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A CLASS OF EFFICIENT LOCALLY CONSTRUCTED
PRECONDITIONERS BASED ON COARSE SPACES*

HUSSAM AL DAAST AND LAURA GRIGORIf

Abstract. In this paper we present a class of robust and fully algebraic two-level preconditioners
for symmetric positive definite (SPD) matrices. We introduce the notion of algebraic local symmetric
positive semidefinite splitting of an SPD matrix and we give a characterization of this splitting. This
splitting leads to construct algebraically and locally a class of efficient coarse spaces which bound
the spectral condition number of the preconditioned system by a number defined a priori. We also
introduce the 7-filtering subspace. This concept helps compare the dimension minimality of coarse
spaces. Some PDEs-dependant preconditioners correspond to a special case. The examples of the
algebraic coarse spaces in this paper are not practical due to expensive construction. We propose
a heuristic approximation that is not costly. Numerical experiments illustrate the efficiency of the
proposed method.
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1. Introduction. The conjugate gradient (CG) method [8] is a widely known
Krylov iterative method for solving large linear systems of equations of the form

(1.1) Az = b,

where A € R™*" is a symmetric positive definite (SPD) matrix, b € R™ is the right-
hand side, and € R™ is the vector of unknowns. It finds at iteration j the approxi-
mate solution z; € zo+ K;(A, o) that minimizes the A-norm of the error ||z, — ;| a,
where x is the initial guess, 1o = b— Az, K;(A,ro) is the Krylov subspace of dimen-
sion j related to A and ro, z. is the exact solution of (1.1), and ||.|| 4 is the A-norm.
The convergence of this method is well studied in the literature [16]. The rate of
convergence depends on the condition number of the matrix A. Letting k = i‘\—’; be
the spectral condition number of A, where A, and \; are the largest and the smallest
eigenvalues of A, respectively, the error at iteration j satisfies the following inequality:
k—1\’

(12) o = a5lla < e = aolla (Y27 ) -

We suppose that the graph of the matrix is partitioned into a number of subdo-
mains by using a k-way partitioning method [10]. To enhance the convergence, it is
common to solve the preconditioned system

(1.3) M~'Azx = M~ "'b.

Block Jacobi, additive Schwarz, restricted additive Schwarz, etc., are widely used
preconditioners. These preconditioners are called one-level preconditioners. They
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correspond to solving subproblems on subdomains. In [2, 3] the authors prove that the
largest eigenvalue of the preconditioned system by the additive Schwarz preconditioner
is bounded by a number that is independent of the number of subdomains. However,
no control is guaranteed for the smallest eigenvalue of the preconditioned matrix.
Furthermore, when the number of subdomains increases, the smallest eigenvalue might
become even smaller. Thus, the number of iterations to reach convergence typically
increases. This occurs since this type of preconditioner employs only local information
and does not include global information. For this reason, these preconditioners are
usually combined with a second-level preconditioner, which corresponds to a coarse
space correction or deflation. In principle, it is meant to annihilate the impact of
the smallest eigenvalues of the operator. Different strategies exist in the literature to
add this level. In [20], the authors compare different strategies of applying two-level
preconditioners. In [2, 21, 12, 18, 3, 6, 11], the authors propose different methods
for constructing a coarse space correction. Coarse spaces can be categorized into
two types, analytic and algebraic. Analytic coarse spaces depend on the underlying
problem from which the matrix A is issued. Algebraic coarse spaces depend only on
the coefficient matrix A and do not require information from the underlying problem
from which A arises. Based on the underlying partial differential equation (PDE) and
its discretization, several methods that propose analytic coarse spaces are described
in the literature [3, 2, 21, 12, 18].

In most cases, a generalized (or standard) eigenvalue problem is solved in each
subdomain. Every subdomain then contributes to the construction of the coarse space
by adding certain eigenvectors. These methods are efficient in several applications.
Nevertheless, the dependence on the analytic information makes it impossible to be
made in a pure algebraic way. Algebraic coarse space correction can be found in the
literature [6, 11]. However, the construction of the coarse space can be even more
costly than solving the linear system (1.1). In this paper we discuss a class of robust
preconditioners that are based on locally constructed coarse spaces. We characterize
the local eigenvalue problems that allow us to construct an efficient coarse space
related to the additive Schwarz preconditioner. The paper is organized as follows.
In section 2 we review general theory of one- and two-level preconditioners, and in
section 3 we present our main result. We introduce the notion of algebraic local
symmetric positive semidefinite (SPSD) splitting of an SPD matriz. For a simple
case, given the block SPD matrix

By Bio
B = | DBy By Ba|,
Bss  Bss

the local SPSD splitting of B with respect to the first block means finding two SPSD
matrices By, By of the form

By Bio
By =|Ba1 *

and

By = *  Bag |,
B3y  Bss

where * represents a nonzero block matrix such that B = B; + By. We characterize
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all possible local SPSD splittings. Then we introduce the 7-filtering subspace. Given
two SPSD matrices A, B, a T-filtering subspace Z makes the following inequality hold:

(u— Pu)T B(u— Pu) <u'Au Vu,

where P is an orthogonal projection on Z. Based on the local SPSD splitting and the
T-filtering subspace, we propose in section 4 an efficient coarse space, which bounds
the spectral condition number by a given number defined a priori. Furthermore,
we show how the coarse space can be chosen such that its dimension is minimal.
The resulting spectral condition number depends on three parameters. The first
parameter depends on the sparsity of the matrix, namely, the minimum number of
colors k. needed to color subdomains such that two subdomains of the same color are
disjoint; see Lemma 2.7 [2, Theorem 12]. The second parameter k,, depends on the
algebraic local SPSD splitting. It is bounded by the number of subdomains. For a
special case of splitting it can be chosen to be the maximal number of subdomains
that share a degree of freedom (DOF). The third parameter is chosen such that the
spectral condition number is bounded by the user-defined upper bound. In all stages
of the construction of this coarse space, no information is necessary but the coefficient
matrix A and the desired bound on the spectral condition number. We show how the
coarse space constructed analytically by the method GenEO [17, 3] corresponds to a
special case of our characterization. We also discuss the extreme cases of the algebraic
local SPSD splitting and the corresponding coarse spaces. We explain how these two
choices are expensive to construct in practice. Afterward, we propose a practical
strategy to compute efficiently an approximation of the coarse space. In section 5
we present numerical experiments to illustrate the theoretical and practical impact of
our work. At the end, we give our conclusion in section 6.

To facilitate the comparison with GenEO we follow the presentation in [3, Chap-
ter 7).

Notation. Let A € R™*" denote a symmetric positive definite matrix. We use
MATLAB notation. Let Sy, S2 C {1,...,n} be two sets of indices. The concatenation
of Sy and Ss is represented by [S1,.52]. We note that the order of the concatenation is
important. A(Sq,:) is the submatrix of A formed by the rows whose indices belong to
S1. A(:, S1) is the submatrix of A formed by the columns whose indices belong to Sy .
A(S1,52) == (A(S1,1)) (¢, S2). The identity matrix of size n is denoted I,,. We suppose
that the graph of A is partitioned into N nonoverlapping subdomains, where N < n.
The coefficient matrix A is represented as (aij)1<i,j<n' Let N ={1, ..., n} and let
Nio for i € {1, ..., N} be the subsets of N such that N o stands for the subset of
the DOF in the subdomain i. We refer to V; ¢ as the interior DOF in the subdomain
i. Let A; for i € {1, ..., N} be the subset of N that represents the neighbors DOF
of the subdomain i, i.e., the DOF's of distance = 1 from the subdomain i through the
graph of A. We refer to A; as the overlapping DOF in the subdomain 7. We denote
N; = [Nio, Ai] Vi€ {1, ..., N}, the concatenation of the interior and the overlapping
DOF of the subdomain i. We denote C; Vi € {1, ..., N}, the complementary of N;
in NV, ie., C; = N\ N;. We note n; o the cardinality of the set N; ¢, d; the cardinality
of A;, and n; the cardinality of the set N; Vi € {1, ..., N}. Let R;o € R™:0%" be
defined as R; o = I,, (N0, :). Let R; 5 € R%*" he defined as Ris =1I,(A;, ). Let
R; € R"*" be defined as R; = I, (NV;, :). Let R; . € R(=71i)Xn he defined as Ri.=
I, (C;, :). Let P; = I, (WNi0,A4,Cil, 1) € R™™™ be a permutation matrix associated
to the subdomain ¢ Vi € {1, ..., N}. We denote D; € R™*" 4§ =1 ... N, any
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nonnegative diagonal matrix such that
N

(1.4) I, =Y R/DiRi.
i=1

We refer to (D;); ., as the algebraic partition of unity. Let ng be a positive integer,
ng <€ n. Let Vy € R ™ be a tall and skinny matrix of full rank. We denote S the
subspace spanned by the columns of V. This subspace will stand for the coarse space.
We denote Ry the projection operator on S. We denote R] the interpolation operator
from S to the global space. Let %1 be the operator defined by

N
2[R =R,

i=1

N
(ui)lgiSN — ZR;FUZ

i=1

(1.5)

In the same way we define %5 by taking into account the coarse space correction

N
R, - IIR"i—>R",

=0

N
(ui)OSiSN — ZRlTul

=0

(1.6)

We note that the subscripts 1 and 2 in #; and %> refer to one-level and two-
level interpolation operators, respectively. The following example of two-subdomains-
partitioned A illustrates our notation. Let A be given as

a1l a2
a a ao:
A— 21 22 23
a3z agz G34

43 QA44

Then, N' = {1,2,3,4}. The sets of interior DOF of subdomains are N7 o = {1,2},
Nao = {3,4}. The sets of overlapping DOF of subdomains are A; = {3}, Ay = {2}.
The sets of concatenation of the interior DOF and the overlapping DOF of subdomains
are N1 = {1,2,3}, Na = {3,4,2}. The restriction operator on the interior DOF of

subdomains is
100 0 00 1 0
R0 = <0 1 0 0)’ Ro = <0 0 0 1>'

The restriction operator on the overlapping DOF of subdomains is
Ris=(0 0 1 0), Rys=(0 1 0 0).
The restriction operator on the concatenation of the interior DOF and the overlapping

DOF is

R1: R2:

OO =
O = O
= o O
o O O
o O O
_— o O
OO =
o = O
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The permutation matrix associated with each subdomain is

1 0 0 0 0 01 0
01 0 0 0 0 0 1
Pi=tlo 01 0] P o100
0 0 0 1 1 0 0 O
The permuted matrix associated with each subdomain is
ailr a2 as3 Q34 as2
’P1A7)T _ | @21 a22 Q23 PgA’PT _ | @43 Q44
! azz azz ass |’ 2 a23 azy asz
(43 Q44 a2 A
Finally, the algebraic partition of unity can be defined as
100 3 00
D;=10 % 0], D=0 1 0
0 0 % 0 0 %

We note that the reordering of lines in the partition of unity matrices (D;), ;< has
to be adapted with the lines reordering of (R;), .,y such that (1.4) holds.

2. Background. In this section, we start by presenting three lemmas that help
compare two symmetric positive definite (or semidefinite) matrices. Then, we review
generalities of one- and two-level additive Schwarz preconditioners.

2.1. Auxiliary lemmas. Lemma 2.1 can be found in [3, Lemma 7.3, p. 164].
This lemma helps prove the effect of the additive Schwarz preconditioner on the largest
eigenvalues of the preconditioned operator.

LEMMA 2.1. Let Ay, Ay € R™ "™ be two symmetric positive definite matrices.
Suppose that there is a constant c, > 0 such that

(2.1) v Ajw <cyv'Asv Vo e R

Then the eigenvalues of A2_1A1 are strictly positive and bounded from above by c,,.

Lemma 2.2 is widely known in the community of domain decomposition by the
fictitious subspace lemma. We announce it following an analog presentation as in [3,
Lemma 7.4, p. 164].

LEMMA 2.2 (fictitious subspace lemma). Let A € R"4*"4 B € R"B*"B pe two

symmetric positive definite matrices. Let Z be an operator defined as

Z : R" — R"™

(2.2) ’
v = R,

and let Z7 be its transpose. Suppose that the following conditions hold:
1. The operator Z is surjective.
2. There exists ¢, > 0 such that

(2.3) (%v)" A(Rv) < c, v Bv Vv eR".
3. There exists ¢; > 0 such that Yv,, € R4 Jv,, € R"Blv,, = Zv,, and
(2.4) ¢ vn Bon, < (Bny)" A(Bvny,) =) Av,,.

Then, the spectrum of the operator ZB~'% T A is contained in the segment [c;, c,].
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Proof. We refer the reader to [3, Lemma 7.4, p. 164] or [14, 13, 4] for a detailed
proof. 0

We note that there is a general version of Lemma 2.2 for infinite dimensions. This
lemma plays a crucial role in bounding the condition number of our preconditioned
operator. The operator & will stand for the interpolation operator. The matrix
B will stand for the block diagonal operator of local subdomain problems. It is
important to note that in the finite dimension the existence of the constants ¢, and
¢ are guaranteed. This is not the case in the infinite dimension spaces. In the finite
dimension case, the hard part in the fictitious subspace lemma is to find & such that
¢u/ ¢ is independent of the number of subdomains. When % and B are chosen to form
the one- or two-level additive Schwarz operator, the first two conditions are satisfied
for an upper bound ¢, independent of the number of subdomains. An algebraic proof
which depends only on the coefficient matrix can be found in [3]. However, the third
condition is still an open question if no information from the underlying PDE is used.
In this paper we address the problem of defining algebraically a surjective interpolation
operator of the two-level additive Schwarz operator such that the third condition
holds for a ¢; independent of the number of subdomains. This is related to the
stable decomposition property, which was introduced in [9]. Later, in [3], the authors
proposed a stable decomposition with the additive Schwarz. This decomposition was
based on the underlying PDE. Thus, when only the coefficient matrix A is known,
this decomposition is not possible to be computed.

The two following lemmas will be applied to choose the local vectors that con-
tribute to the coarse space. They are based on low rank corrections. In [3], the
authors present two lemmas [3, Lemma 7.6, p. 167, and Lemma 7.7, p. 168] similar to
the following lemmas. The rank correction proposed in their version is not of minimal
rank. We modify these two lemmas to obtain the smallest rank correction.

LEMMA 2.3. Let A, B € R™*™ be two symmetric positive semidefinite matrices.
Let ker(A), range(A) denote the null space and the range of A, respectively. Let
ker(B) denote the kernel of B. Letting L = ker(A) N ker(B), we note Ltrer(
the orthogonal complementary of L in ker(A). Let Py be an orthogonal projection on
range(A). Let T be a strictly positive real number. Consider the generalized eigenvalue
problem,

PyBPyuy, = A\ Aug,
(2.5) u € range(A),

A € R.
Let P, be an orthogonal projection on the subspace

Z = Ltwer @ span{uy | A\ > 7},
and then the following inequality holds:
(2.6) (u—Pru)" B(u— Pou) < 7u’ Au Vu € R™.
Furthermore, Z is the subspace of smallest dimension such that (2.6) holds.
Proof. Let ms = dim(range(A)). Let
M< <A ST < Amg1 < < Ay

be the eigenvalues of the generalized eigenvalue problem (2.5). Let

ul,...,umr,um7+1,...,umA
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be the corresponding eigenvectors, A-orthonormalized. Let kp = dim(ker(B) N
ker(A)), ka = dim(ker(A)) = m — ma. Let vq,...,v;, be an orthogonal basis of
L and let vgg41,...,v5, be an orthogonal basis of Ltrert4) guch that vy, ... , Uk, 1
an orthogonal basis of ker(A). The symmetry of A and B permits one to have
ul Auj =65, 1<i,j <ma,
ul Buj = NSy, 1<1i,j <ma,
’U;rUj:(Sij, ].SZ,]SICA,

L= span{vlv cee 7U]€B}7
LLkET(A) = Span {UkB-‘rl, s 7va} )

where §;; stands for the Kronecker symbol. For a vector v € R™ we can write

ma
Pou = Z(ugAPou)uk
k=1
Then, we have
kp ma
Pu=u— Pyu— Z(U,Iu)vk + Z (u, APyu)uy
k=1 k=m,+1
Thus,
kg mar
u— Pru= Z(v;u)vk + Z(ulAPou)uk
k=1 k=1

Hence, the left side of (2.6) can be written as

(u— Pyu)" B(u— Pu)
-

kp mor kp mar
= (Z(vgu)vk + Z(UEAPOU)W) B <Z(v;u)vk + Z(U;—APOU)Uk> ,
k=1 k=1 k=1 k=1
k?B m+ T M
= (Z(v;u)vk + Z(uZAPou)uk> <Z )\k(uZAPOu)Auk> ,
=1 k=1 k=1
kp mr T m,
= (Z(U{u)Avk + Z(u;—APou)Auk> (Z )\k(ugAPou)uk> ,
= k=1 k=1
mar T mar
= ( (u; APyu) Auk> (Z )\k(u;—APou)uk> ,
=1 k=1
T
= (up APyu)uy Z e (u APyu)Auy, |
kA <T kA <T

S0 (uf AP (M(u] APou)Au;) |

kIAkST‘]‘)WST

= Z (up APou)*\g.

k\)\kgr
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We obtain (2.6) by remarking that

ma
Z (upy APyu)*\, < TZ(u;APou)z,
E|Ap <t k=1
ma
=T Z(u;APou)(u;APou),
k=1
= T(Pou)TApou,

=7u' Au.
There remains the minimality of the dimension of Z. First, note that
uw'Bu>71u' Au Yu € Z.

To prove the minimality, suppose that there is a subspace Z; of dimension less than the
dimension of Z. By this assumption, there is a nonzero vector w € (Z N Zl)lz , where

(ZN Z1)*7 is the orthogonal complementary of (Z N Z1) in Z, such that w 1 Z;. By
construction, we have
w' Bw > tw'" Aw.

This contradicts (2.6) and the minimality is proved. O

LEMMA 2.4. Let A € R™*™ be a symmetric positive matriz and B € R™*™ be
an SPD matriz. Let ker(A), range(A) denote the null space and the range of A,
respectively. Let Py be an orthogonal projection on range(A). Let T be a strictly
positive real number. Consider the following generalized eigenvalue problem:

(27) Auk = )\k.Buk.

Let P. be an orthogonal projection on the subspace

1
Zzspan{ukMk < },
pu

and then the following inequality holds:
(2.8) (u—Pu)' B(u—Pru) < 7u’ Au Yu € R™.

Z is the subspace of smallest dimension such that (2.8) holds.

Proof. Let uy,...,un, be an orthogonal basis vectors of ker(A). Let
1
0<>\m0+1 S §>\m7 < - §>\m.,.+1 S S)\m
T

be the eigenvalues strictly larger than 0 of the generalized eigenvalue problem (2.7).
Let

um0+17 e 7um7-7um.,-+17 ceey Um
be the corresponding eigenvectors A-orthonormalized. We can suppose that
T 1 .
u; Bu; = x&j, mo+1<i,j<m,
1

T .o
U; uj:§lj7 1§Z7]§m07
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where d;; stands for the Kronecker symbol. We can write

m

Puu= > (u APyu)uy
k=mo+1

Then, we have

Pru=u— Pou+ Z (ug APou)uy
k=mo+1

Thus,

m

uw— Pru= Z (u,l—APou)uk,
k=m, +1

= Z (up APou)uy

k|l g>1

Hence, the left side of (2.8) can be written

(u—Pyu)" B(u— Pru) = Z (ug APyu)uy | B (ug APyuw)uy | |
klAg>1 E|Ap>+

= Z (ug APyu)uy Z —(u APyu)Auy, | ,

klAg>1 k[Apg>1

[ X% wlanmd ($6]anay) ).

ElAp>2 jIx >+

Z (uzAPou)Qi.
Ak

klAg>1

We obtain (2.8) by remarking that

m

Z (u) APyu) )\i Z § APyu)?

k|>\k2; k=1

m
=7 Z (uy APyu)(uj APyu),
k=mo+1

= 7(Pyu) " APyu,
=71u' Au.
There remains the minimality of Z. First, note that

uw'Bu>71u' Au Yu € Z.

To prove the minimality, suppose that there is a subspace Z; of dimension less than the
dimension of Z. By this assumption, there is a nonzero vector w € (Z N Zl)lz , where
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(Z N Z1)™7 is the orthogonal complementary of (Z N Zy) in Z, such that w L Z;. By
construction, we have
w'Bw > 1w Aw.

This contradicts the relation (2.8). d

The previous lemmas are general and algebraic and not directly related to the
preconditioning. In the following section we will review the one- and two-level additive
Schwarz preconditioner.

2.2. One- and two-level additive Schwarz preconditioner. In this section
we review the definition and general properties of one- and two-level additive Schwarz
preconditioners, ASM, ASMs, respectively. We review, without proving, several lem-
mas introduced in [2, 3]. These lemmas show how the elements of ASM, without any
specific property of the coarse space S verify the conditions 1 and 2 of the fictitious
subspace Lemma 2.2.

The two-level preconditioner ASMs with coarse space S is defined as

N
(2.9) MX;‘]VL? = ZRZT (RiARiT)_l R;.
i=0

If ng =0, i.e., the subspace S is trivial, the term
RJ (RyARJ) 'Ry =0

by convention. The following lemma gives the additive Schwarz method a matrix
representation as in [3].

LEMMA 2.5. The additive Schwarz operator can be represented as
(2.10) Mydy o = %8 %,

where Xy is the operator adjoint of Z2 and B is a block diagonal operator defined as

N N
B: [[r™ - [[r",
(2.11) 11) 11)

(uido<icn ((RAR]) ui)ogigzv’

where R; AR for 0 <i < N is the ith diagonal block.
Proof. The proof follows directly from the definition of B and %s. O

We note that the dimension of the matrix representation of B is larger than the
dimension of A. More precisely, B has the following dimension:

N N
nB:Zni:n—Fno—FZ(Si.
i=0 i=1

The one-level additive Schwarz preconditioner can be defined in the same manner. It
corresponds to the case where the subspace S is trivial. The following Lemma 2.6,
[3, Lemma 7.10, p. 173] states that the operator %, is surjective without any specific
assumption about the coarse space S.

LEMMA 2.6. The operator %5 as defined in (1.6) is surjective.
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Proof. The proof follows from the definition of %5 (1.6) and the definition of the
partition of unity (1.4). d

Lemma 2.6 shows that the interpolation operator %5 seen as a matrix verifies the

condition 1 in Lemma 2.2. Lemma 2.7 guarantees that the matrix representation of
the additive Schwarz verifies condition 2 in Lemma 2.2.

LEMMA 2.7. Let k. be the minimum number of distinct colors so that
(span{RiT})KKN of the same color are mutually A-orthogonal. Then, we have

(2.12)

N N
(Z2up)" A(Baup) < (ke +1) D u] (RiAR])ui Vus = (u)oc;cy € [[R™
i=0 1=0
Proof. We refer the reader to [2, Theorem 12, p. 93] for a detailed proof. ]

We note that Lemma 2.7 is true for any coarse space S, especially when this
subspace is trivial. This makes the lemma applicable also for the one-level additive
Schwarz preconditioner. (The constant on the right-hand side in Lemma 2.7 becomes
kc.) Lemma 2.8 is the first step to obtain a reasonable constant ¢; that verifies the
third condition in Lemma 2.2

LEMMA 2.8. Let uy € R™ and ugp = (Ui)gc;cny € Hi]i() R™ such that ug =
Houp. The additive Schwarz operator without any other restriction on the coarse
space S verifies the following inequality:

N N

(2.13) Zu;r (RiARZT) u; <2 uyAug + (2ke + 1) Zu;RiAR;rui,
i=0 1=1

where k. is defined in Lemma 2.7.

Proof. We refer the reader to [3, Lemma 7.12, p. 175] to view the proof in
detail. 0

In order to apply the fictitious subspace Lemma 2.2, the term Zf\il u;r Rl-AR;'— u;
in the right-hand side of (2.13) must be bounded by a factor of uj Aus. For this
aim, the next section presents an algebraic local decomposition of the matrix A.
Combining this decomposition with Lemma 2.3 or Lemma 2.4 (depending on the
definiteness) defines a class of local generalized eigenvalue problems. By solving them,
we can define a coarse space §. The additive Schwarz preconditioner combined with
S satisfies the three conditions of the fictitious subspace Lemma 2.2. Hence, we can
control the condition number of the preconditioned system.

3. Algebraic local SPSD splitting of an SPD matrix. In this section we
present our main contribution. We introduce the algebraic local SPSD splitting of an
SPD matriz related to a subdomain. Then, we characterize all the algebraic local
SPSD splittings of A that are related to each subdomain. We give a nontrivial bound
from below for the energy norm of a vector by a locally determined quantity.

We start by defining the algebraic local SPSD splitting of a matrix related to a
subdomain.

DEFINITION 3.1 (algebraic local SPSD splitting of A related to a subdomain).
Following the previous notations, let A; be the matriz defined as
) Ri,OARZO RZ—,OARZ(;
(3.1) PiAP = | RisAR], Al ,
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where flf; € RY¥% . We say that A; is an algebraic local SPSD splitting of A related
to the subdomain 1 if the following condition holds:

(3.2) 0<u'Au<u'Au YueR"

For i € {1,..., N}, the matrix P; AP,’ has the form of a block tridiagonal matrix.
(The permutation matrix P; is defined in the section on notation.) The first diagonal
block corresponds to the interior DOF of the subdomain ¢, the second diagonal block
corresponds to the overlapping DOF in the subdomain 4, and the third block diagonal
is associated to the rest of the DOF.

LEMMA 3.2. Let my, ms, m3 be strictly positive integers and m = mq + ms + mg,
and let B € R™*™ be a 3 x 3 block tridiagonal SPD matriz

Bi1 By
(3.3) B=|Ba1 By B,
B3y Bss

where By; € RMi*™i for i € {1,2,3}. Let By € R™X™ e

B Bi1 Bip
(3.4) By = | Ba1 Bz ;
0

where Bay € R™2%™2 s g symmetric matriz verifying the inequalities

(3.5) u" By1 B! Biou < u' Boou < u' (Bas — BasBsy' Bao)u Yu € R™,
and then the following inequality holds:

(3.6) 0<u'Biu<u'Bu YuecR™.

Proof. Consider the difference matrix F = B — B;. Let Fy € R(m2+ms)x(ma+ms)
be the lowest 2 x 2 subblock diagonal matrix of F, i.e.,

B — Bay — Bay  Bog
2 Bssy Bssz)

F; admits the following decomposition:

I 3233—1> (B22 — By — By3 B! By ) < I )
3.7 Fy = 33 33 _ .
(3.7) 2 ( I Bss) \B3'Bso I

Since Bss satisfies, by assumption, the inequality (3.5), F, satisfies the following
inequality:
0<u'Fu YueRMmtms)

This proves the right inequality in (3.6). ~
Let E € R(mitm2)x(mitm2) he the upper 2 x 2 subblock diagonal of B;. E admits
the following decomposition:

I By, I BlB12>
3.8 E= _ . B 11 .
(3.8) (3213111 I) ( Bas — 3213111312> ( I

The positivity of B; follows directly from (3.5). d



78 HUSSAM AL DAAS AND LAURA GRIGORI

LEMMA 3.3. Using the notation from Lemma 3.2, the following holds:
e The condition (3.5) in Lemma 3.2 is not trivial, i.e., the set of matrices By
that verify the condition (3.5) is not empty
o There exist matrices, Boo, that verify the condition (3.5) with strict inequal-
ities
o The left inequality in condition (3.5) is optimal, i.e., if there exists a nonzero
vector ug € R™2 that verifies

T -1 T5
Uy 321311 Bioug > Uy Boous.
Then, there exists a nonzero vector u € R™ such that
uTélu < 0.

e The right inequality in condition (3.5) is optimal, i.e., if there exists a nonzero
vector us € R™2 that verifies

5 —1
u;—BQQUQ > U; (B22 — BQ3B33 ng) Ug.
Then, there exists a nonzero vector u € R™ such that
uTélu > u' Bu.

Proof. First we prove the nontriviality of the set of matrices verifying (3.5). In-
deed, let S(Bgs) be the Schur complement of Bsy in B, namely,

5(322) = 322 - B2IB;11312 — BQ3B§31B32.

Set BQQ = %S(BQQ) + BngﬁlBlg. Then we have
~ _ _ ~ 1
B22 - B21B111B12 = (B22 - BQSB331B32) - BZZ = 55(322)7

which is an SPD matrix. Hence, the strict inequalities in (3.5) follow.
Let us € R™2 be a vector such that

T -1 TA
Uy BQlBll Bioug > Uy Bosus.

The block-LDLT factorization (3.8) shows that

uTglu = u;— (BQQ — BngilBlg> ug < 0,

u = .
I u9

In the same manner we verify the optimality mentioned in the last point. ]

Remark 3.4. We note that the matrix (g; g;z

Furthermore, if By is set such that the left inequality in (3.5) is strict, then the
seminorm becomes a norm.

where w is defined as

) defines a seminorm in R™1+m2,

Now, we can apply Lemma 3.2 on P;AP," for each subdomain i by considering
its interior DOF, overlapping DOF, and the rest of the DOF.
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PROPOSITION 3.5. For each subdomain i € {1, ..., N}, let A; € R"*" be defined
as
) Ri,OARIO Ri,oARzé
(3.9) PAP = | RisAR], A} :

where flf; € R% X% satisfies the following conditions:
Yu € R%,
o u (RisAR])) (RioAR!)) " (RipAR];)u < u' Aju,
o ul Afu <u' ((RisAR];) — (Ri75ARZC)(Ri,CARIC)_l(Ri,CARZ(;))u.
Then, Vi € {1, ..., N} the matriz A; is an algebraic local SPSD splitting of A related
to the subdomain i. Moreover, the following inequality holds:

N
(3.10) 0< ZUT/LU <kmu' Au  Vu e R",
i=1

where k., is a number bounded by N.

Proof. Lemma 3.2 shows that A; is an algebraic local SPSD splitting of A related
to the subdomain i. The inequality (3.10) holds with the constant N for all algebraic
local SPSD splittings of A. Thus, depending on the SPSD splitting related to each
subdomain there exists a number k,, < N such that the inequality holds. 0

We note that the matrix A; is considered local since it has nonzero elements only
in the overlapping subdomain ¢. More precisely,

Vi k eN|jeN: vV k¢N;, Ai(j,k)=0.

Proposition 3.5 shows that the A-norm of a vector v € R™ can be bounded from below
by a sum of local seminorms (Remark 3.4).

4. Algebraic stable decomposition with Z%,. In the previous section we
introduced the algebraic local SPSD splitting of A. In this section we present the
T-filtering subspace that is associated with each SPSD splitting. In each subdomain a
7-filtering subspace will contribute to the coarse space. We show how this leads to a
class of stable decomposition with %Z5. We note that the previous results of section 2
hold for any coarse space S. Those results are sufficient to determine the constant ¢,
in the second condition of the fictitious subspace lemma (Lemma 2.2). However, they
do not allow one to control the constant ¢; of the third condition of the same lemma.

As we will see, the GenEO coarse space [17, 3] corresponds to a special SPSD
splitting of A. Therefore, we follow the presentation in [3] in the construction of the
coarse space. We note that the proof of Theorem 4.4 is similar to the proof of [3,
Theorem 7.17, p. 177]. We present it for the sake of completeness.

DEFINITION 4.1. Let A; be an algebraic local SPSD splitting of A related to the
subdomain i fori=1,...,N. Let 7 > 0. Let Z; C R™ be a subspace and let P; be an
orthogonal projection on Z;. We say that Z; is a T-filtering subspace if

where u; = (Di (In — Pl)Rzu) and D; is the partition of unity fort=1,...,N.
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After the characterization of the local SPSD splitting of A related to each subdomain,
we characterize the associated smallest T-filtering subspace.

LEMMA 4.2. Let A; be an algebraic local SPSD splitting of A related to the sub-
domain i fori=1,...,N. Let 7 > 0. For all subdomains 1 <i < N, let

G, = D; (R;AR]") D;,

where D; is the partition of unity. Let I:’oﬂ‘ be the projection on range(RiAiR;)
parallel to ker(R;A;R]). Let K = ker(R;A;R]), L = ker(G;) N K, and L ¥ the
orthogonal complementary of L in K.

o If G; is indefinite, consider the following generalized eigenvalue problem:

Find (ui ks, Nig) € rcmge(RifliR;r) x R
such that po,iéipo7iui7k = /\i,kRiAiR;rui,k.

Set
(4.1) ZNW' =Lix g span{ui g | Aig > T}.
o If G; is definite, consider the following generalized eigenvalue problem:

Find (uik, Aig) €R™ xR
such that RiAiRiTui,k = /\i,kéiui,k-

Set
- 1
(4.2) Z; = span{ui7k | Ak < }
T

Then, Zm- s the smallest dimension T-filtering subspace and the following inequality
holds: R

where u; = (Di (Inl. — PTwi)RZ-u), and ]57’1- is the orhtogonal projection on Z”
Proof. The proof follows from direct application of Lemmas 2.3 and 2.4. 0

We will refer to the smallest dimension 7-filtering subspace as Zm- and to the
projection on it as Ism-. Note that for each algebraic local SPSD splitting of A related
to a subdomain i, the 7-filtering subspace Zm- defined in Definition 4.1 changes. Thus,
the projection pr,i depends on the algebraic local SPSD splitting of A related to the
subdomain :.

In the rest of the paper, the notation Zr,i and Pm will be used according to the
algebraic local SPSD splitting of A that we deal with and following Lemma 4.2.

Definition 4.1 leads us to bound the sum in (2.13) by a sum of scalar products
associated to algebraic SPSD splittings of A. Therefore, a factor, which depends on
the value of 7, of the scalar product associated to A will bound the inequality in
(2.13).

DEFINITION 4.3 (coarse space based on algebraic local SPSD splitting of A (ALS)).
Let A; be an algebraic local SPSD splitting of A related to the subdomain i for
i =1,....,N. Let Z,; be the subspace associated to A; as defined in Lemma 4.2.
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We define S, the coarse space based on the algebraic local splitting of A related to
each subdomain, as the sum of expanded weighted T-filtering subspaces associated to
the algebraic local splitting of A related to each subdomain,

N
(4.3) S= @ R/ D;Z, ;.

i=1
Let Zo be a matrix whose columns form a basis of S. We denote its transpose by
Ry = Z0 .

As mentioned previously, the key point to apply the fictitious subspace lemma
(Lemma 2.2) is to find a coarse space that induces a relatively large ¢; in the third
condition of the lemma. The following theorem proves that ALS satisfies this.

THEOREM 4.4. Let A; be an algebraic local SPSD splitting of A related to the
subdomain i fori =1,...,N. Let Z,; be the T-filtering subspace associated to A,
and Pm’ be the projectwn on Zm as defined in Lemma 4.2. Let u € R™ and let
w; = (Di (Im - ﬁT)i)Riu) fori=1,... ,N. Let ug be defined as

N
Uug = (R()R()T)_l RO (Z R;FDZ]BTJR1U> .
i=1

Let ¢; = (2 + (2ke 4+ V)kpm7) "', Then,

N
U= g R u;,
i=0

and
N

) Z u;rRZ—ARZTui <u'Au.
i=0

Proof. Since Yy € S, y = R (ROROT)_1 Ryy, the relation

N
w= Z R u; = %, (ui)o<icn
i—0

follows directly. Lemma 2.8 shows that

N N
> ul RiAR] u; < 2u” Au+ (2k. +1) Y u] (RiAR]) u;
=0 1=1

By using Lemma 4.2 we can write

N N
ZuTRARTuZSQuTAu—l— (2k. +1) TZ (RAR )(Ru)
=0 i=1

Since A; is local, we can write

N
> u] RiAR u; < 2u” Au+ (2ke + 1)7
i=0

uMz



82 HUSSAM AL DAAS AND LAURA GRIGORI

Then, by applying Proposition 3.5, we can write
N
ZujRiAR;rui <2u' Au+ (2ke + Vkpm u' Au,
i=0
N

Z uiTRiARiTu,; < (24 (2ke + Dkpr) u' Au.
i=0 0

THEOREM 4.5. Let Mars be the two-level ASM preconditioner combined with
ALS. The following inequality holds:

K (My}gA) < (ke +1) (2 + (2ke + 1)kp,7)

Proof. Lemmas 2.6 and 2.7 and Theorem 4.4 show that the two-level precondi-
tioner associated with ALS verifies the conditions of the fictitious subspace lemma
(Lemma 2.2). Hence, the eigenvalues of M,Zi A verify the following inequality,

1
24 (2k. + Dkym

<A (My1gA) < (ke +1),

and the result follows. 0

Remark 4.6. Since any 7-filtering subspace Z; can replace va in Theorem 4.4, the
Theorem 4.5 applies for coarse spaces of the form S = @i\;l R/ D; Z;. The difference
is that the dimension of the coarse space is minimal by choosing Z ;; see Lemma 4.2.

We note that the previous theorem (Theorem 4.5) shows that the spectral condi-
tion number of the preconditioned system does not depend on the number of subdo-
mains. It depends only on k., k,,, and 7. k. is bounded by the maximum number of
neighbors of a subdomain. k., is a number bounded by the number of subdomains. It
depends on the algebraic local SPSD splitting of each subdomain. Partitioned graphs
of sparse matrices have structures such that k. is small. The parameter 7 can be
chosen small enough such that ALS has a relatively small dimension.

4.1. GenEO coarse space. In [3], the authors present the theory of one- and
two-level additive Schwarz preconditioners. To bound the largest eigenvalue of the
preconditioned system they use the algebraic properties of the additive Schwarz pre-
conditioner. However, to bound the smallest eigenvalue, they benefit from the dis-
cretization of the underlying PDE. In the environment of the finite element method,
they construct local matrices corresponding to the integral of the operator in the
overlapping subdomain. For each subdomain, the expanded matrix has the form

Ri0AR], R;oAR];
PiAP = | RisAR], Al ,
0

where /If; corresponds to the integral of the operator in the overlapping region with
neighbors of the subdomains i. This matrix is SPSD since the global operator is
SPD. Since the integral over the subdomain is always smaller than the integral over
the global domain (positive integrals), the following inequality holds:

0<u'Au<u'AuVu e R™.



CELCPCS 83

Hence, Lemma 3.3 confirms that the matrix A; corresponds to an algebraic local
SPSD splitting of A related to the subdomain ¢. Thus, GenEO is a member of the
class of preconditioners that are based on the algebraic local SPSD splitting of A. We
note that the parameter k,,, defined in (3.10), with the algebraic local SPSD splitting
of A corresponding to GenEO can be shown to be equal to the maximum number of
subdomains sharing a DOF.

4.2. Extremum efficient coarse space. In this section we discuss the two
obvious choices to have algebraic local SPSD splitting of A. We show how in practice
these two choices are costly. However, they have two advantages. The first is that
one of these choices gives an answer to the following question that appears in domain
decomposition. How many local vectors must be added to the coarse space in order
to bound the spectral condition number by a number defined a priori? We are able
to answer this question in the case where the additive Schwarz preconditioner is to
be used. We note that the answer is given without any analytic information. Only
the coeflicients of the matrix A have to be known. The second advantage is that both
choices give an idea of constructing a noncostly algebraic approximation of an ALS.

In the following discussion we disregard the impact of the parameter k,,. Numer-
ical experiments in section 5 demonstrate that the impact of this parameter can be
negligible. We note that this parameter depends only on the algebraic local SPSD
splitting and it is bounded by N.

Suppose that we have two SPSD splittings of A related to a subdomain i, flgl), 14152),
such that

qulz(.l)u < uT/L(?)u Yu € R".
We want to compare the number of vectors that contribute to the coarse spage for

each SPSD splitting. It is clear that a 7-filtering subspace associated to fll(-l is a

(2

T-filtering subspace associated to zzll- . Thus, the following inequality holds:

dim(zsi)) Z dzm(Zfz ),

where Zi,li), Zg) are the smallest 7-filtering subspaces associated to A§1)7 211(2), respec-
tively. Therefore, Lemma 3.3 shows that the closer we are to the upper bound in
(3.5) the fewer vectors that will contribute to ALS. Moreover, the closer we are to
the lower bound in (3.5) the more vectors that will contribute to ALS. Indeed, the
set of algebraic local SPSD splitting of A related to a subdomain i admits a relation

of partial ordering.
M, < M; <— uTMlu < uTMzu Yu.

This set admits obviously a smallest and a largest element defined by the left and the
right bounds in (3.5), respectively.

Hence, the best ALS corresponds to the following algebraic local SPSD splitting
of Afori=1,...,N:
(4.4)

Ri’oAR;':O Ri,oARzé
PAP] = | RisAR], RisAR[; — (RisARL) (RiART) ™ (RicART)
0

The dimension of the subspace Zm associated to A; (4.4) is minimal over all possible
algebraic local SPSD splittings of A related to the subdomain i. We remark that this
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splitting is not a choice in practice since it includes inverting the matrix (RLCARZ C),
which is of large size (approximately corresponding to N — 1 subdomains). We will
refer to (4.4) as the upper bound SPSD splitting, and the associated coarse space will
be referred to as the upper ALS. In the same manner, we can find the worst ALS. The
corresponding algebraic local SPSD splitting of A related to the subdomain i is the
following:

Ri0AR], Ri0AR]
45)  PAPT = | RisAR], (RisARJ,) (RioART) ™ (Ri,oARiTé)
0

On the contrary of the best splitting (4.4), this splitting is not costly. It includes
inverting the matrix (Ri,oARZ 0), which is considered small. However, the dimension
of Zm- associated to /L— (4.5) is maximal. It is of dimension §; at least. Indeed, a
block-LDLT factorization of RifliRiT shows that its null space is of dimension §;. We
will refer to (4.5) as the lower bound SPSD splitting the associated coarse space will
be referred to as the lower ALS.

Remark 4.7. A convex linear combination of the lower bound and the upper
bound of the SPSD splitting is also an algebraic local SPSD splitting.
a X the upper bound SPSD splitting 4+ (1 — a) x the lower bound SPSD splitting.
We refer to it as a-convex SPSD splitting. We refer to the corresponding ALS as the
a-convex ALS.

In the following section we propose a strategy to compute an approximation of
reasonable ALS that is not costly.

4.3. Approximate ALS. As mentioned in subsection 4.2, the extremum cases
of ALS are not practical choices. We recall that the restriction matrix R; . is associated
to the DOF's outside the overlapping subdomain i. The bottleneck in computing the
upper bound SPSD splitting is the computatation of the term

(RisAR],) (Ri AR],) " (Ri.AR]y)

since it induces inverting the matrix (Ri,cARiT,c)- To approximate the last term, we
look for a restriction matrix R; ; such that

?

(Ri’(;ARZE) (Ri,gAR;"—a)_l (Ri’,;ARZ(;) is easy to compute.

(RisAR].) (Ri AR],) ™" (Ri.AR[y) ~ (RisAR[.) (RizAR!) ™ (RisARJ;),

One choice is to associate R;:z to the DOFs outside the overlapping subdomain ¢
that have the nearest distance from the boundary of the subdomain ¢ through the
graph of A. In practice, we fix an integer d > 1 such that the matrix Ri’gARZ& has a
dimension dim; < d x n;. Then we can take a convex linear combination of the lower
bound SPSD splitting and the approximation of the upper bound SPSD splitting. For
instance, the error bound on this approximation is still an open question. Numerical
experiments show that d does not need to be large.



CELCPCS 85

TABLE 5.1
Matrices used for tests. n is the size of the matriz, NnZ is the number of nonzero elements.
HPD stands for Hermitian positive definite. k is the condition number related to the second norm.

Matrix name Type n NnZ K
SKY3D Skyscraper 8000 53000 10°
SKY2D Skyscraper 10000 49600 108
EL3D Elasticity 15795 510181 3 x 10!

5. Numerical experiments. In this section we present numerical experiments
for ALS. We denote ASM 415 the two-level additive Schwarz combined with ALS. If it
is not specified, the number of vectors deflated by subdomain is fixed to 15. We use the
preconditioned CG implemented in MATLAB 2017R to compare the preconditioners.
The threshold of convergence is fixed to 107%. Our test matrices arise from the
discretization of two types of challenging problems: linear elasticity and diffusion
problems [5, 1, 15]. Our set of matrices are given in Table 5.1. The matrices SKY2D
and SKY3D arise from the boundary value problem of the diffusion equation on €,
the two-dimensional (2-D) unit square and the 3-D unit cube, respectively:

—div(k(z)Vu) = f in 0,
(51) u=0 on FD;
ou
% =0 on FN

They correspond to skyscraper problems. The domain €2 contains several zones of
high permeability. These zones are separated from each other. The tensor k is given
by the following relation:

(z) = 103([10z2) + 1) if [102;] is odd, i = 1,2,
1

K
k(z) otherwise.

I'p =1[0,1] x {0,1} in the 2-D case. I'p = [0,1] x {0,1} x [0, 1] in the 3-D case. I'y is
chosen as I'y = 9Q \ I'p and n denotes the exterior normal vector to the boundary
of Q. The linear elasticity problem with Dirichlet and Neumann boundary conditions
is defined as follows:

div(o(u)) +f=0 in €,
(5.2) u=0 on I'p,
o(u)-n=0 on I'y.

Q is a unit cube 3-D. The matrix EI3D corresponds to this equation discretized using
a triangular mesh with 65 x 9 x 9 vertices. I'p is the Dirichlet boundary, I'y is
the Neumann boundary, f is a force, and wu is the unknown displacement field. The
Cauchy stress tensor o(.) is given by Hooke’s law: it can be expressed in terms of
Young’s modulus F and Poisson’s ration v. n denotes the exterior normal vector to
the boundary of . We consider discontinuous E and v: (Eq,v1) = (2 x 1011,0.45),
(E2,v2) = (107,0.25). Data elements of this problem are obtained by the application
FreecFem++ [7]. Table 5.2 presents a comparison between one-level ASM and ASM,
with the upper bound ALS. As is known, the iteration number of CG preconditioned
by ASM increases by increasing the number of subdomains. However, we remark that
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TABLE 5.2

Comparison between ASMs with the upper ALS and one-level additive Schwarz.

n s the

dimension of the problem, N is the number of subdomains, n,c is the iteration number of CG
preconditioned by ASMa, and nasps is the iteration number of CG preconditioned by one-level

ASM. The sign — means that the method did not converge in fewer than 100 iteration.

Matrix n N NyuC NASM
4 23 29
8 25 35

SKY3D 8000 16 25 37
32 22 55
64 24 79
128 24 -
4 18 54
8 19 -

SKY2D 10000 16 20 -
32 22 -
64 26 -
128 31 -
4 38 -
8 43 -

EL3D 15795 16 51 -
32 51 -
64 67 -
128 92 -

TABLE 5.3

Comparison between ALS wvariants, the upper bound ALS, the ai-conver ALS, and the as-
convex CosBALSS. n is the dimension of the problem, N is the number of subdomains, the subscript
uC refers to the upper bound ALS, n. is the iteration number of ASMas, and o refers to the coefficient
in the convex linear combination, a1 = 0.75 and as = 0.25.

Matrix n N NuC Nay Ny
4 23 22 22
8 25 25 23
SKY3D 8000 16 25 24 24
32 22 22 22
64 24 23 21
128 24 24 22
4 18 18 17
8 19 19 19
SKY2D 10000 16 20 19 19
32 22 21 18
64 26 24 20
128 31 28 20
4 38 38 38
8 43 43 43
EL3D 15795 16 51 51 51
32 51 51 51
64 67 67 67
128 92 92 92

the iteration number of the CG preconditioned by ALS is robust when the number of

subdomain increases.

In Table 5.3 we compare three ALS, the upper bound, a;-convex, and as-convex,
where a; = 0.75 and ay = 0.25. Table 5.3 shows the efficiency of three ALS related
to different SPSD splittings. The iteration count corresponding to each coarse space
increases slightly by increasing the number of subdomains. The main reason behind
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TABLE 5.4
Estimation of the spectral condition number of matriz EI3D preconditioned by AS Mz with ALS
variants and GenEo coarse space. Results correspond to Table 5.5, N is the number of subdomains,
the subscript uC refers to the upper bound ALS, o refers to the coefficient in the convexr ALS,
a1 = 0.75 and az = 0.25, and the subscript Gen stands for the GenEQO coarse space.

N RuC Ray Rag KGen
4 5 4 4 5

8 8 5 5 7

16 15 10 9 15
32 34 25 15 18

64 100 67 30 31
128 231 178 86 39

TABLE 5.5

Matriz EI3D, ALS variants, and GenFEo coarse space with the minimum number of deflated
vectors disregarding the parameter kmy,. N is the number of subdomains, the subscript uC refers to
the upper bound ALS. dim. is the dimension of ALS, n. is the iteration number of ASMas, « refers
to the coefficient in the convex ALS, a1 = 0.75 and aa = 0.25, and the subscript Gen stands for the
GenEO coarse space. See Table 5.4.

N dimyc  Nyc dime, Nay diMea,  Nay dimGen  MNGen
4 82 20 92 19 120 18 106 20
8 179 23 209 20 240 20 229 24
16 304 37 394 30 480 28 391 38
32 447 53 583 45 960 36 614 42
64 622 84 769 73 1920 51 850 55
128 969 131 1096 112 3834 77 1326 61

this increasing is that the predifined parameter 7 provides an overestimation of the
upper bound on the spectral condition number; see Table 5.4.

To illustrate the impact of the parameter k,,, when increasing the number of
subdomains, on bounding the spectral condition number, we do the following. We

choose 7 as ) -
R

= ———2)(2k.+17,

g 2<kc+1 >( +1)

i.e., we suppose that k,, has no impact on 7. The resulting spectral condition num-
ber will be affected only by the parameter k,,; see Table 5.4. Tables 5.4 and 5.5
present results for ALS variants for & = 100. We perform this test on the elasticity
problem (5.2), where we could also compare against the GenEO coarse space [17, 3].
We note that when GenEO is applied on the elasticity problem (5.2), the domain
decomposition performed by freefem++ [7], for all tested values of N, is such that
any DOF belongs to at most two subdomains and hence k,,(GenEO) = 2. This
means that the hyposthesis that k,, has no impact on the selected 7 is true for the
coarse space GenEQO. Nevertheless, this might be false for the other coarse spaces.
Therefore, the impact of k,, will be remarked on only for the ALS coarse spaces.
Table 5.5 shows the dimension of ALS for each variant as well as the iteration num-
ber for preconditioned CG to reach the convergence tolerance. On the other hand,
Table 5.4 shows an estimation of the spectral condition number of the preconditioned
system. This estimation is performed by computing an approximation of the largest
and the smallest eigenvalues of the preconditioned operator by using the Krylov—
Schur method [19] in MATLAB. The same tolerance 7 is applied for GenEO. In order
to avoid a large-dimension coarse space, 30 vectors at max are deflated per subdo-
main.
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EI3D 128 subdomains GenEO . EI3D 128 subdomains uC

8

Repetition
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Number of deflated vectors
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Number of deflated vectors

EI3D 128 subdomains a = 0.75 . EI3D 128 subdomains a = 0.25
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8 &
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8‘ 8
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Fi1c. 5.1. Histogram of the number of deflated vectors by each subdomain for different ALS,
GenEO; uC, the upper bound ALS; aj-convex ALS, a1 = 0.75; arg-convexr ALS, ag = 0.25.

We note that results in Table 5.5 satisfy the discussion in subsection 4.2. Indeed,
the upper bound ALS has the minimum dimension; 0.75- and 0.25-convex ALS follow
the upper bound ALS, respectively.

Table 5.4 demonstrates the impact of k,,, on the bound of the spectral condition
number. We notice that its effect increases when « is closer to 1 (the larger « is, the
larger k,, becomes). We recall that in the algebraic SPSD splitting k,,, < N. However,
when GenEO is applied to the elasticity problem test case (5.2), k,, is independant
of N and is equal to 2 as explained previously. The values of the estimated spec-
tral condition number, especially for a small number of subdomains (N = 4), show
how 7 provides an overestimation of the theoretical upper bound on the spectral con-
dition number (estimated(x) < 100). For this reason, we consider that this slight
augmentaion of the iteration count does not mean that the method is not robust.

In Figure 5.1 we present a histogram of the number of deflated vectors by each
subdomain. We remark that the number of vectors that each subdomain contributes
to the coarse space is not necessarily equal. In the case of ap-convex ALS, most sub-
domains reach the maximum number of deflated vectors, 30, that we fixed. Moreover,
Figure 5.2 compares the number of deflated vectors in each subdomain for the Ge-
nEO subspace and the upper bound ALS. This figure illustrates the relation of partial
ordering between the SPSD splitting as discussed in subsection 4.2.

In Table 5.6 we show the impact of the approximation strategy that we proposed
in subsection 4.3. The distance parameter related to the approximation (see sub-
section 4.3) is fixed for each matrix. It is obtained by tuning. The convex linear
combination is chosen as a = 0.01. Each subdomain contributes 20 vectors to the
coarse space. We remark that the approximation strategy gives interesting results
with the conviction-diffusion problem matrices SKY2D and SKY3D. With a small
factor of the local dimension d = 2 and d = 3, respectively, the approximate ALS
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Fic. 5.2. Comparison between the number of deflated vectors per subdomain GenEQO coarse
space and the upper bound ALS.

TABLE 5.6

Comparison between the upper bound ALS and the approximation strategy presented in section
4.3. n is the dimension of the problem, N is the number of subdomains, n,c is the iteration number
of CG preconditioned by ASMsa with the upper bound ALS, d stands for the factor of local dimension
to approximate the upper bound SPSD splitting, as explained in section 4.3, and nap is the iteration
number of CG preconditioned by ASMs with approzimation of ALS; the convex linear combination
is chosen as (0.01 x approximation of the upper bound + 0.99 x lower bound). The sign — means
that the method did not converge in fewer than 150 iterations.

Matrix n N NuC d  Nap
4 22 22
8 23 23

SKY3D 8000 16 24 2 22
32 22 22
64 24 22
128 22 44
4 17 17
8 18 18

SKY2D 10000 16 20 3 19
32 22 22
64 26 59
128 31 90
4 27 54
8 36 56

EL3D 15795 16 37 5 77
32 43 136
64 61

128 83 -
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is able to perform relatively as efficiently as the upper bound ALS. For the elastic-
ity problem with a larger factor d = 5, the approximate ALS reduces the iteration
number; however, we remark that the latter increases by increasing the number of
subdomains.

6. Conclusion. In this paper we reviewed generalities of one- and two-level
additive Schwarz preconditioners. We introduced the algebraic local SPSD splitting
of an SPD matrix A. We characterized all possible algebraic local SPSD splitting. To
study the minimality of the dimension of the coarse space, we introduced the 7-filtering
subspaces. Based on the algebraic local SPSD splitting and inspired by the GenEO
method [17, 3], we introduced a class of algebraic coarse spaces that are constructed
locally (ALS). The characterization of algebraic local SPSD splitting of A and the
associated 7-filtering subspaces makes an algebraic framework for studying the coarse
spaces related to the additive Schwarz method. We proved that the coarse space of
GenEO corresponds to a special case of the SPSD splitting. We discussed different
types of ALS and suggested a simple method to approximate a valuable coarse space.
For matrices issued from the conviction-diffusion problem, the simple method that we
proposed gave very interesting results. The algebraic formulation presented in this
paper is particularly important when the theory of GenEO cannot be applied. We
also note that in our ongoing work, we develop a theoretical and practical framework
that will give rise to a three-level additive Schwarz preconditioner combining GenEO
and ALS.

Acknowledgments. The authors would like to thank the editor and the anony-
mous referees for their useful remarks that helped us improve the clarity of the paper.
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