | \lambda k <

1

\tau 

\biggr\} 
,

and then the following inequality holds:

(2.8) (u - P\tau u)
\top 
B (u - P\tau u) \leq \tau u\top Au \forall u \in \BbbR m.

Z is the subspace of smallest dimension such that (2.8) holds.

Proof. Let u1, . . . , um0 be an orthogonal basis vectors of ker(A). Let

0 < \lambda m0+1 \leq \cdot \cdot \cdot \leq \lambda m\tau 
<

1

\tau 
\leq \lambda m\tau +1 \leq \cdot \cdot \cdot \leq \lambda m

be the eigenvalues strictly larger than 0 of the generalized eigenvalue problem (2.7).
Let

um0+1, . . . , um\tau 
, um\tau +1, . . . , um

be the corresponding eigenvectors A-orthonormalized. We can suppose that

u\top 
i Auj = \delta ij , m0 + 1 \leq i, j \leq m,

u\top 
i Buj =

1

\lambda i
\delta ij , m0 + 1 \leq i, j \leq m,

u\top 
i uj = \delta ij , 1 \leq i, j \leq m0,
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where \delta ij stands for the Kronecker symbol. We can write

P0u =

m\sum 
k=m0+1

(u\top 
k AP0u)uk.

Then, we have

P\tau u = u - P0u+

m\tau \sum 
k=m0+1

(u\top 
k AP0u)uk.

Thus,

u - P\tau u =

m\sum 
k=m\tau +1

(u\top 
k AP0u)uk,

=
\sum 

k| \lambda k\geq 1
\tau 

(u\top 
k AP0u)uk.

Hence, the left side of (2.8) can be written

(u - P\tau u)
\top 
B (u - P\tau u) =

\left(  \sum 
k| \lambda k\geq 1

\tau 

(u\top 
k AP0u)uk

\right)  \top 

B

\left(  \sum 
k| \lambda k\geq 1

\tau 

(u\top 
k AP0u)uk

\right)  ,

=

\left(  \sum 
k| \lambda k\geq 1

\tau 

(u\top 
k AP0u)uk

\right)  \top \left(  \sum 
k| \lambda k\geq 1

\tau 

1

\lambda k
(u\top 

k AP0u)Auk

\right)  ,

=

\left(  \sum 
k| \lambda k\geq 1

\tau 

\sum 
j| \lambda j\geq 1

\tau 

(u\top 
k AP0u)u

\top 
k

\biggl( 
1

\lambda j
(u\top 

j AP0u)Auj

\biggr) \right)  ,

=
\sum 

k| \lambda k\geq 1
\tau 

(u\top 
k AP0u)

2 1

\lambda k
.

We obtain (2.8) by remarking that

\sum 
k| \lambda k\geq 1

\tau 

(u\top 
k AP0u)

2 1

\lambda k
\leq \tau 

m\sum 
k=1

(u\top 
k AP0u)

2,

= \tau 

m\sum 
k=m0+1

(u\top 
k AP0u)(u

\top 
k AP0u),

= \tau (P0u)
\top AP0u,

= \tau u\top Au.

There remains the minimality of Z. First, note that

u\top Bu > \tau u\top Au \forall u \in Z.

To prove the minimality, suppose that there is a subspace Z1 of dimension less than the
dimension of Z. By this assumption, there is a nonzero vector w \in (Z \cap Z1)

\bot Z , where
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(Z \cap Z1)
\bot Z is the orthogonal complementary of (Z \cap Z1) in Z, such that w \bot Z1. By

construction, we have
w\top Bw > \tau w\top Aw.

This contradicts the relation (2.8).

The previous lemmas are general and algebraic and not directly related to the
preconditioning. In the following section we will review the one- and two-level additive
Schwarz preconditioner.

2.2. One- and two-level additive Schwarz preconditioner. In this section
we review the definition and general properties of one- and two-level additive Schwarz
preconditioners, ASM, ASM2, respectively. We review, without proving, several lem-
mas introduced in [2, 3]. These lemmas show how the elements of ASM2 without any
specific property of the coarse space \scrS verify the conditions 1 and 2 of the fictitious
subspace Lemma 2.2.

The two-level preconditioner ASM2 with coarse space \scrS is defined as

(2.9) M - 1
ASM,2 =

N\sum 
i=0

R\top 
i

\bigl( 
RiAR\top 

i

\bigr)  - 1
Ri.

If n0 = 0, i.e., the subspace \scrS is trivial, the term

R\top 
0

\bigl( 
R0AR\top 

0

\bigr)  - 1
R0 = 0

by convention. The following lemma gives the additive Schwarz method a matrix
representation as in [3].

Lemma 2.5. The additive Schwarz operator can be represented as

(2.10) M - 1
ASM,2 = R2\scrB  - 1R\top 

2 ,

where R\top 
2 is the operator adjoint of R2 and \scrB is a block diagonal operator defined as

\scrB :

N\prod 
i=0

\BbbR ni \rightarrow 
N\prod 
i=0

\BbbR ni ,

(ui)0\leq i\leq N \mapsto \rightarrow 
\bigl( \bigl( 
RiAR\top 

i

\bigr) 
ui

\bigr) 
0\leq i\leq N

,

(2.11)

where RiAR
\top 
i for 0 \leq i \leq N is the ith diagonal block.

Proof. The proof follows directly from the definition of \scrB and R2.

We note that the dimension of the matrix representation of \scrB is larger than the
dimension of A. More precisely, \scrB has the following dimension:

n\scrB =

N\sum 
i=0

ni = n+ n0 +

N\sum 
i=1

\delta i.

The one-level additive Schwarz preconditioner can be defined in the same manner. It
corresponds to the case where the subspace \scrS is trivial. The following Lemma 2.6,
[3, Lemma 7.10, p. 173] states that the operator R2 is surjective without any specific
assumption about the coarse space \scrS .

Lemma 2.6. The operator R2 as defined in (1.6) is surjective.



76 HUSSAM AL DAAS AND LAURA GRIGORI

Proof. The proof follows from the definition of R2 (1.6) and the definition of the
partition of unity (1.4).

Lemma 2.6 shows that the interpolation operator R2 seen as a matrix verifies the
condition 1 in Lemma 2.2. Lemma 2.7 guarantees that the matrix representation of
the additive Schwarz verifies condition 2 in Lemma 2.2.

Lemma 2.7. Let kc be the minimum number of distinct colors so that\bigl( 
span\{ R\top 

i \} 
\bigr) 
1\leq i\leq N

of the same color are mutually A-orthogonal. Then, we have

(2.12)

(R2u\scrB )
\top 
A (R2u\scrB ) \leq (kc + 1)

N\sum 
i=0

u\top 
i

\bigl( 
RiAR\top 

i

\bigr) 
ui \forall u\scrB = (ui)0\leq i\leq N \in 

N\prod 
i=0

\BbbR ni .

Proof. We refer the reader to [2, Theorem 12, p. 93] for a detailed proof.

We note that Lemma 2.7 is true for any coarse space \scrS , especially when this
subspace is trivial. This makes the lemma applicable also for the one-level additive
Schwarz preconditioner. (The constant on the right-hand side in Lemma 2.7 becomes
kc.) Lemma 2.8 is the first step to obtain a reasonable constant cl that verifies the
third condition in Lemma 2.2

Lemma 2.8. Let uA \in \BbbR nA and u\scrB = (ui)0\leq i\leq N \in 
\prod N

i=0 \BbbR ni such that uA =
R2u\scrB . The additive Schwarz operator without any other restriction on the coarse
space \scrS verifies the following inequality:

(2.13)

N\sum 
i=0

u\top 
i

\bigl( 
RiAR\top 

i

\bigr) 
ui \leq 2 u\top 

AAuA + (2kc + 1)

N\sum 
i=1

u\top 
i RiAR\top 

i ui,

where kc is defined in Lemma 2.7.

Proof. We refer the reader to [3, Lemma 7.12, p. 175] to view the proof in
detail.

In order to apply the fictitious subspace Lemma 2.2, the term
\sum N

i=1 u
\top 
i RiAR\top 

i ui

in the right-hand side of (2.13) must be bounded by a factor of u\top 
AAuA. For this

aim, the next section presents an algebraic local decomposition of the matrix A.
Combining this decomposition with Lemma 2.3 or Lemma 2.4 (depending on the
definiteness) defines a class of local generalized eigenvalue problems. By solving them,
we can define a coarse space \scrS . The additive Schwarz preconditioner combined with
\scrS satisfies the three conditions of the fictitious subspace Lemma 2.2. Hence, we can
control the condition number of the preconditioned system.

3. Algebraic local SPSD splitting of an SPD matrix. In this section we
present our main contribution. We introduce the algebraic local SPSD splitting of an
SPD matrix related to a subdomain. Then, we characterize all the algebraic local
SPSD splittings of A that are related to each subdomain. We give a nontrivial bound
from below for the energy norm of a vector by a locally determined quantity.

We start by defining the algebraic local SPSD splitting of a matrix related to a
subdomain.

Definition 3.1 (algebraic local SPSD splitting of A related to a subdomain).
Following the previous notations, let \~Ai be the matrix defined as

(3.1) \scrP i
\~Ai\scrP \top 

i =

\left(  Ri,0AR\top 
i,0 Ri,0AR\top 

i,\delta 

Ri,\delta AR\top 
i,0

\~Ai
\delta 

0

\right)  ,
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where \~Ai
\delta \in \BbbR \delta i\times \delta i . We say that \~Ai is an algebraic local SPSD splitting of A related

to the subdomain i if the following condition holds:

(3.2) 0 \leq u\top \~Aiu \leq u\top Au \forall u \in \BbbR n.

For i \in \{ 1, . . . , N\} , the matrix \scrP iA\scrP \top 
i has the form of a block tridiagonal matrix.

(The permutation matrix \scrP i is defined in the section on notation.) The first diagonal
block corresponds to the interior DOF of the subdomain i, the second diagonal block
corresponds to the overlapping DOF in the subdomain i, and the third block diagonal
is associated to the rest of the DOF.

Lemma 3.2. Let m1,m2,m3 be strictly positive integers and m = m1 +m2 +m3,
and let B \in \BbbR m\times m be a 3\times 3 block tridiagonal SPD matrix

(3.3) B =

\left(  B11 B12

B21 B22 B23

B32 B33

\right)  ,

where Bii \in \BbbR mi\times mi for i \in \{ 1, 2, 3\} . Let \~B1 \in \BbbR m\times m be

(3.4) \~B1 =

\left(  B11 B12

B21
\~B22

0

\right)  ,

where \~B22 \in \BbbR m2\times m2 is a symmetric matrix verifying the inequalities

(3.5) u\top B21B
 - 1
11 B12u \leq u\top \~B22u \leq u\top \bigl( B22  - B23B

 - 1
33 B32

\bigr) 
u \forall u \in \BbbR m2 ,

and then the following inequality holds:

(3.6) 0 \leq u\top \~B1u \leq u\top Bu \forall u \in \BbbR m.

Proof. Consider the difference matrix F = B  - \~B1. Let F2 \in \BbbR (m2+m3)\times (m2+m3)

be the lowest 2\times 2 subblock diagonal matrix of F , i.e.,

F2 =

\biggl( 
B22  - \~B22 B23

B32 B33

\biggr) 
.

F2 admits the following decomposition:

(3.7) F2 =

\biggl( 
I B23B

 - 1
33

I

\biggr) \biggl( 
B22  - \~B22  - B23B

 - 1
33 B32

B33

\biggr) \biggl( 
I

B - 1
33 B32 I

\biggr) 
.

Since \~B22 satisfies, by assumption, the inequality (3.5), F2 satisfies the following
inequality:

0 \leq u\top F2u \forall u \in \BbbR (m2+m3).

This proves the right inequality in (3.6).
Let E \in \BbbR (m1+m2)\times (m1+m2) be the upper 2\times 2 subblock diagonal of \~B1. E admits

the following decomposition:

(3.8) E =

\biggl( 
I

B21B
 - 1
11 I

\biggr) \biggl( 
B11

\~B22  - B21B
 - 1
11 B12

\biggr) \biggl( 
I B - 1

11 B12

I

\biggr) 
.

The positivity of \~B1 follows directly from (3.5).
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Lemma 3.3. Using the notation from Lemma 3.2, the following holds:
\bullet The condition (3.5) in Lemma 3.2 is not trivial, i.e., the set of matrices \~B1

that verify the condition (3.5) is not empty
\bullet There exist matrices, \~B22, that verify the condition (3.5) with strict inequal-

ities
\bullet The left inequality in condition (3.5) is optimal, i.e., if there exists a nonzero
vector u2 \in \BbbR m2 that verifies

u\top 
2 B21B

 - 1
11 B12u2 > u\top 

2
\~B22u2.

Then, there exists a nonzero vector u \in \BbbR m such that

u\top \~B1u < 0.

\bullet The right inequality in condition (3.5) is optimal, i.e., if there exists a nonzero
vector u2 \in \BbbR m2 that verifies

u\top 
2
\~B22u2 > u\top 

2

\bigl( 
B22  - B23B

 - 1
33 B32

\bigr) 
u2.

Then, there exists a nonzero vector u \in \BbbR m such that

u\top \~B1u > u\top Bu.

Proof. First we prove the nontriviality of the set of matrices verifying (3.5). In-
deed, let S(B22) be the Schur complement of B22 in B, namely,

S(B22) = B22  - B21B
 - 1
11 B12  - B23B

 - 1
33 B32.

Set \~B22 := 1
2S(B22) +B21B

 - 1
11 B12. Then we have

\~B22  - B21B
 - 1
11 B12 =

\bigl( 
B22  - B23B

 - 1
33 B32

\bigr) 
 - \~B22 =

1

2
S(B22),

which is an SPD matrix. Hence, the strict inequalities in (3.5) follow.
Let u2 \in \BbbR m2 be a vector such that

u\top 
2 B21B

 - 1
11 B12u2 > u\top 

2
\~B22u2.

The block-LDLT factorization (3.8) shows that

u\top \~B1u = u\top 
2

\Bigl( 
\~B22  - B21B

 - 1
11 B12

\Bigr) 
u2 < 0,

where u is defined as

u =

\biggl( 
I B - 1

11 B12

I

\biggr)  - 1\biggl( 
0
u2

\biggr) 
.

In the same manner we verify the optimality mentioned in the last point.

Remark 3.4. We note that the matrix
\bigl( B11 B12

B21
\~B22

\bigr) 
defines a seminorm in \BbbR m1+m2 .

Furthermore, if \~B22 is set such that the left inequality in (3.5) is strict, then the
seminorm becomes a norm.

Now, we can apply Lemma 3.2 on \scrP iA\scrP \top 
i for each subdomain i by considering

its interior DOF, overlapping DOF, and the rest of the DOF.
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Proposition 3.5. For each subdomain i \in \{ 1, . . . , N\} , let \~Ai \in \BbbR n\times n be defined
as

(3.9) \scrP i
\~Ai\scrP \top 

i =

\left(  Ri,0AR\top 
i,0 Ri,0AR\top 

i,\delta 

Ri,\delta AR\top 
i,0

\~Ai
\delta 

0

\right)  ,

where \~Ai
\delta \in \BbbR \delta i\times \delta i satisfies the following conditions:

\forall u \in \BbbR \delta i ,

\bullet u\top \bigl( Ri,\delta AR\top 
i,0

\bigr) \bigl( 
Ri,0AR\top 

i,0

\bigr)  - 1\bigl( 
Ri,0AR\top 

i,\delta 

\bigr) 
u \leq u\top \~Ai

\delta u,

\bullet u\top \~Ai
\delta u \leq u\top \bigl( \bigl( Ri,\delta AR\top 

i,\delta 

\bigr) 
 - 
\bigl( 
Ri,\delta AR

\top 
i,c

\bigr) \bigl( 
Ri,cAR\top 

i,c

\bigr)  - 1\bigl( 
Ri,cAR\top 

i,\delta 

\bigr) \bigr) 
u.

Then, \forall i \in \{ 1, . . . , N\} the matrix \~Ai is an algebraic local SPSD splitting of A related
to the subdomain i. Moreover, the following inequality holds:

(3.10) 0 \leq 
N\sum 
i=1

u\top \~Aiu \leq kmu\top Au \forall u \in \BbbR n,

where km is a number bounded by N .

Proof. Lemma 3.2 shows that \~Ai is an algebraic local SPSD splitting of A related
to the subdomain i. The inequality (3.10) holds with the constant N for all algebraic
local SPSD splittings of A. Thus, depending on the SPSD splitting related to each
subdomain there exists a number km \leq N such that the inequality holds.

We note that the matrix \~Ai is considered local since it has nonzero elements only
in the overlapping subdomain i. More precisely,

\forall j, k \in \scrN | j /\in \scrN i \vee k /\in \scrN i, \~Ai(j, k) = 0.

Proposition 3.5 shows that the A-norm of a vector v \in \BbbR n can be bounded from below
by a sum of local seminorms (Remark 3.4).

4. Algebraic stable decomposition with R2. In the previous section we
introduced the algebraic local SPSD splitting of A. In this section we present the
\tau -filtering subspace that is associated with each SPSD splitting. In each subdomain a
\tau -filtering subspace will contribute to the coarse space. We show how this leads to a
class of stable decomposition with R2. We note that the previous results of section 2
hold for any coarse space \scrS . Those results are sufficient to determine the constant cu
in the second condition of the fictitious subspace lemma (Lemma 2.2). However, they
do not allow one to control the constant cl of the third condition of the same lemma.

As we will see, the GenEO coarse space [17, 3] corresponds to a special SPSD
splitting of A. Therefore, we follow the presentation in [3] in the construction of the
coarse space. We note that the proof of Theorem 4.4 is similar to the proof of [3,
Theorem 7.17, p. 177]. We present it for the sake of completeness.

Definition 4.1. Let \~Ai be an algebraic local SPSD splitting of A related to the
subdomain i for i = 1, . . . , N . Let \tau > 0. Let \~Zi \subset \BbbR ni be a subspace and let \~Pi be an
orthogonal projection on \~Zi. We say that \~Zi is a \tau -filtering subspace if

u\top 
i

\bigl( 
RiAR\top 

i

\bigr) 
ui \leq \tau (Riu)

\top 
\Bigl( 
Ri

\~AiR
\top 
i

\Bigr) 
(Riu) \forall u \in \BbbR n,

where ui =
\bigl( 
Di

\bigl( 
Ini  - \~Pi

\bigr) 
Riu

\bigr) 
and Di is the partition of unity for i = 1, . . . , N .
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After the characterization of the local SPSD splitting of A related to each subdomain,
we characterize the associated smallest \tau -filtering subspace.

Lemma 4.2. Let \~Ai be an algebraic local SPSD splitting of A related to the sub-
domain i for i = 1, . . . , N . Let \tau > 0. For all subdomains 1 \leq i \leq N , let

\~Gi = Di

\bigl( 
RiAR\top 

i

\bigr) 
Di,

where Di is the partition of unity. Let \~P0,i be the projection on range(Ri
\~AiR

\top 
i )

parallel to ker(Ri
\~AiR

\top 
i ). Let K = ker(Ri

\~AiR
\top 
i ), L = ker( \~Gi) \cap K, and L\bot K the

orthogonal complementary of L in K.
\bullet If \~Gi is indefinite, consider the following generalized eigenvalue problem:

Find (ui,k, \lambda i,k) \in range(Ri
\~AiR

\top 
i )\times \BbbR 

such that \~P0,i
\~Gi

\~P0,iui,k = \lambda i,kRi
\~AiR

\top 
i ui,k.

Set

(4.1) \~Z\tau ,i = L\bot K \oplus span \{ ui,k | \lambda i,k > \tau \} .

\bullet If \~Gi is definite, consider the following generalized eigenvalue problem:

Find (ui,k, \lambda i,k) \in \BbbR ni \times \BbbR 

such that Ri
\~AiR

\top 
i ui,k = \lambda i,k

\~Giui,k.

Set

(4.2) \~Z\tau ,i = span

\biggl\{ 
ui,k | \lambda i,k <

1

\tau 

\biggr\} 
.

Then, \~Z\tau ,i is the smallest dimension \tau -filtering subspace and the following inequality
holds:

u\top 
i

\bigl( 
RiAR\top 

i

\bigr) 
ui \leq \tau (Riu)

\top 
\Bigl( 
Ri

\~AiR
\top 
i

\Bigr) 
(Riu) ,

where ui =
\bigl( 
Di

\bigl( 
Ini

 - \~P\tau ,i

\bigr) 
Riu

\bigr) 
, and \~P\tau ,i is the orhtogonal projection on \~Z\tau ,i.

Proof. The proof follows from direct application of Lemmas 2.3 and 2.4.

We will refer to the smallest dimension \tau -filtering subspace as \~Z\tau ,i and to the

projection on it as \~P\tau ,i. Note that for each algebraic local SPSD splitting of A related

to a subdomain i, the \tau -filtering subspace \~Z\tau ,i defined in Definition 4.1 changes. Thus,

the projection \~P\tau ,i depends on the algebraic local SPSD splitting of A related to the
subdomain i.

In the rest of the paper, the notation \~Z\tau ,i and \~P\tau ,i will be used according to the
algebraic local SPSD splitting of A that we deal with and following Lemma 4.2.

Definition 4.1 leads us to bound the sum in (2.13) by a sum of scalar products
associated to algebraic SPSD splittings of A. Therefore, a factor, which depends on
the value of \tau , of the scalar product associated to A will bound the inequality in
(2.13).

Definition 4.3 (coarse space based on algebraic local SPSD splitting ofA (ALS)).
Let \~Ai be an algebraic local SPSD splitting of A related to the subdomain i for
i = 1, . . . , N . Let \~Z\tau ,i be the subspace associated to \~Ai as defined in Lemma 4.2.
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We define \scrS , the coarse space based on the algebraic local splitting of A related to
each subdomain, as the sum of expanded weighted \tau -filtering subspaces associated to
the algebraic local splitting of A related to each subdomain,

(4.3) \scrS =

N\bigoplus 
i=1

R\top 
i Di

\~Z\tau ,i.

Let \~Z0 be a matrix whose columns form a basis of \scrS . We denote its transpose by
R0 = \~Z\top 

0 .

As mentioned previously, the key point to apply the fictitious subspace lemma
(Lemma 2.2) is to find a coarse space that induces a relatively large cl in the third
condition of the lemma. The following theorem proves that ALS satisfies this.

Theorem 4.4. Let \~Ai be an algebraic local SPSD splitting of A related to the
subdomain i for i = 1, . . . , N . Let \~Z\tau ,i be the \tau -filtering subspace associated to \~Ai,

and \~P\tau ,i be the projection on \~Z\tau ,i as defined in Lemma 4.2. Let u \in \BbbR n and let

ui =
\bigl( 
Di

\bigl( 
Ini

 - \~P\tau ,i

\bigr) 
Riu

\bigr) 
for i = 1, . . . , N . Let u0 be defined as

u0 =
\bigl( 
R0R

\top 
0

\bigr)  - 1
R0

\Biggl( 
N\sum 
i=1

R\top 
i Di

\~P\tau ,iRiu

\Biggr) 
.

Let cl = (2 + (2kc + 1)km\tau )
 - 1

. Then,

u =

N\sum 
i=0

R\top 
i ui,

and

cl

N\sum 
i=0

u\top 
i RiAR\top 

i ui \leq u\top Au.

Proof. Since \forall y \in \scrS , y = R\top 
0

\bigl( 
R0R

\top 
0

\bigr)  - 1
R0y, the relation

u =

N\sum 
i=0

R\top 
i ui = R2 (ui)0\leq i\leq N

follows directly. Lemma 2.8 shows that

N\sum 
i=0

u\top 
i RiAR\top 

i ui \leq 2u\top Au+ (2kc + 1)

N\sum 
i=1

u\top 
i

\bigl( 
RiAR\top 

i

\bigr) 
ui.

By using Lemma 4.2 we can write

N\sum 
i=0

u\top 
i RiAR\top 

i ui \leq 2u\top Au+ (2kc + 1)\tau 

N\sum 
i=1

(Riu)
\top 
\Bigl( 
Ri

\~AiR
\top 
i

\Bigr) 
(Riu) .

Since \~Ai is local, we can write

N\sum 
i=0

u\top 
i RiAR\top 

i ui \leq 2u\top Au+ (2kc + 1)\tau 

N\sum 
i=1

u\top \~Aiu.
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Then, by applying Proposition 3.5, we can write

N\sum 
i=0

u\top 
i RiAR\top 

i ui \leq 2u\top Au+ (2kc + 1)km\tau u\top Au,

N\sum 
i=0

u\top 
i RiAR\top 

i ui \leq (2 + (2kc + 1)km\tau )u\top Au.

Theorem 4.5. Let MALS be the two-level ASM preconditioner combined with
ALS. The following inequality holds:

\kappa 
\bigl( 
M - 1

ALSA
\bigr) 
\leq (kc + 1) (2 + (2kc + 1)km\tau ) .

Proof. Lemmas 2.6 and 2.7 and Theorem 4.4 show that the two-level precondi-
tioner associated with ALS verifies the conditions of the fictitious subspace lemma
(Lemma 2.2). Hence, the eigenvalues of M - 1

ALSA verify the following inequality,

1

2 + (2kc + 1)km\tau 
\leq \lambda 

\bigl( 
M - 1

ALSA
\bigr) 
\leq (kc + 1),

and the result follows.

Remark 4.6. Since any \tau -filtering subspace \~Zi can replace \~Z\tau ,i in Theorem 4.4, the

Theorem 4.5 applies for coarse spaces of the form \scrS =
\bigoplus N

i=1 R
\top 
i Di

\~Zi. The difference

is that the dimension of the coarse space is minimal by choosing \~Z\tau ,i; see Lemma 4.2.

We note that the previous theorem (Theorem 4.5) shows that the spectral condi-
tion number of the preconditioned system does not depend on the number of subdo-
mains. It depends only on kc, km, and \tau . kc is bounded by the maximum number of
neighbors of a subdomain. km is a number bounded by the number of subdomains. It
depends on the algebraic local SPSD splitting of each subdomain. Partitioned graphs
of sparse matrices have structures such that kc is small. The parameter \tau can be
chosen small enough such that ALS has a relatively small dimension.

4.1. GenEO coarse space. In [3], the authors present the theory of one- and
two-level additive Schwarz preconditioners. To bound the largest eigenvalue of the
preconditioned system they use the algebraic properties of the additive Schwarz pre-
conditioner. However, to bound the smallest eigenvalue, they benefit from the dis-
cretization of the underlying PDE. In the environment of the finite element method,
they construct local matrices corresponding to the integral of the operator in the
overlapping subdomain. For each subdomain, the expanded matrix has the form

\scrP i
\~Ai\scrP \top 

i =

\left(  Ri,0AR\top 
i,0 Ri,0AR\top 

i,\delta 

Ri,\delta AR\top 
i,0

\~Ai
\delta 

0

\right)  ,

where \~Ai
\delta corresponds to the integral of the operator in the overlapping region with

neighbors of the subdomains i. This matrix is SPSD since the global operator is
SPD. Since the integral over the subdomain is always smaller than the integral over
the global domain (positive integrals), the following inequality holds:

0 \leq u\top \~Aiu \leq u\top Au \forall u \in \BbbR n.



CELCPCS 83

Hence, Lemma 3.3 confirms that the matrix \~Ai corresponds to an algebraic local
SPSD splitting of A related to the subdomain i. Thus, GenEO is a member of the
class of preconditioners that are based on the algebraic local SPSD splitting of A. We
note that the parameter km, defined in (3.10), with the algebraic local SPSD splitting
of A corresponding to GenEO can be shown to be equal to the maximum number of
subdomains sharing a DOF.

4.2. Extremum efficient coarse space. In this section we discuss the two
obvious choices to have algebraic local SPSD splitting of A. We show how in practice
these two choices are costly. However, they have two advantages. The first is that
one of these choices gives an answer to the following question that appears in domain
decomposition. How many local vectors must be added to the coarse space in order
to bound the spectral condition number by a number defined a priori? We are able
to answer this question in the case where the additive Schwarz preconditioner is to
be used. We note that the answer is given without any analytic information. Only
the coefficients of the matrix A have to be known. The second advantage is that both
choices give an idea of constructing a noncostly algebraic approximation of an ALS.

In the following discussion we disregard the impact of the parameter km. Numer-
ical experiments in section 5 demonstrate that the impact of this parameter can be
negligible. We note that this parameter depends only on the algebraic local SPSD
splitting and it is bounded by N .

Suppose that we have two SPSD splittings ofA related to a subdomain i, \~A
(1)
i , \~A

(2)
i ,

such that
u\top \~A

(1)
i u \leq u\top \~A

(2)
i u \forall u \in \BbbR n.

We want to compare the number of vectors that contribute to the coarse space for

each SPSD splitting. It is clear that a \tau -filtering subspace associated to \~A
(1)
i is a

\tau -filtering subspace associated to \~A
(2)
i . Thus, the following inequality holds:

dim( \~Z
(1)
\tau ,i ) \geq dim( \~Z

(2)
\tau ,i ),

where \~Z
(1)
\tau ,i ,

\~Z
(2)
\tau ,i are the smallest \tau -filtering subspaces associated to \~A

(1)
i , \~A

(2)
i , respec-

tively. Therefore, Lemma 3.3 shows that the closer we are to the upper bound in
(3.5) the fewer vectors that will contribute to ALS. Moreover, the closer we are to
the lower bound in (3.5) the more vectors that will contribute to ALS. Indeed, the
set of algebraic local SPSD splitting of A related to a subdomain i admits a relation
of partial ordering.

M1 \leq M2 \Leftarrow \Rightarrow u\top M1u \leq u\top M2u \forall u.

This set admits obviously a smallest and a largest element defined by the left and the
right bounds in (3.5), respectively.

Hence, the best ALS corresponds to the following algebraic local SPSD splitting
of A for i = 1, . . . , N :
(4.4)

\scrP i
\~Ai\scrP \top 

i =

\left(   Ri,0AR\top 
i,0 Ri,0AR\top 

i,\delta 

Ri,\delta AR\top 
i,0 Ri,\delta AR\top 

i,\delta  - 
\bigl( 
Ri,\delta AR\top 

i,c

\bigr) \bigl( 
Ri,cAR\top 

i,c

\bigr)  - 1
\Bigl( 
Ri,cAR\top 

i,\delta 

\Bigr) 
0

\right)   .

The dimension of the subspace \~Z\tau ,i associated to \~Ai (4.4) is minimal over all possible
algebraic local SPSD splittings of A related to the subdomain i. We remark that this
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splitting is not a choice in practice since it includes inverting the matrix
\bigl( 
Ri,cAR\top 

i,c

\bigr) 
,

which is of large size (approximately corresponding to N  - 1 subdomains). We will
refer to (4.4) as the upper bound SPSD splitting, and the associated coarse space will
be referred to as the upper ALS. In the same manner, we can find the worst ALS. The
corresponding algebraic local SPSD splitting of A related to the subdomain i is the
following:

(4.5) \scrP i
\~Ai\scrP \top 

i =

\left(   Ri,0AR\top 
i,0 Ri,0AR\top 

i,\delta 

Ri,\delta AR\top 
i,0

\bigl( 
Ri,\delta AR\top 

i,0

\bigr) \bigl( 
Ri,0AR\top 

i,0

\bigr)  - 1
\Bigl( 
Ri,0AR\top 

i,\delta 

\Bigr) 
0

\right)   .

On the contrary of the best splitting (4.4), this splitting is not costly. It includes
inverting the matrix

\bigl( 
Ri,0AR\top 

i,0

\bigr) 
, which is considered small. However, the dimension

of \~Z\tau ,i associated to \~Ai (4.5) is maximal. It is of dimension \delta i at least. Indeed, a

block-LDLT factorization of Ri
\~AiR

\top 
i shows that its null space is of dimension \delta i. We

will refer to (4.5) as the lower bound SPSD splitting the associated coarse space will
be referred to as the lower ALS.

Remark 4.7. A convex linear combination of the lower bound and the upper
bound of the SPSD splitting is also an algebraic local SPSD splitting.

\alpha \times the upper bound SPSD splitting + (1 - \alpha )\times the lower bound SPSD splitting.

We refer to it as \alpha -convex SPSD splitting. We refer to the corresponding ALS as the
\alpha -convex ALS.

In the following section we propose a strategy to compute an approximation of
reasonable ALS that is not costly.

4.3. Approximate ALS. As mentioned in subsection 4.2, the extremum cases
of ALS are not practical choices. We recall that the restriction matrixRi,c is associated
to the DOFs outside the overlapping subdomain i. The bottleneck in computing the
upper bound SPSD splitting is the computatation of the term\bigl( 

Ri,\delta AR\top 
i,c

\bigr) \bigl( 
Ri,cAR\top 

i,c

\bigr)  - 1 \bigl( 
Ri,cAR\top 

i,\delta 

\bigr) 
since it induces inverting the matrix

\bigl( 
Ri,cAR\top 

i,c

\bigr) 
. To approximate the last term, we

look for a restriction matrix Ri,\~c such that

\bigl( 
Ri,\delta AR

\top 
i,c

\bigr) \bigl( 
Ri,cAR\top 

i,c

\bigr)  - 1 \bigl( 
Ri,cAR\top 

i,\delta 

\bigr) 
\approx 
\bigl( 
Ri,\delta AR\top 

i,\~c

\bigr) \bigl( 
Ri,\~cAR\top 

i,\~c

\bigr)  - 1 \bigl( 
Ri,\~cAR\top 

i,\delta 

\bigr) 
,\bigl( 

Ri,\delta AR
\top 
i,\~c

\bigr) \bigl( 
Ri,\~cAR\top 

i,\~c

\bigr)  - 1 \bigl( 
Ri,\~cAR\top 

i,\delta 

\bigr) 
is easy to compute.

One choice is to associate Ri,\~c to the DOFs outside the overlapping subdomain i
that have the nearest distance from the boundary of the subdomain i through the
graph of A. In practice, we fix an integer d \geq 1 such that the matrix Ri,\~cAR\top 

i,\~c has a
dimension dimi \leq d\times ni. Then we can take a convex linear combination of the lower
bound SPSD splitting and the approximation of the upper bound SPSD splitting. For
instance, the error bound on this approximation is still an open question. Numerical
experiments show that d does not need to be large.
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Table 5.1
Matrices used for tests. n is the size of the matrix, NnZ is the number of nonzero elements.

HPD stands for Hermitian positive definite. \kappa is the condition number related to the second norm.

Matrix name Type n NnZ \kappa 
SKY3D Skyscraper 8000 53000 105

SKY2D Skyscraper 10000 49600 106

EL3D Elasticity 15795 510181 3\times 1011

5. Numerical experiments. In this section we present numerical experiments
for ALS. We denote ASMALS the two-level additive Schwarz combined with ALS. If it
is not specified, the number of vectors deflated by subdomain is fixed to 15. We use the
preconditioned CG implemented in MATLAB 2017R to compare the preconditioners.
The threshold of convergence is fixed to 10 - 6. Our test matrices arise from the
discretization of two types of challenging problems: linear elasticity and diffusion
problems [5, 1, 15]. Our set of matrices are given in Table 5.1. The matrices SKY2D
and SKY3D arise from the boundary value problem of the diffusion equation on \Omega ,
the two-dimensional (2-D) unit square and the 3-D unit cube, respectively:

 - div(\kappa (x)\nabla u) = f in \Omega ,

u = 0 on \Gamma D,

\partial u

\partial n
= 0 on \Gamma N .

(5.1)

They correspond to skyscraper problems. The domain \Omega contains several zones of
high permeability. These zones are separated from each other. The tensor \kappa is given
by the following relation:

\kappa (x) = 103([10x2] + 1) if [10xi] is odd, i = 1, 2,

\kappa (x) = 1 otherwise.

\Gamma D = [0, 1]\times \{ 0, 1\} in the 2-D case. \Gamma D = [0, 1]\times \{ 0, 1\} \times [0, 1] in the 3-D case. \Gamma N is
chosen as \Gamma N = \partial \Omega \setminus \Gamma D and n denotes the exterior normal vector to the boundary
of \Omega . The linear elasticity problem with Dirichlet and Neumann boundary conditions
is defined as follows:

div(\sigma (u)) + f = 0 in \Omega ,

u = 0 on \Gamma D,

\sigma (u) \cdot n = 0 on \Gamma N .

(5.2)

\Omega is a unit cube 3-D. The matrix El3D corresponds to this equation discretized using
a triangular mesh with 65 \times 9 \times 9 vertices. \Gamma D is the Dirichlet boundary, \Gamma N is
the Neumann boundary, f is a force, and u is the unknown displacement field. The
Cauchy stress tensor \sigma (.) is given by Hooke's law: it can be expressed in terms of
Young's modulus E and Poisson's ration \nu . n denotes the exterior normal vector to
the boundary of \Omega . We consider discontinuous E and \nu : (E1, \nu 1) = (2 \times 1011, 0.45),
(E2, \nu 2) = (107, 0.25). Data elements of this problem are obtained by the application
FreeFem++ [7]. Table 5.2 presents a comparison between one-level ASM and ASM2

with the upper bound ALS. As is known, the iteration number of CG preconditioned
by ASM increases by increasing the number of subdomains. However, we remark that
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Table 5.2
Comparison between ASM2 with the upper ALS and one-level additive Schwarz. n is the

dimension of the problem, N is the number of subdomains, nuC is the iteration number of CG
preconditioned by ASM2, and nASM is the iteration number of CG preconditioned by one-level
ASM . The sign  - means that the method did not converge in fewer than 100 iteration.

Matrix n N nuC nASM

4 23 29
8 25 35

SKY3D 8000 16 25 37
32 22 55
64 24 79
128 24 -
4 18 54
8 19 -

SKY2D 10000 16 20 -
32 22 -
64 26 -
128 31 -
4 38 -
8 43 -

EL3D 15795 16 51 -
32 51 -
64 67 -
128 92 -

Table 5.3
Comparison between ALS variants, the upper bound ALS, the \alpha 1-convex ALS, and the \alpha 2-

convex CosBALSS. n is the dimension of the problem, N is the number of subdomains, the subscript
uC refers to the upper bound ALS, n. is the iteration number of ASM2, and \alpha refers to the coefficient
in the convex linear combination, \alpha 1 = 0.75 and \alpha 2 = 0.25.

Matrix n N nuC n\alpha 1 n\alpha 2

4 23 22 22
8 25 25 23

SKY3D 8000 16 25 24 24
32 22 22 22
64 24 23 21
128 24 24 22
4 18 18 17
8 19 19 19

SKY2D 10000 16 20 19 19
32 22 21 18
64 26 24 20
128 31 28 20
4 38 38 38
8 43 43 43

EL3D 15795 16 51 51 51
32 51 51 51
64 67 67 67
128 92 92 92

the iteration number of the CG preconditioned by ALS is robust when the number of
subdomain increases.

In Table 5.3 we compare three ALS, the upper bound, \alpha 1-convex, and \alpha 2-convex,
where \alpha 1 = 0.75 and \alpha 2 = 0.25. Table 5.3 shows the efficiency of three ALS related
to different SPSD splittings. The iteration count corresponding to each coarse space
increases slightly by increasing the number of subdomains. The main reason behind
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Table 5.4
Estimation of the spectral condition number of matrix El3D preconditioned by ASM2 with ALS

variants and GenEo coarse space. Results correspond to Table 5.5, N is the number of subdomains,
the subscript uC refers to the upper bound ALS, \alpha refers to the coefficient in the convex ALS,
\alpha 1 = 0.75 and \alpha 2 = 0.25, and the subscript Gen stands for the GenEO coarse space.

N \kappa uC \kappa \alpha 1 \kappa \alpha 2 \kappa Gen

4 5 4 4 5
8 8 5 5 7
16 15 10 9 15
32 34 25 15 18
64 100 67 30 31
128 231 178 86 39

Table 5.5
Matrix El3D, ALS variants, and GenEo coarse space with the minimum number of deflated

vectors disregarding the parameter km. N is the number of subdomains, the subscript uC refers to
the upper bound ALS. dim. is the dimension of ALS, n. is the iteration number of ASM2, \alpha refers
to the coefficient in the convex ALS, \alpha 1 = 0.75 and \alpha 2 = 0.25, and the subscript Gen stands for the
GenEO coarse space. See Table 5.4.

N dimuC nuC dim\alpha 1 n\alpha 1 dim\alpha 2 n\alpha 2 dimGen nGen

4 82 20 92 19 120 18 106 20
8 179 23 209 20 240 20 229 24
16 304 37 394 30 480 28 391 38
32 447 53 583 45 960 36 614 42
64 622 84 769 73 1920 51 850 55
128 969 131 1096 112 3834 77 1326 61

this increasing is that the predifined parameter \tau provides an overestimation of the
upper bound on the spectral condition number; see Table 5.4.

To illustrate the impact of the parameter km, when increasing the number of
subdomains, on bounding the spectral condition number, we do the following. We
choose \tau as

\tau =
1

2

\biggl( 
\~\kappa 

kc + 1
 - 2

\biggr) 
(2kc + 1) - 1,

i.e., we suppose that km has no impact on \tau . The resulting spectral condition num-
ber will be affected only by the parameter km; see Table 5.4. Tables 5.4 and 5.5
present results for ALS variants for \~\kappa = 100. We perform this test on the elasticity
problem (5.2), where we could also compare against the GenEO coarse space [17, 3].
We note that when GenEO is applied on the elasticity problem (5.2), the domain
decomposition performed by freefem++ [7], for all tested values of N , is such that
any DOF belongs to at most two subdomains and hence km(GenEO) = 2. This
means that the hyposthesis that km has no impact on the selected \tau is true for the
coarse space GenEO. Nevertheless, this might be false for the other coarse spaces.
Therefore, the impact of km will be remarked on only for the ALS coarse spaces.
Table 5.5 shows the dimension of ALS for each variant as well as the iteration num-
ber for preconditioned CG to reach the convergence tolerance. On the other hand,
Table 5.4 shows an estimation of the spectral condition number of the preconditioned
system. This estimation is performed by computing an approximation of the largest
and the smallest eigenvalues of the preconditioned operator by using the Krylov--
Schur method [19] in MATLAB. The same tolerance \tau is applied for GenEO. In order
to avoid a large-dimension coarse space, 30 vectors at max are deflated per subdo-
main.
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Fig. 5.1. Histogram of the number of deflated vectors by each subdomain for different ALS,
GenEO; uC, the upper bound ALS; \alpha 1-convex ALS, \alpha 1 = 0.75; \alpha 2-convex ALS, \alpha 2 = 0.25.

We note that results in Table 5.5 satisfy the discussion in subsection 4.2. Indeed,
the upper bound ALS has the minimum dimension; 0.75- and 0.25-convex ALS follow
the upper bound ALS, respectively.

Table 5.4 demonstrates the impact of km on the bound of the spectral condition
number. We notice that its effect increases when \alpha is closer to 1 (the larger \alpha is, the
larger km becomes). We recall that in the algebraic SPSD splitting km \leq N . However,
when GenEO is applied to the elasticity problem test case (5.2), km is independant
of N and is equal to 2 as explained previously. The values of the estimated spec-
tral condition number, especially for a small number of subdomains (N = 4), show
how \tau provides an overestimation of the theoretical upper bound on the spectral con-
dition number (estimated(\kappa ) \ll 100). For this reason, we consider that this slight
augmentaion of the iteration count does not mean that the method is not robust.

In Figure 5.1 we present a histogram of the number of deflated vectors by each
subdomain. We remark that the number of vectors that each subdomain contributes
to the coarse space is not necessarily equal. In the case of \alpha 2-convex ALS, most sub-
domains reach the maximum number of deflated vectors, 30, that we fixed. Moreover,
Figure 5.2 compares the number of deflated vectors in each subdomain for the Ge-
nEO subspace and the upper bound ALS. This figure illustrates the relation of partial
ordering between the SPSD splitting as discussed in subsection 4.2.

In Table 5.6 we show the impact of the approximation strategy that we proposed
in subsection 4.3. The distance parameter related to the approximation (see sub-
section 4.3) is fixed for each matrix. It is obtained by tuning. The convex linear
combination is chosen as \alpha = 0.01. Each subdomain contributes 20 vectors to the
coarse space. We remark that the approximation strategy gives interesting results
with the conviction-diffusion problem matrices SKY2D and SKY3D. With a small
factor of the local dimension d = 2 and d = 3, respectively, the approximate ALS
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Fig. 5.2. Comparison between the number of deflated vectors per subdomain GenEO coarse
space and the upper bound ALS.

Table 5.6
Comparison between the upper bound ALS and the approximation strategy presented in section

4.3. n is the dimension of the problem, N is the number of subdomains, nuC is the iteration number
of CG preconditioned by ASM2 with the upper bound ALS, d stands for the factor of local dimension
to approximate the upper bound SPSD splitting, as explained in section 4.3, and nap is the iteration
number of CG preconditioned by ASM2 with approximation of ALS; the convex linear combination
is chosen as (0.01 \times approximation of the upper bound + 0.99 \times lower bound). The sign  - means
that the method did not converge in fewer than 150 iterations.

Matrix n N nuC d nap

4 22 22
8 23 23

SKY3D 8000 16 24 2 22
32 22 22
64 24 22
128 22 44
4 17 17
8 18 18

SKY2D 10000 16 20 3 19
32 22 22
64 26 59
128 31 90
4 27 54
8 36 56

EL3D 15795 16 37 5 77
32 43 136
64 61 -
128 83 -



90 HUSSAM AL DAAS AND LAURA GRIGORI

is able to perform relatively as efficiently as the upper bound ALS. For the elastic-
ity problem with a larger factor d = 5, the approximate ALS reduces the iteration
number; however, we remark that the latter increases by increasing the number of
subdomains.

6. Conclusion. In this paper we reviewed generalities of one- and two-level
additive Schwarz preconditioners. We introduced the algebraic local SPSD splitting
of an SPD matrix A. We characterized all possible algebraic local SPSD splitting. To
study the minimality of the dimension of the coarse space, we introduced the \tau -filtering
subspaces. Based on the algebraic local SPSD splitting and inspired by the GenEO
method [17, 3], we introduced a class of algebraic coarse spaces that are constructed
locally (ALS). The characterization of algebraic local SPSD splitting of A and the
associated \tau -filtering subspaces makes an algebraic framework for studying the coarse
spaces related to the additive Schwarz method. We proved that the coarse space of
GenEO corresponds to a special case of the SPSD splitting. We discussed different
types of ALS and suggested a simple method to approximate a valuable coarse space.
For matrices issued from the conviction-diffusion problem, the simple method that we
proposed gave very interesting results. The algebraic formulation presented in this
paper is particularly important when the theory of GenEO cannot be applied. We
also note that in our ongoing work, we develop a theoretical and practical framework
that will give rise to a three-level additive Schwarz preconditioner combining GenEO
and ALS.

Acknowledgments. The authors would like to thank the editor and the anony-
mous referees for their useful remarks that helped us improve the clarity of the paper.
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