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ENLARGED KRYLOV SUBSPACE CONJUGATE GRADIENT
METHODS FOR REDUCING COMMUNICATION∗
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Abstract. In this paper we introduce a new approach for reducing communication in Krylov
subspace methods that consists of enlarging the Krylov subspace by a maximum of t vectors per
iteration, based on a domain decomposition of the graph of A. The obtained enlarged Krylov
subspace Kk,t(A, r0) is a superset of the Krylov subspace Kk(A, r0), Kk(A, r0) ⊂ Kk,t(A, r0). Thus,
we search for the solution of the system Ax = b in Kk,t(A, r0) instead of Kk(A, r0). Moreover, we
show in this paper that the enlarged Krylov projection subspace methods lead to faster convergence
in terms of iterations and parallelizable algorithms with less communication, with respect to Krylov
methods.
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1. Introduction. Krylov subspace methods are among the most practical and
popular iterative methods today. They are polynomial iterative methods that aim
to solve systems of linear equations (Ax = b) by finding a sequence of vectors
x1, x2, x3, x4, . . . , xk that minimizes some measure of error over the corresponding
spaces

x0 +Ki(A, r0), i = 1, . . . , k,

where Ki(A, r0) = span{r0, Ar0, A2r0, . . . , A
i−1r0} is the Krylov subspace of dimen-

sion i, x0 is the initial iterate, and r0 is the initial residual. Conjugate gradient
(CG) [18], generalized minimal residual (GMRES) [29], bi-conjugate gradient [21, 8],
and bi-conjugate gradient stabilized [31] are some of the most used Krylov subspace
methods.

These methods are governed by Blas1 and Blas2 operations as dot products and
sparse matrix vector multiplications. Parallelizing dot products is constrained by
communication since the performed computation is negligible. If the dot products are
performed by one processor, then there is a need for a communication before and after
the computation. In both cases, communication is a bottleneck. This problem has
been tackled by different approaches. First, block methods that solve systems with
multiple right-hand sides AX = B were introduced, as block CG (B-CG) [25]. Then,
s-step methods that compute s basis vectors per iteration were proposed, examples
are s-step CG [32, 4] and s-step GMRES [33, 7]. Both methods, block and s-step,
use Blas2 and Blas3 operations. Recently, communication avoiding methods, based
on s-step methods, that aim at avoiding communication at the expense of performing
some redundant flops were introduced, as CA-CG, CA-GMRES [23, 19], and CA-
ILU0 preconditioner [12]. Another approach is to hide the cost of communication
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ENLARGED KRYLOV SUBSPACE METHODS 745

by overlapping it with other computation, like pipelined CG [6, 15] and pipelined
GMRES [9].

In this paper we introduce a new approach that consists of enlarging the Krylov
subspace by a maximum of t vectors per iteration. First, the input matrix is parti-
tioned into t subdomains by using a graph partitioning algorithm. At the beginning of
the iterative method, the residual is split into t vectors corresponding to the t subdo-
mains. Then, the obtained t vectors are multiplied by A at each iteration to generate t
new basis vectors. The obtained enlarged Krylov subspace Kk,t(A, r0) is a superset of
the Krylov subspace Kk(A, r0), Kk(A, r0) ⊂ Kk,t(A, r0). Thus it is possible to search
for the solution of the system Ax = b in Kk,t(A, r0) instead of Kk(A, r0). Moreover,
we show in this paper that the enlarged Krylov projection subspace methods lead
to faster convergence in terms of iterations and parallelizable algorithms with less
communication, with respect to Krylov methods.

The enlarged Krylov subspace methods can be considered as a special case of the
augmented Krylov subspace methods [3, 28] since, in some sense, we are augmenting
the classical subspace. However, the subtle difference is that we are not adding some
subspace spanned by other vectors, like the eigenvalues in deflation methods [3]. But
we are taking the same classical Krylov subspace and enlarging it by splitting each vec-
tor into t vectors. Moreover, the enlarged Krylov subspace methods should not be con-
fused with block Krylov methods, a special case of augmented Krylov methods, that
solve a system with multiple right-hand sides. The enlarged Krylov subspace methods
solve one system with one residual vector at each iteration, but with multiple basis
vectors or multiple search directions obtained from the decomposition of the domain.

In this paper we focus on CG [18], a Krylov projection method for symmetric
(Hermitian) positive definite matrices (SPD), which was introduced by Hestenes and
Stiefel in 1952 (section 2.1). After giving a brief overview of related existing CG meth-
ods (section 2) such as B-CG [25], cooperative CG (coop-CG) [1], and multiple search
direction CG (MSD-CG) [16], we discuss several new versions of CG (section 3). The
first method, multiple search direction with orthogonalization CG (MSDO-CG), is an
adapted version of MSD-CG [16]. MSD-CG has the same structure as the classical
CG method where first t new search directions are defined on the t subdomains, then
the t step lengths are obtained by solving a t× t system, and finally the solution and
the residual are updated. But unlike CG, the search directions are not A-orthogonal.
In MSDO-CG, the search directions are A-orthonormalized to obtain a projection
method that guarantees convergence at least as fast as CG. The idea of using more
than one search direction was also exploited in Rixen’s thesis [26] for two subdomains
in the context of domain decomposition methods, and further developed in [11].

The second method that we propose here, long recurrence enlarged CG (LRE-
CG), is similar to GMRES in that we build an orthonormal basis for the enlarged
Krylov subspace rather than finding search directions. Then, we use the whole basis
to update the solution and the residual. We show that this method is a projection
method and hence should converge at least as fast as CG. The third set of intro-
duced methods, short recurrence enlarged CG (SRE-CG), SRE-CG2, and truncated
SRE-CG2, have the short recurrence property, as their name indicates. These meth-
ods build an A-orthonormal basis rather than an orthonormal basis, as in LRE-CG.
The difference between the three methods is in the A-orthonormalization process,
where the first A-orthonormalizes the t computed basis vectors against the previous
2t vectors, the second A-orthonormalizes the t computed basis vectors against all
the previous vectors, and the third A-orthonormalizes the t computed basis vectors
against a subset of the previous vectors. We compare the convergence behavior of all
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746 LAURA GRIGORI, SOPHIE MOUFAWAD, AND FREDERIC NATAF

the introduced methods using different A-orthonormalization and orthonormalization
methods and then we compare the most stable versions with CG and other related
methods (section 4).

We test our methods on matrices arising from the dicretization of two-dimensional
(2D) Poisson equations (Poisson2D), three-dimensional (3D) elasctisity equations
(Elasticity3D), and 2D and 3D convection-diffusion equations such as Nh2D, Sky2D,
Sky3D, and Ani3D as discussed in section 4. All the methods converge faster than CG
in terms of iterations, but LRE-CG and SRE-CG2 converge faster than MSDO-CG,
SRE-CG, and truncated SRE-CG2. And the more subdomains are introduced or the
larger t is, the faster is the convergence of the enlarged methods with respect to CG
in terms of iterations. For example, for t = 64, MSDO-CG, LRE-CG, and SRE-CG2
methods converge in 75% to 89% fewer iterations than CG for the matrices Nh2D,
Poisson2D, and Elasticity3D, and 95% to 98% fewer iterations than CG for the ma-
trices Sky2D, Sky3D, and Ani3D. But increasing t also means increasing the memory
requirements for the methods MSDO-CG, LRE-CG, and SRE-CG2. Thus, in practice,
t should be relatively small, depending on the available memory, on the size of the ma-
trix, and on the number of iterations needed for convergence, as explained in section 4.
However, the memory requirements of SRE-CG and truncated SRE-CG2 are fixed and
unrelated to t. We briefly discuss the parallel versions of the introduced algorithms
along with their expected performance based on the estimated run times in section 5.

2. Overview of existing CG methods. The Krylov projection methods find
a sequence of approximate solutions xk (k > 0) of the system Ax = b, and are defined
by the following two conditions:

1. Subspace condition: xk ∈ x0 +Kk(A, r0).
2. Petrov–Galerkin condition: rk ⊥ Lk ⇐⇒ (rk)

ty = 0 ∀ y ∈ Lk,
where Kk(A, r0) = span{r0, Ar0, A2r0, . . . , A

k−1r0} is the Krylov subspace of dimen-
sion k, x0 is the initial iterate, r0 is the initial residual, and Lk is a well-defined
subspace of dimension k. The classical CG is a Krylov projection method, where
Lk = Kk(A, r0).

In this section we briefly introduce the CG versions related to our MSDO-CG,
LRE-CG, SRE-CG, and SRE-CG2 versions, starting with the 1952 Hestenes and
Stiefel version (section 2.1). Since then, many differenet versions of CG have been
introduced (refer to [10] for a historical overview of CG till 1976). In 1980 O’Leary
introduced a B-CG version [25] that solves a system with multiple right-hand sides
AX = B (section 2.2). coop-CG [1] which was recently introduced, solves the system
Ax = b by starting with t distinct initial guesses. MSD-CG [16] solves Ax = b by
decomposing A’s domain into t subdomains and defining a search direction on each of
the t subdomains. Unlike CG, B-CG, and coop-CG, MSD-CG does not have the A-
orthogonality condition of the search directions. Hence it is not a projection method.

Note that in this paper we use MATLAB notation for matrices and vectors. For
example, given a vector p of size n×1 and a set of indices δ, p(δ) is the vector formed by
the subset of the entries of p whose indices belong to δ. For a matrix A, A(δ, :) is a sub-
matrix formed by the subset of the rows of A whose indices belong to δ. Similarly, A(:
, α), is a submatrix formed by the subset of the columns of A whose indices belong to
α. And A(α, β) = [A(α, :)](:, β), is formed by the β columns of the submatrix A(α, :).

2.1. CG method. CG [18] is an iterative Krylov projection method for SPD
matrices of the form

(2.1) Ax = b.
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ENLARGED KRYLOV SUBSPACE METHODS 747

Given an initial guess or iterate x0, at the kth iteration CG finds the new ap-
proximate solution xk = xk−1 + αkpk that minimizes φ(x) = 1

2 (x)
tAx − btx over the

corresponding space x0 + Kk(A, r0), where k > 0, pk ∈ Kk(A, r0) is the kth search
direction, and αk is the step along the search direction.

The minimum of φ(x) is given by ∇φ(x) = 0, which is equivalent to ∇φ(x) =
Ax− b = 0. Thus, by minimizing φ(x) we are solving the system (2.1). As the name
of the method indicates, the gradients ∇φ(xi) for all i should be conjugate. And
since CG is a Krylov projection method, the residual rk = b−Axk should respect the
Petrov–Galerkin condition

rk ⊥ Lk,

where rk is orthogonal to some well-defined subspace Lk ⊆ Rn (or ⊆ Cn) of dimension
k. In CG, the subspace Lk is the same as the Krylov subspace Kk. Thus, r

t
ky = 0 for

all y ∈ Kk. Hence, the residuals form an orthogonal set, rtkri = 0, for all i < k.
Moreover, the Petrov–Galerkin condition rk ⊥ Kk(A, r0) is equivalent to the

conjugacy of the gradients ∇φ(xk)
t∇φ(xi) = 0, for all i 
= k. Once xk has been

chosen, either xk is the required approximate solution of Ax = b or a new search
direction pk+1 
= 0 must be determined to compute the new approximation xk+1 =
xk + αk+1pk+1. This procedure is repeated until convergence or untill the maximum
number of allowed iterations has been reached without convergence. The convergence
criterion is set as

||rk||2 ≤ ε||b||2 for some ε ∈ R,

where rk = b−Axk ∈ Kk+1(A, r0) is the kth residual.

Theorem 2.1. The Petrov–Galerkin condition (rk)
ty = 0 for all y ∈ Kk implies

the A-orthogonality of the search directions ptiApj = 0 for all i 
= j and i, j ≤ k.

Proof. Refer to [13] for the proof.

This theorem means that the A-orthogonality of the search directions has to be
ensured or else the Petrov–Galerkin condition won’t be respected. On the other hand,
the search direction pk ∈ Kk is chosen according to the following recursion relation,

(2.2)

{
p1 = r0,
pk = rk−1 + βkpk−1,

where p1 is set equal to r0 since the initial residual is equal to negative the gradient
−∇φ(x0) which is the steepest descent from x0. But pk is not set to rk−1, the steepest
descent from xk−1 for k > 1, since the residuals are not A-orthogonal. It can be shown
that the search directions defined in (2.2) are A-orthogonal, i.e., ptkApi = 0 for all
i ≤ k − 1. For i < k − 1, we have

(2.3) ptkApi = rtk−1Api + βkp
t
k−1Api = βkp

t
k−1Api

since rtk−1Api = 0 by the Petrov–Galerkin condition. In addition, rtk−1pi = rtk−2pi −
αk−1p

t
k−1Api = 0 with rtk−2pi = 0 since i ≤ k − 2. Thus, ptk−1Api = 0. Therefore,

ptkApi = 0 for i < k − 1.
As for i = k − 1, rtk−1Apk−1 
= 0 and ptk−1Apk−1 
= 0 for pk−1 
= 0. Thus,

βk = − (rk−1)
tApk−1

(pk−1)tApk−1
is chosen so that ptkApk−1 = 0.

At each iteration, the step αk =
(pk)

trk−1

(pk)tApk
=

||rk−1||22
||pk||2A is chosen such that

φ(xk) = min{φ(xk−1 + αpk), ∀α ∈ R}.
Using the definition of αk, then βk = − (rk−1)

tApk−1

(pk−1)tApk−1
=

||rk−1||22
||rk−2||22 .
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748 LAURA GRIGORI, SOPHIE MOUFAWAD, AND FREDERIC NATAF

2.2. B-CG method. In 1980 O’Leary introduced a B-CG version [25] that
solves an SPD system with multiple right-hand sides

(2.4) AX = B,

where A is an n× n matrix, X ∈ Rn×t is a block vector, and B is a block vector of
size n× t containing the multiple right-hand sides.

Starting with an initial guess X0 ∈ Rn×t, initial residual R0 = B − AX0,
P1 = R0γ1 with γ1 a t × t full rank freely chosen matrix, the B-CG searches for
an approximate solution Xk+1 ∈ X0 + Kk+1(A,R0), where Kk+1(A,R0) = block −
span{R0, AR0, A

2R0, . . . , A
kR0} is the block Krylov subspace. By the Petrov–Galerkin

condition we have that Rk+1 ⊥ Kk+1(A,R0). Then, Rt
k+1Y = 0 for all Y ∈

Kk+1(A,R0), where Y =
∑k

i=1 A
iR0ζi and ζi is a t × t matrix. This implies that

Rt
k+1Ri = 0 and Rt

k+1APi = 0 for all i < k + 1.
Then, for k ≥ 0 the iterates are defined similarly to CG:

Xk = Xk−1 + Pkαk ∈ Kk(A,R0),

Rk = Rk−1 −APkαk ∈ Kk+1(A,R0),

Pk+1 = (Rk + Pkβk+1)γk+1 ∈ Kk+1(A,R0),

where
αk = (P t

kAPk)
−1γt

k(R
t
k−1Rk−1),

βk+1 = γ−1
k (Rt

k−1Rk−1)
−1(RkRk).

Note that αk is chosen such that φ(Xk) = min{φ(Xk−1+Pkα) ∀α ∈ Rt,t}. As for
βk, it is chosen to ensure the A-orthogonality of the Pk and Pk−1 ((Pk−1)

tAPk = 0),
whereas γk is a t × t full rank matrix that can be chosen freely to decrease roundoff
errors in the implementation. Moreover, the search direction Pk+1 ∈ Kk+1(A,R0) of
the B-CG method is A-conjugate, (Pk+1)

tAY = 0 for all Y ∈ Kk(A,R0). This leads
to the A-orthogonality of the search direction =⇒ (Pk+1)

tAPi = 0 for all i < k + 1.

2.3. coop-CG method. Recently, in 2012, Bhaya et al. presented a parallel
version of CG for solving Ax = b, which is based on the B-CG method. The idea of
using block methods for solving a system with one right-hand side is not new. For
example, in [3] Chapman and Saad proposed the use of block GMRES for improving
the convergence of a system with one right-hand side, by defining the block residual R0

as r0 = b−Ax0 and t−1 random vectors such as approximate eigenvectors. However,
the coop-CG [1] solves the system Ax = b by starting with t different initial guesses
and solving the same system t times in parallel, where t threads/agents cooperate to
find the solution. This is equivalent to solving the system AX = b ∗�t, where X0 is a
block vector containing the t initial guesses, R0 = AX0 − b ∗ �t is the block residual,
P1 = R0 is the initial block search direction, and �t is a vector of ones of size 1 × t.
Then the derivations and the algorithm of the coop-CG are the same as the B-CG
with γk = I, ρk = min(||Rk(:, 1)||22, ||Rk(:, 2)||22, . . . , ||Rk(:, t − 1)||22, ||Rk(:, t)||22), and
stopping criteria

√
ρk > ε||b||2 and k < kmax. Once the method has converged, the

solution is the ith column of Xk corresponding to the ith column of Rk with the
minimum norm. This method has faster convergence than CG (section 2.3).

2.4. MSD-CG method. The MSD-CG method, introduced by Gu et al. [16],
solves the system Ax = b, and starts by having a decomposed domain and by defin-
ing at each iteration k a search direction pk,i on each of the t subdomains (δi,
i = 1, 2, . . . , t) such that pk,i(δj) = 0 for all j 
= i. Then, the approximate solution at
the kth iteration is defined as xk = xk−1 + Pkαk, where Pk = [pk,1 pk,2 pk,3 . . . pk,t]
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is a matrix containing all the kth search directions and αk is a vector of size t:

(2.5) Pk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.
∗ 0 0 0
0 ∗ 0 0

.

.

.

.

.

.

.

.

.

.

.

.
0 ∗ 0 0

.
.
.

0 0 ∗ 0

.

.

.

.

.

.

.

.

.

.

.

.
0 0 ∗ 0
0 0 0 ∗
.
.
.

.

.

.

.

.

.

.

.

.
0 0 0 ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n×t

.

Given an initial guess x0, the residual is defined as rk = b − Axk for k ≥ 0. The
first set of domain search directions is defined by the initial residual r0, such that
p1,i(δi) = r0(δi) for i = 1, 2, . . . , t and zero otherwise. Then, for k > 1 the domain
search directions are defined as follows: pk,i = Ti(rk−1) + βk,ipk−1,i for i = 1, 2, . . . , t,
where βk,i is a scalar and Ti is an operator that projects a vector onto the subdomain
δi ([Ti(x)](δj) = 0 for j 
= i and [Ti(x)](δi) = x(δi)). The sparsity pattern of the
search directions block for all k is shown in (2.5).

As for αk = (P t
kAPk)

−1P t
krk−1, it is chosen such that it minimizes φ(xk) =

min{φ(xk−1 + Pkα), ∀α ∈ Rt}. Unlike CG, B-CG, and coop-CG, MSD-CG does not
have the A-orthogonality condition of the search directions, i.e., P t

kAPi is not equal
to zero for all i not equal to k. Thus βk = (P t

k−1APk−1)
−1P t

k−1Ark−1 is chosen so

that the global search direction pk =
∑t

i=1 pk,i is A-orthogonal to the previous domain
search direction pk−1,i, i.e., (pk)

tAPk−1 = 0 for i = 1, 2, . . . , t. As for the convergence,
it is shown that the rate of convergence of MSD-CG is at least as fast as that of the
steepest descent method. Yet, steepest descent is known for its slow “zig-zagging”
convergence. This causes the MSD-CG to have slower convergence than CG, and in
some cases it does not converge at all with respect to the given stopping criteria as
shown in section 4.

3. The new CGs. We introduce several new CG methods, MSDO-CG, LRE-
CG, SRE-CG, and SRE-CG2, which are based on replacing the Krylov subspace Kk

with a larger subspace, specifically the enlarged Krylov subspace, leading to better
convergence. Thus we will first introduce the new enlarged Krylov subspace and its
properties in the context of CG methods in section 3.1. Then in sections 3.2 and
3.3 we introduce the MSDO-CG, the LRE-CG, the SRE-CG, and a second variant,
SRE-CG2.

As previously mentioned, MSDO-CG is an adapted version of MSD-CG, where
the t newly defined search directions are A-orthonormalized against previous search
directions and against each other. This A-orthonormalization guarantees a conver-
gence behavior at least as good as CG. In [2], the authors introduce a similar method
referred to as multiple preconditioned CG (MPCG). They also choose to maintain
the A-orthogonality of the search directions, as we do in MSDO-CG. However, they
define the multiple search directions by using multiple preconditioners. The methods
are closely related with the difference that MSDO-CG can be preconditioned, whereas
MPCG does have an unpreconditioned version.

In the case of LRE-CG, the enlarged Krylov subspace is formed by computing at
each iteration t new basis vectors. Rather than having short recurrences, xk is defined
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by all the basis vectors as in GMRES, where the basis vectors are orthonormalized.
Both methods, MSDO-CG and LRE-CG, require saving at most tk vectors versus one
search direction in CG. Yet LRE-CG converges faster than MSDO-CG (section 4) at
the expense of solving growing systems of size tk. Several remedies to this problem
are discussed in [13].

Similarly to LRE-CG, SRE-CG computes t new basis vectors at each iteration k.
But, as the name indicates, we obtain a short recurrence version, since the t computed
basis vectors are A-orthonormalized against the previous 2t vectors. This version re-
quires saving only 3t vectors. However, it is possible to lose the A-orthogonality
of the whole basis in finite arithmetics. Thus, in SRE-CG2, the t computed basis
vectors are A-orthonormalized against all the previous basis vectors. But we end
up storing tk basis vectors. A remedy to this problem would be to have a trun-
cated A-orthonormalization SRE-CG2 version, where the t new basis vectors are A-
orthonormalized against the previous ti vectors, and 3 ≤ i ≤ k− 2 is chosen based on
the available memory.

3.1. The enlarged Krylov subspace. The enlarged Krylov subspace and
methods are based on a partition of the unknowns or, alternatively, the rows of the
n × n matrix A. Assume that the index domain δ = {1, 2, . . . , n} is divided into t
distinct subdomains δi, where δ = ∪t

i=1δi.
We define Ti(x) to be the operator that projects the vector x onto the subdomain

δi. Let y = Ti(x), then y(δi) = x(δi) and zero elsewhere. Then, we define T (x) to
be an operator that transforms the n × 1 vector x into t vectors of size n × 1 that
correspond to the projection of x onto the subdomains δi for i = 1, 2, . . . , t. Moreover,
we define T(x) to be an operator that transforms the n × 1 vector x into an n × t
matrix containing the t vectors obtained from T (x). Thus, T(x) is different from T (x)
since T(x) is a matrix, whereas T (x) = {T1(x), T2(x), . . . , Tt(x)} is a set of vectors.
But T(x) = [T1(x)T2(x) . . . . Tt(x)] = [T (x)], where the brackets [. . .] denote a matrix
format.

Definition 3.1. Let

Kk,t = span{T (r0), AT (r0), A2T (r0), . . . , Ak−1T (r0)}
= span{T1(r0), T2(r0), . . . , Tt(r0), AT1(r0), AT2(r0), . . . , ATt(r0), . . . ,

Ak−1T1(r0), . . . , A
k−1Tt(r0)}

be an enlarged Krylov subspace of dimension k ≤ z ≤ tk generated by the matrix A
and the vector r0, and associated with a given partition defined by δi for i = 1, 2, . . . , t.

The enlarged Krylov subspacesKk,t(A, r0) are increasing subspaces, yet bounded.
We denote by ku the upper bound k for which the dimension of the enlarged Krylov
subspace Kk,t(A, r0) stops increasing. For simplicity, we will denote the enlarged
Krylov subspace generated by A and r0, Kk,t(A, r0), by Kk,t, and the Krylov subspace
generated by A and r0, Kk(A, r0) by Kk.

Theorem 3.2. The Krylov subspace Kk is a subset of the enlarged Krylov sub-
space Kk,t (Kk ⊂ Kk,t).

Proof. Let y ∈ Kk, where Kk = span{r0, Ar0, . . . , Ak−1r0}. Then

y =
k−1∑
j=0

ajA
jr0 =

k−1∑
j=0

ajA
jT(r0) ∗ �t =

k−1∑
j=0

t∑
i=1

ajA
jTi(r0) ∈ Kk,t

since r0 = T(r0) ∗ �t = [T1(r0)T2(r0) . . . Tt(r0)] ∗ �t.
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Krylov subspace methods search for an approximate solution xk ∈ x0 + Kk. A
corollary of Theorem 3.2 is that we can search for an approximate solution xk in
x0 +Kk,t instead, since Kk ⊂ Kk,t.

In Theorem 3.3, we do not use the direct sum ⊕ since it is not guaranteed that the
intersection of the two subspaces, Kk,t and span{AkT1(r0), A

kT2(r0), . . . , A
kTt(r0)},

is empty.

Theorem 3.3. By Definition 3.1 of the enlarged Krylov subspace,

Kk+1,t = Kk,t + span{AkT1(r0), A
kT2(r0), . . . , A

kTt(r0)}.
If AkTv(r0) ∈ Kk,t for all 1 ≤ v ≤ t, then Ak+qTi(r0) ∈ Kk,t for some 1 ≤ i ≤ t and
for some q > 0.

Proof. We prove this by induction. Refer to [13].

Given that Kk,t 
= Kk−1,t and AkTv(r0) ∈ Kk,t for all 1 ≤ v ≤ t, then a corollary
of Theorem 3.3 is that Kk,t = Kk+q,t for all q > 0, and ku = k is the upper bound for
which the dimension of the enlarged Krylov subspace stops increasing.

Theorem 3.4. If

AkTi(r0) ∈ Kk,t + span{AkT1(r0), . . . , A
kTi−1(r0), A

kTi+1(r0), . . . , A
kTt(r0)},

then

Ak+qTi(r0)∈Kk+q,t+span{Ak+qT1(r0), . . . , A
k+qTi−1(r0), A

k+qTi+1(r0), . . . , A
k+qTt(r0)}

for all 1 ≤ i ≤ t and q > 0.

Proof. If AkTi(r0) ∈ Kk,t + span{AkT1(r0), . . . , A
kTi−1(r0), A

kTi+1(r0), . . . ,

AkTt(r0)}, then AkTi(r0) =
∑k−1

u=0

∑t
v=1 αu,vA

uTv(r0) +
∑t

v=1
v �=i

αk,vA
kTv(r0). Thus,

Ak+qTi(r0) =

k−1∑
u=0

t∑
v=1

αu,vA
u+qTv(r0) +

t∑
v=1
v �=i

αj,vA
k+qTv(r0)

∈ Kk+q,t + span{Ak+qT1(r0), . . . , A
k+qTi−1(r0),

Ak+qTi+1(r0), . . . , A
k+qTt(r0)}

A corollary of Theorem 3.4 is that if t− ik vectors of the form AkTy(r0) with y =
ik + 1, . . . , t belong to the subspace Kk,t + span{AkT1(r0), A

kT2(r0), . . . , A
kTik(r0)},

then the t− ik vectors of the form Ak+qTy(r0) belong to the subspace

Kk+q,t + span{Ak+qT1(r0), A
k+qT2(r0), . . . , A

k+qTik(r0)}.
Theorem 3.5. Let ku be the smallest integer such that Kku,t = Kku+q,t for all

q > 0. Then, for all k < ku the dimension of the enlarged Krylov subspaces Kk,t

and Kk+1,t is strictly increasing by some number ik and ik+1, respectively, where
1 ≤ ik+1 ≤ ik ≤ t.

Proof. By the definition of ku, we have that for all q > 0

K1,t � · · · � Kku−1,t � Kku,t = Kku+q,t.

Then for all k < ku, the dimension of the enlarged Krylov subspaces Kk,t is
strictly increasing by some number ik 
= 0 with respect to the dimension of Kk−1,t.

In general, dim(Kk,t) = dim(Kk−1,t) + ik, where 1 ≤ ik ≤ t and dim() is the
dimension of a subspace. Similarly, dim(Kk+1,t) = dim(Kk,t) + ik+1, where 1 ≤
ik+1 ≤ t. Moreover, in Kk,t’s basis we added ik new vectors of the form Ak−1Ti(r0),
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while the other t − ik either belong to Kk−1,t or are linearly dependant on the ik
vectors and Kk−1,t. In both cases, the t − ik vectors of the form Ak−1Ti(r0) belong
to the subspace Kk−1,t + span{Ak−1T1(r0), . . . , A

k−1Tik(r0)}. Then by Theorem 3.4
and its corollary, the t − ik vectors of the form Ak+qTi(r0) belong to the subspace
Kk+q,t+span{Ak+qT1(r0), A

k+qT2(r0), . . . , A
k+qTik(r0)} for q > 0.Therefore, we have

at least t − ik linearly dependent vectors added to Kk+1,t, hence ik+1 can never be
greater than ik.

Theorem 3.6. Let pu and ku be such that Kpu = Kpu+q and Kku,t = Kku+q,t for
q > 0. Then ku ≤ pu.

Proof. LetKpu = Kpu+q andApu+q−1r0 ∈ Kpu+q, where q > 0. ThenApu+q−1r0 ∈
Kpu ⊂ Kpu,t, andApu+q−1r0 =

∑pu

j=1

∑t
i=1 αj,iA

j−1Ti(r0). ThusA
pu+q−1

∑t
i=1 Ti(r0)

=
∑pu

j=1

∑t
i=1 αj,iA

j−1Ti(r0).

Suppose that Apu+q−1Ti(r0) /∈ Kpu,t, for all 1 ≤ i ≤ t. Then Apu+q−1
∑t

i=1 Ti(r0)

=
∑pu+q−1

j=1

∑t
i=1 αj,iA

j−1Ti(r0). We may assume that there exists at least one αj,i 
=
0 for j > pu, then this leads to a contradiction. This implies that Apu+q−1Ti(r0) ∈
Kpu,t for all 1 ≤ i ≤ t.

Thus by definition of the T () operator and since Kp is a subset of Kp,t, if Kpu =
Kpu+q, then Kpu,t = Kpu+q,t. However, if Kku,t = Kku+q,t this does not imply that
Kku = Kku+q. Therefore, since Kk,t is a much larger subspace than Kk, it is possible
to reach stagnation earlier. Therefore ku ≤ pu.

Theorem 3.7. The solution of the system Ax = b belongs to the subspace x0 +
Kku,t, where Kku+q,t = Kku,t for q > 0.

Proof. The solution xsol ∈ x0 + Kpu , where Kpu = span{r0, Ar0, . . . , Apu−1r0}
and Kpu = Kpu+q for q > 0. Since Kpu ⊂ Kpu,t, the solution xsol ∈ x0 +Kpu,t, where
pu ≥ ku by Theorem 3.6.

Suppose that xsol ∈ x0 +Kpu,t, but xsol /∈ x0 +Kku,t. This implies that Kku,t 
=
Kpu,t. However, by the definition of ku and since ku ≤ pu, we have that Kku,t = Kpu,t.
This is a contradiction.

3.1.1. Krylov projection methods. The Krylov projection methods find a
sequence of approximate solutions xk (k > 0) of the system Ax = b from the subspace
x0 + Kk ⊆ Rn (or ⊆ Cn) by imposing the Petrov–Galerkin constraint on the kth
residual rk = b − Axk, that is, rk is orthogonal to some well-defined subspace of
dimension k.

We define our new enlarged Krylov projection methods based on CG by the
subspace Kk,t and the following two conditions:

1. Subspace condition: xk ∈ x0 +Kk,t.
2. Orthogonality condition: rk ⊥ Kk,t ⇐⇒ (rk)

ty = 0 for all y ∈ Kk,t,
where Kk,t is a well-defined subspace of dimension k ≤ z ≤ tk.

3.1.2. The minimization property. The new enlarged CG methods find the
new approximate solution by minimizing the function φ(x) over the subspace x0+Kk,t.

Theorem 3.8. If rk ⊥ Kk,t, then φ(xk) = min{φ(x), ∀x ∈ x0 +Kk,t}.
Proof. By the orthogonality condition we have that rk ⊥ Kk,t

=⇒ (rk)
ty = 0 ∀y ∈ Kk,t,

(b −Axk)
ty = 0 ∀y ∈ Kk,t,

bty − (xk)
tAy = 0 ∀y ∈ Kk,t.
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Then, for all x ∈ x0 +Kk,t, we have

φ(x) − φ(xk) =
1

2
xtAx− btx−

[
1

2
(xk)

tAxk − btxk

]

=
1

2
xtAx− bt(x− xk)− 1

2
(xk)

tAxk, where (x− xk) ∈ Kk,t

=
1

2
xtAx− (xk)

tA(x − xk)− 1

2
(xk)

tAxk, since bt(x− xk)

= (xk)
tA(x− xk)

=
1

2
xtAx− (xk)

tAx+
1

2
(xk)

tAxk

=
1

2
(x− xk)

tA(x − xk) ≥ 0, since A is positive definite.

Thus, φ(x) ≥ φ(xk) for all x ∈ x0 +Kk,t.

Theorem 3.9. φ(xk) = min{φ(x), ∀x ∈ x0 +Kk,t} if and only if ||x∗ − xk||A =
min{||x∗ − x||A, ∀x ∈ x0 +Kk,t}, where x∗ is the exact solution of (2.1).

Proof. f(x) = ||x∗ − x||A = (x∗)tAx∗ − 2(x∗)tAx+ xtAx = btx∗ − 2btx+ xtAx =
btx∗ + 2φ(x). The minimum of f(x) is given by f ′(x) = ∇φ(x) = 0.

3.1.3. Convergence analysis. The CGmethod of Hestenes and Stiefel is known
to converge in K iterations, where K ≤ n, if the matrix A ∈ Rn,n is SPD. Moreover,

the kth error of CG ek = ||x∗ − xk|| ≤ 2(
√
κ−1√
κ+1

)k||e0||A, where κ = ||A||2||A−1||2 =
λmax

λmin
is the L2-condition number of the SPD matrix A, λmax is the largest eigenvalue

of A, and λmin is the smallest eigenvalue of A .
Assuming that the kth residual of the new CG methods satisfies the orthogonality

condition, rk ⊥ Kk,t, then by Theorems 3.8 and 3.9 we have that

||ek||A = ||x∗ − xk||A = min{||x∗ − x||A, ∀x ∈ x0 +Kk,t}
≤ min{||x∗ − x||A, ∀x ∈ x0 +Kk} since Kk ⊂ Kk,t

≤ ||ek||A.

Therefore, our methods converge at least as fast as the classical CG method,
assuming that the orthogonality condition (rk ⊥ Kk,t) is respected. Hence, the
enlarged Krylov subspace CG methods will converge in K iterations, where K ≤
K ≤ n.

3.2. MSDO-CG method. The MSD-CG method introduced by Gu et al. [16]
can be viewed as an enlarged Krylov method, where P0 = T(r0), and Pk = T(rk−1)+
Pk−1diag(βk) for i = 1, 2, . . . , t, xk = xk−1 + Pkαk, and rk = rk−1 − APkαk with
αk = (P t

kAPk)
−1P t

krk−1 and βk = (P t
k−1APk−1)

−1P t
k−1Ark−1. However, the Pk’s are

not A-othogonal implying that rk 
⊥ Kk,t. Thus, MSD-CG is not a projection method.
MSDO-CG is an enlarged Krylov projection method that solves the system (2.1)

(Ax=b), by approximating the solution at the kth iteration with the vector xk =
xk−1 + Pkαk such that

φ(xk) = min{φ(x), ∀x ∈ Kk,t},

where Pkαk ∈ Kk,t, Pk is an n × t block vector containing the t subdomain search
directions, and αk is a vector of size t.
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The minimum of φ(x) is given by ∇φ(x) = 0, which is equivalent to Ax − b = 0.
Thus, by minimizing φ(x), we are solving the system (2.1). Note that since φ(xk) =
min{φ(x), ∀x ∈ x0 +Kk,t}, then

(3.1) φ(xk) = φ(xk−1 + Pkαk) = min{φ(xk−1 + Pkα), ∀α ∈ Rt}.

Once xk has been chosen, either xk is the desired solution of Ax = b, or t new domain
search direction vectors Pk+1 and a new approximation xk+1 = xk + Pk+1αk+1 are
computed. Similarly to MSD-CG, we choose to define Pk+1 = [pk+1

1 pk+1
2 . . . pk+1

t ],
where p1i = Ti(r0) and pk+1

i = Ti(rk) + βk+1
i pki for i = 1, 2, . . . , t. But unlike MSD-

CG, MSDO-CG is a projection method. Hence, we A-orthonormalize all the search
directions, Pk+1, to ensure that rk+1 ⊥ Kk+1,t as discussed in section 3.2.2. By
imposing the orthogonality condition, rk+1 ⊥ Kk+1,t, it is guaranteed that MSDO-
CG converges at least as fast as CG as proven in section 3.1.3. This procedure is
repeated until convergence. Thus, we need to find the recursion relations of rk, Pk,
αk = [αk

1 , α
k
2 , . . . , α

k
t ]

t, and βk = [βk
1 , β

k
2 , . . . , β

k
t ]

t.

3.2.1. The residual rk. By definition, the residual rk = b − Axk, where xk ∈
Kk,t. Thus rk ∈ Kk+1,t. As for the recursion relation of rk, we simply replace xk by
its expression and obtain the following:

rk = b−Axk

= b−A(xk−1 + Pkαk)

= rk−1 −APkαk.

Moreover, if the orthogonality condition, rk ⊥ Kk,t, is ensured, then (rk)
tri = 0

for all i < k. Hence, the residuals form an orthogonal set.

Theorem 3.10. The orthogonality condition (rk)
ty = 0 for all y ∈ Kk,t implies

the A-orthogonality of the block search directions P t
iAPj = 0, for all i 
= j and i, j ≤ k.

Proof. By definition, the column vectors of Pi belong to Ki,t and Ki,t ⊂ Ki+1,t.
Thus, the column vectors of Pi belong to Ki+q,t for q ≥ 0. By the orthogonality
condition rtk−1Pi = 0 for i ≤ k−1 and rtkPi = 0. Thus, rtkPi = rtk−1Pi−αt

kP
t
kAPi = 0

for i ≤ k − 1. This implies that P t
kAPi = 0 for i ≤ k − 1 since αk 
= 0 and therefore,

the A-orthogonality of the search directions.

3.2.2. The domain search direction Pk. Similarly to MSD-CG, we choose
to define the domain search direction as

(3.2) Pk = T(rk−1) + Pk−1diag(βk),

where diag(βk) is a t× t matrix with the vector βk on the diagonal.
Another option would be to define the search directions as

(3.3) Pk = T(rk−1) + Pk−1βk,

where βk is a t× t matrix.
In both cases, the domain search directions defined in (3.2) and (3.3) are not A-

orthogonal to each other. To ensure that the orthogonality condition is valid, at each
iteration k the block vector Pk is A-orthonormalized against all the previous Pi, where
i = 1, 2, . . . , k−1. Then the column vectors of Pk are A-orthonormalized against each
other. Thus, the obtained search directions P̃k satisfy (P̃k)

tAP̃i = 0 for all i 
= k.
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Moreover, (P̃k)
tAP̃k = I, where I is the identity matrix, assuming that the column

vectors of Pk are linearly independant with respect to each other and the previous
directions or, alternatively, none of the column vectors of P̃k are zero. Note that,
once Pk = T(rk−1)+Pk−1diag(βk) is defined, it is directly A-orthonormalized. Thus,
in the sections that follow, we denote by Pk the A-orthonormalized search directions
and we do not use the P̃k notation to be consistent with the initial definitions in the
previous sections.

There are several A-orthonormalization methods. First, for A-orthonormalizing
Pk against all the previous Pi, where i = 1, 2, . . . , k − 1, one can use classical Gram–
Schmidt (CGS), modified Gram–Schmidt (MGS), or classical Gram–Schmidt with
reorthogonalization (CGS2), where the CGS algorithm is applied twice for numerical
stability reasons. As for A-orthonormalizing Pk, there are many methods that are
discussed in [22, 27], but we will only refer to CGS, CGS2, MGS, A-CholQR, and
Pre-CholQR. We seek a combination of both A-orthonormalizations that is stable
and parallelizable with reduced communication. For that reason, in section 4 we test
the MSDO-CG method with the different combinations of the A-orthonormalization
methods and we conclude that the MSDO-CG is numerically most stable when we
use MGS+MGS, CGS2+A-CholQR, or CGS2+Pre-CholQR. In section 5, we discuss
the parallelization of the MSDO-CG algorithm with the stable A-orthonormalization
methods.

3.2.3. Finding the expressions of αk and βk. At each iteration, the step αk

is chosen such that φ(xk) = min{φ(xk−1 + Pkα), ∀α ∈ Rt}.
Let F (α) = φ(xk−1 + Pkα), where φ(x) = 1

2x
tAx − xtb. Then,

F (α) =
1

2
(xk−1 + Pkα)

tA(xk−1 + Pkα)− (xk−1 + Pkα)
tb

= φ(xk−1) +
1

2
[(xk−1)

tAPkα+ αt(Pk)
tAxk−1 + αt(Pk)

tAPkα]− αt(Pk)
tb

= φ(xk−1) +
1

2
[(xk−1)

tAPkα− αt(Pk)
tAxk−1]+

1

2
αt(Pk)

tAPkα−αt(Pk)
trk−1

= φ(xk−1) +
1

2
αt(Pk)

tAPkα− αt(Pk)
trk−1,

since A is SPD.
The minimum of F (α) is given by F ′(α) = 0

⇒ F ′(α) = (Pk)
tAPkα− (Pk)

trk−1 = 0.

Therefore, αk = (P t
kAPk)

−1(P t
krk−1).

As for βk, it should be chosen to ensure that Pk is A-orthogonal to Pk−1. Pk =
T(rk−1)+Pk−1diag(βk) and P t

k−1APk = P t
k−1AT(rk−1)+P t

k−1APk−1diag(βk). Since
Pk−1 is an A-orthonormal matrix, P t

k−1APk−1 = I, diag(βk) should be equal to
−P t

k−1AT(rk−1). But nothing guarantees that P t
k−1AT(rk−1) is a diagonal matrix.

So we choose βk = −(P t
k−1APk−1)

−1P t
k−1Ark−1 which guarantees that Pk ∗ �t is

A-orthogonal to Pk−1, similarly to MSD-CG. Moreover, in case P t
k−1AT(rk−1) is a

diagonal matrix, then our choice of βk implies that Pk is A-orthogonal to Pk−1. If
t = 1, then MSDO-CG is reduced to the classical CG. Note that in case Definition (3.3)
is used to define the search directions, then βk = −(P t

k−1APk−1)
−1P t

k−1AT(rk−1) is
chosen so that Pk is A-orthogonal to Pk−1.

Since the vectors of Pk are A-orthonormalized (P t
kAPk = I), then αk and βk

systems are reduced to αk = P t
krk−1 and βk = −P t

k−1Ark−1. These are the main
algorithmic differences with MSD-CG [16] (section 2.4).

D
ow

nl
oa

de
d 

06
/3

0/
16

 to
 3

8.
98

.2
19

.1
57

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

756 LAURA GRIGORI, SOPHIE MOUFAWAD, AND FREDERIC NATAF

3.2.4. The MSDO-CG algorithm. After deriving the recurrence relations of
xk, rk, Pk, αk, and βk, we present the MSDO-CG algorithm in Algorithm 1. We do
not specify the A-orthonormalization methods, since this choice will be based first on
the numerical stability of the method (section 4), then on its parallelization with the
least communication possible (section 5).

Algorithm 1 MSDO-CG algorithm Flops

Input: A, the n× n SPD matrix
Input: b, the n× 1 right-hand side; x0, the initial guess or iterate
Input: ε, the stopping tolerance; kmax, the maximum allowed iterations
Output: xk, the approximate solution of the system Ax = b

1: r0 = b−Ax0 , ρ = ||r0||22, k = 1 2nnz + 2n− 1
2: Let P1 = T(r0) and W1 = AP1 2nnz− (t− 1)n
3: while (

√
ρ > ε||b||2 and k < kmax ) do 2n

4: if k==1 then
5: A-orthonormalize P1 and update W1 not included here
6: else
7: βk = −(P t

k−1Wk−1)
−1(W t

k−1rk−1) = −W t
k−1rk−1 (2n− 1)t

8: Pk = T(rk−1) + Pk−1diag(βk) 2nt
9: Wk = AT(rk) +Wkdiag(βk) 2nnz−(t−1)n+2nt

10: A-orthonormalize Pk against all Pi’s and update Wk not included here
11: A-orthonormalize Pk and update Wk not included here
12: end if
13: αk = (P t

kWk)
−1(P t

krk−1) = P t
krk−1 (2n− 1)t

14: xk = xk−1 + Pkαk (2t− 1)n+ n
15: rk = rk−1 −Wkαk (2t− 1)n+ n
16: ρ = ||rk||22 2n− 1
17: k = k + 1 1
18: end while

Thus we present the MSDO-CG algorithm (Algorithm 1) and the computed flops
per iteration except for the A-orthonormalization steps. To reduce communication
and computation in the A-orthonormalization steps, be it MGS, CGS, CGS2, A-
CholQR, or Pre-CholQR, we replace Wk = APk by⎧⎨

⎩
W1 = AP1,
Wk = AT(rk−1) +APk−1diag(βk) ∀k > 1,

= AT(rk−1) +Wk−1diag(βk).

This is discussed in further detail in the technical report [13], which this article is
based on, specifically in Algorithms 14, 15, 18, 21, 25, and 27. Then, the cost of A-
orthonormalizing Pk against previous vectors using MGS, CGS, or CGS2 methods is
(6n−1)t2k+4nt flops, (6n−1)t2k+3nt flops, or (12n−2)t2k+6nt flops, respectively.
And the cost of A-orthonormalizing Pk using MGS, A-CholQR, or Pre-CholQR is

(6n− 1) t
2

2 + nt flops, 4nt2 + 4nt flops, or 4nnzt+ 5nt2 − nt flops, respectively.
The total number of flops computed sequentially in Algorithm 1 after k iterations,

except for the A-orthonormalizations, is

Total Flops = 4nnz− nt+ 5n− 1 + k(11nt− 2t+ 2n− 1 + 2nnz + n+ 1)
= 4nnz− nt+ 5n− 1 + k(11nt+ 3n− 2t+ 2nnz)
≈ 4nnz + 5n+ k(11nt+ 2nnz),
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ENLARGED KRYLOV SUBSPACE METHODS 757

which is of the order of nnzk+ ntk flops, where nnz is the number of nonzero entries
in the n × n matrix A and t is the number of search directions computed at each
iteration.

It must be noted that since the Pi’s are A-orthonormal to each others, then the
t × t matrix P t

kWk = P t
kAPk is the identity matrix. Hence, solving for αk and βk

requires computing matrix vector multiplications.

3.3. SRE-CG method. In this section, we introduce a class of enlarged Krylov
projection CG methods that solves the system Ax = b by approximating the solution
at the kth iteration with the vector xk = xk−1 +Qkαk ∈ x0 +Kt,k such that

φ(xk) = min{φ(x), ∀x ∈ x0 +Kt,k},
where Qkαk ∈ Kt,k and Qk is an n × tk matrix containing the basis vectors of Kt,k

and φ(x) = 1
2x

tAx−xtb. We present three versions that differ in the way the basis is
constructed. However, the general derivations are the same.

As mentioned earlier, the minimum of φ(x) is given by �φ(x) = 0 which is
equivalent to Ax − b = 0. Thus, by minimizing φ(x) we are solving the system
Ax = b. Since φ(xk) = min{φ(x), ∀x ∈ x0 +Kt,k}, then
(3.4) φ(xk) = φ(xk−1 +Qkαk) = min{φ(xk−1 +Qkα), ∀α ∈ Rtk}.

Once xk has been chosen, either xk is the exact solution of Ax = b, or t new
basis vectors and the new approximation xk+1 = xk +Qk+1αk+1 are computed. This
procedure is repeated until convergence.

Thus, we need to find the recursion relations of rk and αk. By definition, the
residual rk = b − Axk, where xk ∈ x0 + Kt,k. Thus rk ∈ Kt,k+1. The recursion
relation of rk can be simply obtained by replacing xk by its expression as follows:

rk = b −Axk

= b −A(xk−1 +Qkαk)

= rk−1 −AQkαk.

At each iteration the step αk is chosen such that

φ(xk) = min{φ(xk−1 +Qkα), ∀α ∈ Rt(k+1)}.
Let F (α) = φ(xk−1 +Qkα), where φ(x) = 1

2x
tAx− xtb. Then,

F (α) =
1

2
(xk−1 +Qkα)

tA(xk−1 +Qkα)− (xk−1 +Qkα)
tb

= φ(xk−1) +
1

2
[(xk−1)

tAQkα+ αt(Qk)
tAxk−1 + αt(Qk)

tAQkα]− αt(Qk)
tb

= φ(xk−1) +
1

2
[(xk−1)

tAQkα− αt(Qk)
tAxk−1] +

1

2
αt(Qk)

tAQkα− αt(Qk)
trk−1

= φ(xk−1) +
1

2
αt(Qk)

tAQkα− αt(Qk)
trk−1, since A is SPD.

The minimum of F (α) is given by F ′(α) = 0

⇒ F ′(α) = (Qk)
tAQkα− (Qk)

trk−1 = 0.

Therefore, αk = (Qt
kAQk)

−1(Qt
krk−1).
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By minimizing φ(x), the orthogonality condition, rk ⊥ Kt,k, is ensured (Theorem
3.11). Therefore, (rk)

tri = 0 for all i < k, and the residuals form an orthogonal set.
Then at each iteration k we have

xk = xk−1 +Qkαk,

rk = rk−1 −AQkαk,

αk = (Qt
kAQk)

−1(Qt
krk−1).

Theorem 3.11. Assuming that xk = xk−1 +Qkαk, then the orthogonality condi-
tion, rk ⊥ Kt,k, is equivalent to xk being the minimum of φ(x) in x0 +Kt,k.

Proof.
1. xk is the minimum of φ(x) in x0 + Kt,k implies rk ⊥ Kt,k. The minimum

of F (α) = φ(xk) = φ(xk−1 + Qkα) is given by F ′(α) = (Qk)
tAQkα −

(Qk)
trk−1 = 0. Since xk is the minimum, then α = αk and F ′(α) = −Qt

krk =
0. Thus rk ⊥ Kt,k.

2. rk ⊥ Kt,k implies xk is the minimum of φ(x) in x0+Kt,k. Proof by contradic-
tion: Assume that rk ⊥ Kt,k and xk is not the minimum of φ(x) in x0+Kt,k.
Then F ′(αk) 
= 0. Hence Qt

krk 
= 0 and rk is not orthogonal to Kt,k . This
contradicts our assumption. Thus xk is the minimum of φ(x).

The monomial basis vectors of Kt,k are {T (r0), AT (r0), . . . Ak−1T (r0)}. We can
either orthonormalize or A-orthonormalize the basis. In case we orthonormalize the
basis vectors, then we obtain a long recurrence enlarged CG version, that is ex-
pensive in terms of flops since we have to solve, at each iteration k, the system
αk = (Qt

kAQk)
−1(Qt

krk−1) of size tk × tk, where Qk is the matrix containing the
set of orthonormal basis vectors of Kt,k. For a detailed description of the LRE-CG
algorithm refer to [13].

Another alternative is to A-orthonormalize the basis vectors rather than orthonor-
malizing them. Then we obtain the following. First, αk = (Qt

kAQk)
−1(Qt

krk−1) =
Qt

krk−1 sinceQk is an A-orthonormal basis, i.e., Qt
kAQk = I. Moreover, by the orthog-

onality condition, Qt
k−1rk−1 = 0. Thus, Qt

krk−1 = [Qk−1 Wk]
trk−1 = [0t(k−1);W

t
krk−1],

where Wk is the set of t newly computed vectors, and αk is a tk × 1 vector. Hence,
αk = [0t(k−1); α̃k], where α̃k = W t

krk−1.
Then,

xk = xk−1 +Qkαk

= xk−1 + [Qk−1Wk][0t(k−1); α̃k]

= xk−1 +Wkα̃k,

where α̃k = W t
krk−1. Similarly, rk = rk−1 −AWkα̃k.

Note that in exact arithmetic the A-orthonormalization of Wk against Qk−1 =
[W1 W2 . . . Wk−1] can be summarized as follows:

Wk = AWk−1 −Qk−1Q
t
k−1A(AWk−1)

= AWk−1 −
k−1∑
i=1

WiW
t
iA(AWk−1)

= AWk−1 −Wk−1W
t
k−1A(AWk−1)−Wk−2W

t
k−2A(AWk−1),

since (AWi)
tAWk−1 = 0 for all i < k− 2 by the A-orthonormality of the basis vectors

of Kt,k−1. We call this version short recurrence enlarged CG, since unlike LRE-CG
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we only need the last 3t computed vectors, xk−1 and rk−1, to define xk and rk. The
method is summarized in Algorithm 2.

However, in finite arithmetic there might be a loss of A-orthogonality between the
last set of computed basis vectors and the first ones. Thus, one can A-orthonormalize
Wk against all the basis vectors. We call this version SRE-CG2, where we need the
last t computed vectors, xk−1 and rk−1, to define xk and rk. But we still need to
save all the tk basis vectors in order to A-orthonormalize Wk against Qk−1. The
SRE-CG2 Algorithm 3 is the same as Algorithm 2 except for line 7 where we A-
orthonormalize Wk against Wi for all 1 ≤ i ≤ k − 1 . Note that in case there isn’t
enough memory to store the tk vectors, it is possible to use a truncated version of
the A-orthonormalization against previous vectors, where Wk is A-orthonormalized
against a subset of {W1,W2, . . . ,Wk−3} along with Wk−1 and Wk−2. This truncated
SRE-CG2 requires less memory than SRE-CG2 and converges faster than SRE-CG
in the number of iterations.

The cost of SRE-CG Algorithm 2 and SRE-CG2 Algorithm 3, except for the
A-orthonormalizations in steps 7 and 8, after k iterations is

Total Flops = 4nnz + 3n− 1 + 2nt+ k[(2nnz + 5n− 1)t+ 2n]
≈ 2nnztk.

As for the memory requirements, in SRE-CG Algorithm 2 we have to store the
matrix A , 3t + 2 vectors of size n × 1, and a t × 1 vector. Whereas, in SRE-CG2
Algorithm 3, we have to store the matrix A, tk + 2 vectors of size n× 1, and a t× 1
vector, where k ≤ kmax is the number of computed iterations. And in the truncated
SRE-CG2 algorithm, we have to store the matrix A, tktrunc + 2 vectors of size n× 1,
and a t× 1 vector, where ktrunc is a fixed number such that 2 < ktrunc < k ≤ kmax.

Algorithm 2 SRE-CG algorithm Flops

Input: A, the n× n SPD matrix
Input: b, the n× 1 right-hand side; x0, the initial guess or iterate
Input: ε, the stopping tolerance; kmax, the maximum allowed iterations
Output: xk, the approximate solution of the system Ax = b

1: r0 = b−Ax0, ρ0 = ||r0||22 , k = 1 2nnz + 2n− 1
2: while (

√
ρk−1 > ε||b||2 and k < kmax ) do 2n

3: if k==1 then
4: Let W1 = T(r0), and A-orthonormalize its vectors 2nnz− n+ 2nt
5: else
6: Let Wk = AWk−1 (2nnz− n)t
7: A-orthonormalize the vectors of Wk against the not included here

vectors of Wk−1 and Wk−2 if k > 2
8: A-orthonormalize the vectors of Wk not included here
9: end if

10: α̃k = (W t
krk−1) (2n− 1)t

11: xk = xk−1 +Wkα̃k 2tn
12: rk = rk−1 −AWkα̃k 2tn
13: ρk = ||rk||22 2n− 1
14: k = k+1 1
15: end while
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Algorithm 3 SRE-CG2 algorithm Flops

Input: A, the n× n SPD matrix
Input: b, the n× 1 right-hand side; x0, the initial guess or iterate
Input: ε, the stopping tolerance; kmax, the maximum allowed iterations
Output: xk, the approximate solution of the system Ax = b

1: r0 = b−Ax0, ρ0 = ||r0||22 , k = 1 2nnz + 2n− 1
2: while (

√
ρk−1 > ε||b||2 and k < kmax ) do 2n

3: if k==1 then
4: A-orthonormalize W1 = T(r0), and let Q = W1 2nnz− n+ 2nt
5: else
6: Let Wk = AWk−1 (2nnz− n)t
7: A-orthonormalize the vectors of Wk against Q

not included here
8: A-orthonormalize the vectors of Wk

and let Q = [Q Wk] not included here
9: end if

10: α̃ = (W t
krk−1) (2n− 1)t

11: xk = xk−1 +Wkα̃ 2tn
12: rk = rk−1 −AWkα̃ 2tn
13: ρk = ||rk||22 2n− 1
14: k = k+1 1
15: end while

4. Convergence results. After introducing the new CG methods, MSDO-CG,
LRE-CG, SRE-CG, and SRE-CG2, we compare their convergence behavior with re-
spect to different A-orthonormalization and orthonormalization schemes. Then we
compare the convergence behavior of these methods with respect to CG, coop-CG,
MSD-CG on several matrices for different numbers of partitions (2, 4, 8, 16, 32, and
64 partitions) or number of initial guesses (for coop-CG only). The matrices are first
reordered using Metis’s kway partitioning [20] that defines the subdomains δi. Then
x is chosen randomly using the “rand” function of MATLAB and b = Ax. Note that
the Elasticity3D matrix A is first scaled, due to very large values of the order of 1030

on the diagonal obtained from FreeFem++ [17], and then b is computed. In Tables 2,
3, and 5, “Iter” is the number of iterations, kc, needed for convergence and “Err” is

the relative error
||x−xkc ||2

||x||2 at convergence.

The first matrix Poisson2D is a block tridiagonal matrix obtained from Poisson’s
equation (sparse) using the MATLAB function, gallery(‘poisson’,100). The matrices
referred to as Nh2D, Sky2D, Sky3D, and Ani3D, arise from boundary value problems
of the convection diffusion equations⎧⎨

⎩
η(x)u + div(a(x)u) − div(κ(x)∇u) = f in Ω,
u = 0 on ∂ΩD,
∂u
∂n = 0 on ∂ΩN ,

where Ω = [0, 1]n, (n = 2 or 3) and ∂ΩN = ∂Ω \ ∂ΩD. The function η, the vector
field a, and the tensor κ are the given coefficients of the partial differential operator.
In the 2D case, we have ∂ΩD = [0, 1] × {0, 1}, and in the 3D case, we have ∂ΩD =
[0, 1]× {0, 1} × [0, 1]. We focus on the following cases:

• Nh2D: A nonhomogeneous problem with large jumps in the coefficients. The
coefficient η and a are both zero. The tensor κ is isotropic and discontinuous.
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Table 1

The test matrices.

Matrix Size Nonzeros 2D/3D Problem

Poisson2D 10000 49600 2D Poisson equations

Nh2D 10000 49600 2D Boundary value

Sky2D 10000 49600 2D Boundary value

Sky3D 8000 53600 3D Skyscraper

Ani3D 8000 53600 3D Anisotropic layers

Elasticity3D 11253 373647 3D Linear elasticity P1 FE

It jumps from the constant value 103 in the ring 1
2
√
2
≤ |x−c| ≤ 1

2 , c = (12 ,
1
2 )

T ,

to 1 outside.
• Sky2D and Sky3D skyscraper problems: The tensor κ is isotropic and dis-
continuous. The domain contains many zones of high permeability which are
isolated from each other:

κ(x) =

{
103 ∗ ([10 ∗ x2] + 1) if [10xi] is odd, i = 1, 2,
1 otherwise,

where we note [x] as the integer value of x. Sky2D and Sky3D are discretized
on 2D and 3D cartisian grids, respectively.

• Ani3D anisotropic layers: the domain is made of 10 anisotropic layers with
jumps of up to four orders of magnitude and an anisotropy ratio of up to
103 in each layer. The domain is divided into 10 layers parallel to z = 0,
of size 0.1, in which the coefficients are constant. We have κy = 10κx and
κz = 1000κx. The velocity field is zero.

Poisson2D, Nh2D, and Sky2D are discretized on a 100× 100 2D Cartesian grid.
Sky3D and Ani3D are discretized on a 20× 20× 20 grid.

As for the Elasticity3D matrix, it arises from the linear elasticity problem with
Dirichlet and Neumann boundary conditions, defined as follows:⎧⎨

⎩
div(σ(u)) + f = 0 on Ω,

u = uD on ∂ΩD,
σ(u).n = g on ∂ΩN ,

where Ω is a 3D 30 × 10 × 10 parallelepiped, ΩD is the Dirichlet boundary, ΩN is
the Neumann boundary, u is the unknown displacement field, f is some body force,
σ(u) is the Cauchy stress tensor given by Hooke’s law. The Elasticity3D matrix was
discretized with P1 finite elements and a triangular mesh using FreeFem++ [17]. For
a detailed description of the problem refer to [14]. Table 1 briefly describes the test
matrices.

In Table 2 we compare the convergence behavior of the MSDO-CG method (Al-
gorithm 1) with different A-orthonormalization schemes for A-orthonormalizing Pk

against previous Pi’s (MGS, CGS, CGS2) and then A-orthonormalizing Pk against
itself (MGS, CGS, CGS2, A-CholQR, Pre-CholQR) and for different numbers of
partitions t = 2, 4, 8, 16, 32, 64 that correspond to the maximum number of vectors
added at each iteration to the enlarged Krylov subspace, Kk,t. We have tested dif-
ferent combinations of A-orthonormalizations, but we only show MGS (MGS+MGS),
CGS+A-CholQR, CGS+Pre-CholQR, CGS2+A-CholQR, and CGS2+Pre-CholQR.
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Table 2

Comparison of the convergence of MSDO-CG with different A-orthonormalization schemes,
with respect to number of partitions (t) with x0 = 0 and maximum iterations kmax = 2000. The −
character indicates that the method did not converge in kmax iterations.

MSDO-CG with different A-orthonormalization methods
MGS+ CGS+ CGS+ CGS2+ CGS2+
MGS A-CholQR Pre-CholQR A-CholQR Pre-CholQR

t Iter Err Iter Err Iter Err Iter Err Iter Err
2 200 4E-5 204 3E-5 204 3E-5 204 3E-5 204 3E-5
4 167 2E-5 167 2E-5 167 2E-5 167 2E-5 167 2E-5

Poisson2D 8 139 1E-5 139 1E-5 139 1E-5 139 1E-5 139 1E-5
tol = 10−6 16 121 5E-6 121 5E-6 121 5E-6 121 5E-6 121 5E-6

32 94 2E-6 94 2E-6 94 2E-6 94 2E-6 94 2E-6
64 69 2E-6 69 2E-6 69 2E-6 69 2E-6 69 2E-6

2 256 1E-7 256 1E-7 256 1E-7 256 1E-7 256 1E-7
4 208 1E-7 208 1E-7 208 1E-7 208 1E-7 208 1E-7

Nh2D 8 169 8E-8 169 8E-8 169 8E-8 169 8E-8 169 8E-8
tol = 10−8 16 138 6E-8 138 6E-8 138 6E-8 138 6E-8 138 6E-8

32 107 2E-8 107 2E-8 107 2E-8 107 2E-8 107 2E-8
64 77 1E-8 77 1E-8 77 1E-8 77 1E-8 77 1E-8

2 1559 8E-4 – – – – 1562 8E-4 1559 9E-4
4 917 4E-4 – – – – 917 4E-4 917 4E-4

Sky2D 8 532 3E-4 – – – – 531 2E-4 534 2E-4
tol = 10−8 16 307 1E-4 – – – – 307 1E-4 307 1E-4

32 178 6E-5 – – – – 178 6E-5 178 6E-5
64 126 3E-6 – – – – 124 2E-6 124 2E-6

2 610 4E-5 611 4E-5 611 4E-5 611 4E-5 638 1E-5
4 420 2E-5 – – – – 424 1E-5 418 2E-5

Sky3D 8 228 1E-5 – – – – 230 1E-5 228 2E-5
tol = 10−8 16 134 1E-5 – – – – 134 1E-5 134 1E-5

32 87 1E-6 – – – – 83 1E-5 83 1E-5
64 53 6E-6 – – – – 51 1E-5 51 1E-5

2 893 6e-5 893 6e-5 893 6e-5 893 6e-5 893 6e-5
4 749 8e-5 749 8e-5 749 8e-5 749 8e-5 749 8e-5

Ani3D 8 498 8e-5 506 9e-5 511 8e-5 498 7e-5 503 7e-5
tol = 10−8 16 328 1e-4 – – – – 326 1e-4 326 1e-4

32 192 2e-4 – – – – 192 1e-4 192 1e-4
64 122 5e-5 – – – – 122 4e-5 122 4e-5

Note that MSDO-CG did not converge when one of these A-orthonormalization com-
binations were used, CGS+CGS, CGS2+CGS2, CGS2+CGS, or CGS+CGS2 A-
orthonormalization. The reason is that the seach directions are not A-orthogonal
to satisfactory precision. And by Theorem 3.10, this implies that rk 
⊥ Kk,t. Thus,
nothing guarantees convergence since we have shown in section 3.1.3 that MSDO-
CG converges faster than CG if rk ⊥ Kk,t. Moreover, we did not test combina-
tions of MGS and QR factorizations since MGS is expensive in terms of commu-
nication compared to the other methods (section 5). But we tested MSDO-CG
with MGS for comparison purposes. Note that when using MGS in Algorithm 1
we solve the αk = (P t

kWk)
−1(P t

krk−1) and βk = (P t
k−1Wk−1)

−1(W t
k−1rk−1) systems.

Whereas when using CGS2+CholQR or CGS2+PreCholQR, we use αk = (P t
krk−1)

and βk = (W t
k−1rk−1).

As shown in Table 2, MSDO-CG with MGS A-orthonormalization converges for
all the tested matrices and as we increase t, the number of iterations needed for conver-
gence decreases. As we mentioned earlier, MSDO-CG with CGS A-orthonormalization
did not converge. Therefore, we replaced CGS+CGS with CGS+A-CholQR and with
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ENLARGED KRYLOV SUBSPACE METHODS 763

CGS+Pre-CholQR A-orthonormalization. We notice that MSDO-CG with CGS+A-
CholQR A-orthonormalization and MSDO-CG with CGS+Pre-CholQR A-orthonor-
malization have the same convergence behavior. For the matrices Poisson2D and
Nh2D, both methods converge with the same number of iterations as MSDO-CG
with MGS A-orthonormalization. However, for the matrix Sky2D, both methods did
not converge. As for the matrices Sky3D and Ani3D, both methods converged only for
t = 2 partitions, and t = 2, 4, 8 partitions, respectively. The reason for this difference
in behavior for different matrices is the condition number (κ = ||A||2||A−1||2). The
condition number of the matrices Poisson2D and Nh2D is 6 × 103, whereas that of
the matrices Sky3D, Ani3D, and Sky2D is 1× 106 , 2× 106, and 3× 107, respectively.
Although it was shown in [22] that Pre-CholQR A-orthonormalization is more stable
than A-CholQR, however, MSDO-CG with CGS+A-CholQR A-orthonormalization
and MSDO-CG with CGS+Pre-CholQR A-orthonormalization are both numerically
unstable.

Thus, we replace CGS with CGS2, where the A-orthonormalization is performed
twice for numerical stability. Then, the MSDO-CG with CGS2+A-CholQR A-ortho-
normalization and MSDO-CG with CGS2+Pre-CholQR A-orthonormalization con-
verge as fast as MSDO-CG with MGS A-orthonormalization for all t and all the
tested matrices. Hence, we conclude that CGS2+A-CholQR and CGS2+Pre-CholQR
A-orthonormalizations are stable enough to be used in the MSDO-CG method (Al-
gorithm 1). We exclude MGS A-orthonormaliztion since we have to solve two t × t
systems at each iteration unlike when using CGS2+A-CholQR or CGS2+Pre-CholQR
A-orthonormalization.

In Table 3, we compare the convergence behavior of the LRE-CG method with
different orthonormalization schemes for orthonormalizing W against the n × tk
matrix Q (MGS, CGS) and then orthonormalizing W against itself (MGS, CGS,
TSQR (parallelizable tall and skinny QR)) and for different numbers of partitions
t = 2, 4, 8, 16, 32, 64 that correspond to the maximum number of vectors added at
each iteration to the enlarged Krylov subspace, Kk,t. We start by testing the con-
vergence of LRE-CG with MGS (MGS+MGS) orthonormalization. It converges for
all the tested matrices since it is numerically stable, and the number of iterations
needed for convergence decreases when increasing the number of partitions t. How-
ever, as mentioned in section 5, MGS is expensive in terms of communication when
executed on t processors; it requires O(tklog(t)) messages for A-orthonormalizing t
vectors against the previous tk vectors. Thus, we tested the LRE-CG method with
CGS orthogonalization which requires sending O(tlog(t)) messages per iteration. The
LRE-CG with CGS converges in the same number of iterations as LRE-CG with MGS
for the matrices Poisson2D and Nh2D. However, for the other matrices, it does not
converge for the given stopping criteria, except for t = 2 as shown in Table 3. The
matrix C = QtAQ is becoming close to singular, with rank(C) < tk, as the iterations
proceed, and this is due to the loss of orthogonality in the CGS orthogonalization. The
number of iterations in parentheses in Table 3 is not the number of iterations to con-
vergence but it denotes the iteration at which the matrix C becomes close to singular.

In CA-GMRES [23], the authors use a TSQR factorization [5] for orthonormaliz-
ing the n×t tall and skinny matrix instead of CGS. They have shown that the combina-
tion of CGS for orthonormalizing W against Q and TSQR for orthonormalizing W is
stable. We have tested LRE-CG with CGS and TSQR (CGS+TSQR) orthonormaliza-
tion, and it has the same convergence behavior as LRE-CG with MGS (MGS+MGS)
orthonormalization (Table 3). Thus, we conclude that MGS and CGS+TSQR or-
thonormalizations are stable enough to be used in the LRE-CG method [13].
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Table 3

Comparison of the convergence of the LRE-CG method with different orthonormalization
schemes, with respect to number of partitions t, with x0 = 0. The number of iterations in parentheses
is not the number of iterations for convergence but it denotes the iteration at which the C = QtAQ
matrix becomes close to singular.

LRE-CG with different
orthonormalization methods

MGS+MGS CGS+CGS CGS+TSQR
Pa Iter Err Iter Err Iter Err
2 193 2E-5 193 2E-5 193 2E-5
4 153 1E-5 153 1E-5 153 1E-5

Poisson2D 8 123 8E-6 123 8E-6 123 8E-6
tol = 10−6 16 95 4E-6 95 4E-6 95 4E-6

32 70 2E-6 70 2E-6 70 2E-6
64 52 1E-6 52 1E-6 52 1E-6

2 245 1E-7 245 1E-7 245 1E-7
4 188 1E-7 188 1E-7 188 1E-7

Nh2D 8 149 5E-8 149 5E-8 149 5E-8
tol = 10−8 16 112 3E-8 112 3E-8 112 3E-8

32 82 2E-8 82 2E-8 82 2E-8
64 60 1E-8 60 1E-8 60 1E-8

2 1415 5E-04 1415 8E-4 1415 5E-04
4 757 1E-4 (140) – 754 1E-4

Sky2D 8 398 1E-4 (112) – 398 1E-4
tol = 10−8 16 220 9E-5 (70) – 220 1E-4

32 126 5E-5 (51) – 126 5E-5
64 75 3E-5 (29) – 75 4E-5

2 557 2E-5 570 1E-5 563 1E-5
4 373 2E-5 (140) – 377 1E-5

Sky3D 8 211 1E-5 (54) – 211 1E-5
tol = 10−8 16 119 9E-6 (37) – 119 9E-6

32 69 9E-6 (18) – 69 9E-6
64 43 4E-6 (15) – 42 1E-5

2 875 7e-5 875 7E-5 875 7e-5
4 673 8e-5 (185) – 673 8e-5

Ani3D 8 449 1e-4 (116) – 449 1e-4
tol = 10−8 16 253 2e-4 (16) – 253 2e-4

32 148 2e-4 (9) – 148 2e-4
64 92 1e-4 (13) – 92 1e-4

We did not test the SRE-CG versions with the different A-orthonormalization
techniques. But one could use the CGS2+Pre-CholQR A-orthonormalization or the
CGS2+A-CholQR A-orthonormalization, similarly to MSDO-CG. In Table 4, we com-
pare the convergence of all the introduced enlarged Krylov subspace methods for the
different t values with tolerance equal to 10−8. We have tested the convergence of the
SRE-CG versions with the CGS2+Pre-CholQR A-orthonormalization. And in the
truncated SRE-CG2 version we A-orthonormalize Wk against the last ktrunc sets of t
vectors, i.e., Wk−ktrunc , . . . ,Wk−2,Wk−1, where for testing purposes we set ktrunc = 20
and ktrunc = 50. But in practice the choice of ktrunc depends mainly on the available
memory.

For the matrices Poisson2D and Nh2D, all the SRE-CG versions have the same
convergence rate. Thus SRE-CG is preferred due to its fixed memory requirements,
similarly to CG. However, this is not the case for other matrices. It is clear that for the
matrices Sky2D, Sky3D, and Ani3D, the larger ktrunc is, the better the convergence of
the truncated SRE-CG2 method is. Moreover, truncated SRE-CG2 converges faster
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Table 4

The convergence of the enlarged CG methods for tol = 10−8.

CG SRE-CG
SRE-CG2 SRE-CG2

SRE-CG2 LRE-CG MSDO-CG
t Trunc(20) Trunc(50)
2

195

193 193 193 193 193 204
4 153 153 153 153 153 167

Poisson2D 8 123 123 123 123 123 139
tol = 10−6 16 95 95 95 95 95 121

32 70 70 70 70 70 94
64 52 52 52 52 52 69

2

259

245 245 245 245 245 256
4 188 188 188 188 188 208

Nh2D 8 149 149 149 149 149 169
tol = 10−8 16 112 112 112 112 112 138

32 82 82 82 82 82 107
64 60 60 60 60 60 77

2

5951

5595 5592 5477 1415 1415 1559
4 4613 4529 4347 757 757 917

Sky2D 8 2893 2730 2555 398 398 534
tol = 10−8 16 1804 1640 1441 220 220 307

32 995 863 678 126 126 178
64 510 386 159 75 75 124

2

902

849 837 826 557 557 610
4 745 741 691 373 373 420

Sky3D 8 589 555 481 211 211 228
tol = 10−8 16 434 394 323 119 119 134

32 281 222 146 69 69 87
64 157 101 42 43 43 53

2

4146

3876 3943 3899 875 875 893
4 3565 3530 3477 673 673 749

Ani3D 8 3175 2830 2700 449 449 498
tol = 10−8 16 2303 1960 1705 253 253 328

32 1653 1234 549 148 148 192
64 930 483 248 92 92 122

than SRE-CG, and SRE-CG2 converges faster than truncated SRE-CG2 for all the t
values. And all the SRE-CG versions converge faster than CG. What is interesting to
note is that SRE-CG2 and LRE-CG have the same convergence rate for the matrices
in our set. Thus the two methods are equivalent mathematically and numerically,
although in LRE-CG we orthonormalize the basis and solve a system to obtain αk,
whereas in SRE-CG2 we A-orthonormalize the basis and compute a matrix-vector
multiplication to get αk. But both methods orthonormalize or A-orthonormalize the
whole basis.

In Table 5, we compare the convergence behavior of MSDO-CG with MGS A-
orthonormalization, SRE-CG2 with CGS2+Pre-CholQR A-orthonormalization, trun-
cated SRE-CG2 with CGS2+Pre-CholQR A-orthonormalization and ktrunc = 50,
coop-CG, and MSD-CG with respect to CG, for several matrices with different num-
bers of partitions t = 2, 4, 8, 16, 32, 64. The MSDO-CG, COOP-CG, SRE-CG2, and
truncated SRE-CG2 have better convergence than CG, and SRE-CG2 has the best
convergence. MSD-CG converges, but requires more iterations than CG, at least
three times more iterations for the matrices Sky2D, Sky3D, Ani3D, and Elastic-

ity3D. As for coop-CG, which starts with t different initial guesses and solves two
systems of fixed size t × t, its convergence is slightly better than MSDO-CG for the
matrices Poisson2D, Nh2D, and Elasticity3D. But it requires many more iterations
than both MSDO-CG and SRE-CG for the other matrices (Sky2D, Sky3D, Ani3D).
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Table 5

Comparison between the convergence of the different CG versions with respect to number of
partions (t) or initial guesses for coop-CG with x0 = 0.

CG coop-CG MSD-CG MSDO-CG SRE-CG2
SRE-CG2
Trunc(50)

t Iter Err Iter Err Iter Err Iter Err Iter Err Iter Err
2

195 2E-5

206 2E-7 235 3E-1 200 4E-5 193 2E-5 193 2E-5
4 171 1E-7 252 7E-1 167 2E-5 153 1E-5 153 1E-5

Poisson2D 8 137 1E-7 245 7E-1 139 1E-5 123 8E-6 123 8E-6
tol = 10−6 16 106 3E-8 249 7E-1 121 5E-6 95 4E-6 95 4E-6

32 80 1E-8 240 7E-1 94 2E-6 70 2E-6 70 2E-6
64 59 1E-8 253 7E-1 69 2E-6 52 1E-6 52 1E-6

2

259 4E-7

206 2E-7 363 3E-1 256 1E-7 245 1E-7 245 1E-7
4 179 1E-7 343 7E-1 208 1E-7 188 1E-7 188 1E-7

Nh2D 8 157 2E-5 372 7E-1 169 8E-8 149 5E-8 149 5E-8
tol = 10−8 16 107 2E-8 373 7E-1 138 6E-8 112 3E-8 112 3E-8

32 81 2E-8 324 7E-1 107 2E-8 82 2E-8 82 2E-8
64 59 1E-8 457 7E-1 77 1E-8 60 1E-8 60 1E-8

2

5951 4E-4

4893 2E-4 17907 3E-1 1559 8E-4 1415 5E-04 5477 2E-04
4 3737 9E-5 66979 7E-1 917 4E-4 757 1E-4 4347 3E-05

Sky2D 8 3391 1E-5 25298 7E-1 532 3E-4 398 1E-4 2555 2E-05
tol = 10−8 16 2437 9E-6 23486 7E-1 307 1E-4 220 9E-5 1441 1E-05

32 1406 4E-6 15448 7E-1 178 6E-5 126 5E-5 678 4E-06
64 802 2E-6 23981 7E-1 126 3E-6 75 3E-5 159 1E-05

2

902 1E-5

795 8E-6 3070 2E-1 610 4E-5 557 2E-5 826 1E-05
4 627 1E-5 11572 6E-1 420 2E-5 373 2E-5 691 8E-06

Sky3D 8 542 4E-6 3207 7E-1 228 1E-5 211 1E-5 481 4E-06
tol = 10−8 16 414 3E-6 4225 7E-1 134 1E-5 119 9E-6 323 1E-06

32 290 1E-6 3149 7E-1 87 1E-6 69 9E-6 146 1E-06
64 183 8E-7 2719 7E-1 53 6E-6 43 4E-6 42 1E-05

2

4187 4e-5

3584 5e-5 12404 2e-1 893 6e-5 875 7e-5 3899 4e-5
4 3371 4e-5 17311 6e-1 749 8e-5 673 8e-5 3477 4e-5

Ani3D 8 2865 4e-5 22339 7e-1 498 8e-5 449 1e-4 2700 5e-5
tol = 10−8 16 2314 3e-5 21989 7e-1 328 1e-4 253 2e-4 1705 4e-5

32 1615 2e-5 17042 7e-1 192 2e-4 148 2e-4 549 8e-5
64 1002 1e-5 19257 1e-4 122 5e-5 92 1e-4 248 6e-5

2

1098 1e-7

744 1e-7 28708 6e-1 830 1e-7 652 1e-7 668 1e-7
4 528 1e-7 18248 7e-1 621 1e-7 445 1e-7 457 1e-7

Elasticity3D 8 417 1e-7 19603 7e-1 513 5e-8 321 8e-8 332 7e-8
tol = 10−8 16 319 1e-6 11978 7e-1 388 5e-8 238 4e-8 248 5e-8

32 268 5e-7 9594 7e-1 338 8e-5 168 5e-8 181 3e-8
64 216 1e-6 7022 7e-1 116 1e-8 131 2e-8

Moreover, the results may vary depending on the t initial guesses that are used for
the different matrices.

For the tested matrices, SRE-CG2 has slightly better convergence than MSDO-
CG, since it uses the whole basis to define the new approximate solution rather than
t search directions. For the matrices Poisson2D and Nh2D, SRE-CG and MSDO-
CG have almost the same convergence as CG for t = 2, and then as t is doubled the
number of iterations needed for convergence decreases by 20% to 30%. For t = 2, SRE-
CG2 requires 35% and 40% fewer iterations than CG for the matrices Elasticity3D

and Sky3D, respectively. And as t is doubled, the number of iterations needed for
convergence decreases by 25% to 30%, and 32% to 45%, respectively. For t = 2,
SRE-CG2 requires 60% and 80% fewer iterations than CG for the matrices Sky2D

and Ani3D, respectively. And as t is doubled, the number of iterations needed for
convergence decreases by 45% to 50% and 25% to 40%, respectively.

D
ow

nl
oa

de
d 

06
/3

0/
16

 to
 3

8.
98

.2
19

.1
57

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ENLARGED KRYLOV SUBSPACE METHODS 767

As it is clear from the convergence tests, by doubling t, the number of iterations
needed for convergence is not always reduced by 50% for all the matrices. However, as
shown in the previous sections, the memory requirements for MSDO-CG, LRE-CG,
and SRE-CG2, except for the matrix A, are (tk + t + 2)n + 2t, (tk + 2)n + (tk)2,
and (tk + 2)n, respectively, where n is the size of the matrix, and k is the number
of computed iterations. As for the truncated SRE-CG2, SRE-CG, and CG, we only
need to store (tktrunc + 2)n, (3t + 2)n, 5n entries, respectively, where 2 < ktrunc <
k ≤ kmax. Thus, by doubling t, the memory requirements for MSDO-CG, LRE-CG,
and SRE-CG2 for performing k iterations is at least doubled. But, when t is doubled,
k decreases. Thus, the memory requirements increase and at most double, when t
is doubled. Hence, t should be relatively small depending on the size of the matrix,
on the performed iterations, and on the available memory. However, the memory
requirements for truncated SRE-CG2 and SRE-CG are fixed, similarly to CG. Thus
there is no memory restrictions on the value of t. In this case, t is chosen to obtain a
numerically stable basis that leads to better convergence.

In this paper, we do not discuss preconditioning. But, similarly to the Krylov
subspace methods, the main difference between the preconditioned and the unpre-
conditioned versions of MSDO-CG, LRE-CG, SRE-CG, and SRE-CG2 is that A is
replaced by Â = L−1AL−t and b is replaced by b̂ = L−1b. Then, after finding the
solution x̂ of the preconditioned system Âx̂ = b̂, the solution of the original system x
is obtained by solving Ltx = x̂. Note that in MSDO-CG, SRE-CG, and SRE-CG2,
the A-orthonormalization is replaced by Â-orthonormalization, which is discussed in
[24]. A detailed description of the preconditioned enlarged CG methods, specifically
the preconditioned MSDO-CG and LRE-CG, can be found in the technical report
[13]. Tables 6 and 7 in [13] compare the convergence behavior of the block Jacobi
preconditioned MSDO-CG and LRE-CG to that of preconditioned CG (PCG). As
for the preconditioned SRE-CG, SRE-CG2(20), SRE-CG2(50), and SRE-CG2, they
converge in exactly the same number of iterations as the preconditioned LRE-CG. In
summary, the preconditioned enlarged CG versions converge faster than PCG, but the
difference in the number of iterations is fewer than that of the unpreconditioned ver-
sions. In addition, for an efficient preconditioner, the preconditioned SRE-CG seems
to be the most promising enlarged CG version, since it converges in fewer iterations
than PCG and has similar memory requirements.

5. Parallel model and expected performance. In this section, we present
first the sequential timing of the kernels in the SRE-CG versions. Then, we briefly
describe the parallelization of the MSDO-CG method and the SRE-CG methods with
computed flops, number of messages and words sent, and the estimated parallel run-
time. For a detailed discussion on the parallelization of MSDO-CG and LRE-CG refer
to [13].

The estimated time for computing z flops is γcz, where γc is the inverse floating-
point rate, also called the floating-point throughput (seconds per floating-point op-
eration). The estimated time for sending a message of size k is αc + βck, where
αc is the latency (in seconds) and βc is the inverse bandwidth (seconds per word).
Hence, the estimated runtime of an algorithm with a total of z computed flops and
s sent messages, each of size k, is the sum of their corresponding estimated times
γcz + αcs+ βc.

The SRE-CG algorithms can be divided into four computational kernels or rou-
tines. The first routine is the matrix block of vector multiplications, A ∗Wk, which
is computed after defining Wk at iteration k ≥ 1. The second is the CGS2 A-
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Table 6

Comparison between the runtime of SRE-CG methods with CGS2+A-CholQR A-
orthonormalization with respect to number of partions (t). We show the total runtime in sec-
onds for each of the routines A ∗ Wk (AW), CGS2 A-orthonormalization (CGS), A-CholQR A-
orthonormalization (ACh), in addition to the total runtime (Tot) that includes the time for updating
the variables.

CG
SRE-CG SRE-CG2 Trunc(20) SRE-CG2 Trunc(50)

t AW CGS ACh Tot AW CGS ACh Tot AW CGS ACh Tot

N
h
2
D

0.13
2 0.04 0.21 0.14 0.44 0.04 0.77 0.16 1.04 0.04 1.69 0.16 1.95
8 0.08 0.62 0.30 1.05 0.07 2.19 0.28 2.59 0.08 4.39 0.28 4.80
32 0.16 1.86 0.97 3.05 0.16 8.67 0.89 9.78 0.16 17.6 0.92 18.70

S
k
y
3
D

0.40
2 0.13 0.58 0.37 1.23 0.15 2.15 0.41 2.96 0.14 4.73 0.40 5.49
8 0.34 1.94 1.22 3.68 0.28 7.04 0.79 8.28 0.23 12.50 0.67 13.55
32 0.65 5.95 3.08 9.89 0.46 21.40 2.06 24.08 0.27 27.09 1.22 28.66

A
n
i
3
D

1.86
2 0.62 2.51 1.66 5.40 0.69 9.88 1.85 13.52 0.64 22.08 1.84 25.56
8 1.84 10.30 5.02 18.03 1.54 38.57 4.35 45.49 1.49 82.53 4.20 89.23
32 4.15 38.62 19.92 64.09 2.78 132.95 12.36 149.03 1.16 136.68 5.22 143.46

Table 7

Comparison between the runtime of SRE-CG methods with CGS2+Pre-CholQR A-
orthonormalization with respect to number of partions (t). We show the total runtime in sec-
onds for each of the routines A ∗ Wk (AW), CGS2 A-orthonormalization (CGS), Pre-CholQR A-
orthonormalization (PCh), in addition to the total runtime (Tot) that includes the time for updating
the variables.

CG
SRE-CG SRE-CG2 Trunc(20) SRE-CG2 Trunc(50)

t AW CGS PCh Tot AW CGS PCh Tot AW CGS PCh Tot

N
h
2
D

0.13
2 0.05 0.25 0.29 0.64 0.05 0.95 0.28 1.35 0.04 1.52 0.25 1.88
8 0.08 0.61 0.55 1.29 0.08 2.19 0.54 2.85 0.08 4.38 0.53 5.03
32 0.18 2.17 2.06 4.48 0.16 9.56 1.92 11.72 0.16 17.04 1.75 19.01

S
k
y
3
D

0.40
2 0.13 0.52 0.67 1.47 0.15 2.24 0.74 3.37 0.13 4.37 0.68 5.37
8 0.32 1.78 1.68 3.94 0.25 6.36 1.51 8.30 0.23 12.24 1.35 13.96
32 0.51 4.90 4.85 10.44 0.40 18.93 3.69 23.15 0.27 29.53 2.51 32.40

A
n
i
3
D

1.86
2 0.59 2.37 3.14 6.70 0.66 9.34 3.28 14.36 0.63 20.83 3.23 25.69
8 1.94 10.35 9.73 23.09 1.33 34.07 7.65 43.94 1.32 74.91 7.72 84.84
32 3.00 28.98 27.24 60.22 2.29 114.12 20.87 138.07 0.99 124.19 9.13 134.65

orthonormalization of Wk against Q, where in SRE-CG Q = [Wk−2,Wk−1], in SRE-
CG2 Q = [W1,W2, . . . ,Wk−2,Wk−1], and in truncated SRE-CG2 Q = [Wk−ktrunc ,
Wk−ktrunc+1, . . . ,Wk−2,Wk−1] for a fixed ktrunc that satisfies 3 ≤ ktrunc < k ≤ kmax.
The third routine is the A-orthonormalization of Wk using either A-CholQR or Pre-
CholQR. And the fourth routine is updating the variables αk, xk, rk, and ρk. Note
that the time required for forming the matrices Q as described above, and Wk as
Wk = AWk−1 for k > 1 and W1 = T(r0), is not reported.

In Table 6, we show the total sequential time in seconds for solving the systems
using SRE-CG, SRE-CG2(20), and SRE-CG2(50) methods with CGS2+A-CholQR
A-orthonormalization. In Table 7, we show the total sequential time in seconds for
solving the systems using SRE-CG, SRE-CG2(20), and SRE-CG2(50) methods with
CGS2+PreCholQR A-orthonormalization. In both tables we show the total sequential
time needed for convergence for t = 2, 8, 32, and the total time needed for each of the
aforementioned routines (A ∗Wk, CGS2, A-CholQR/PreCholQR), except for update,
which is included in the total sequential time. For the matrix Nh2D, update’s time
is almost constant and takes less than 0.08 seconds. For the matrices Sky3D and
Ani3D, update’s time decreases as t increases, except in the case of SRE-CG. The
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most time consuming part in MATLAB is the A-orthonormalization, specifically the
CGS2 A-orthonormalization. Thus, as t increases, and as ktrunc increases, the A-
orthonormalization’s sequential time increases, and so does the total runtime. Thus,
it is normal in MATLAB that the sequential SRE-CG methods require much more
time to converge as compared to the sequential CG. However, it is expected that in
parallel, the SRE-CG methods will require much less time to converge, as discussed
at the end of this section.

As shown in Table 4, the different SRE-CG versions with CGS2+Pre-CholQR A-
orthonormalization converge in the same number of iterations for the system Nh2D.
Moreover, using CGS2+A-CholQR A-orthonormalization does not affect the conver-
gence of the SRE-CG versions for the system Nh2D. Thus it can be used as a reference
case. By comparing the MATLAB timing of the A-CholQR and Pre-CholQR in Ta-
bles 6 and 7, it is clear that Pre-CholQR requires around double the time of A-CholQR.
On the other hand, in SRE-CG2(20) and SRE-CG2(50), the total flops performed in

CGS2 A-orthonormalization, is ktrunc(2k−ktrunc+1)
2(2k−1) times those performed in SRE-CG,

assuming that all three methods converge in k iterations with ktrunc = 20 or 50. For
example, in SRE-CG2(20), the flops performed in CGS2 are around 9 times that of
SRE-CG, whereas, in SRE-CG2(50), the flops performed in CGS2 range between 18
and 22 times that of SRE-CG, depending on the t value. However, the total sequential
time needed for the CGS2 A-orthonormalization throughout the SRE-CG2(20) and
SRE-CG2(50) iterations is at most 4.5 and 9 times that of SRE-CG, respectively, as
shown in Tables 6 and 7. This is due to the communication reduction by performing
more operations per memory access.

However, this is not the case for the other matrices, Sky3D, and Ani3D. First,
SRE-CG2(50) converges faster than SRE-CG2(20) which converges faster than SRE-
CG, as shown in Table 4. Moreover, in some cases, using CGS2+Pre-CholQR A-
orthonormalization produces a numerically more stable basis than when using CGS2+
A-CholQR A-orthonormalization. This implies a faster convergence in terms of itera-
tions. However, performing one Pre-CholQR factorization is more expensive in terms
of flops than performing an A-CholQR factorization. This is clear in Table 7, where
CGS2 A-orthonormalization requires less time than that in Table 7 for most t values,
but PreCholQR requires more time than A-CholQR. For the Sky2D matrix, the SRE-
CG methods with CGS2+Pre-CholQR have a similar runtime to those with CGS2+A-
CholQR A-orthonormalization except for SRE-CG2(50) with t = 32. This is not the
case for the Ani3Dmatrix, where the SRE-CG methods with CGS2+Pre-CholQR con-
verge in less time than the corresponding SRE-CG methods with CGS2+A-CholQR,
for t = 32. Note that for t = 32, the SRE-CG2(50) method converges in less time
than the SRE-CG2(20).

For simplicity, we assume that the algorithms are executed on a distributed mem-
ory machine formed by t processors, where t corresponds to the number of vectors
computed at each iteration. We partition the graph of A into t subdomains using
k-way partitioning or another graph partitioning. We denote by δi for i = 1, 2, . . . , t,
the subsets of indices obtained from the partitioning. That is δi ∩ δj = φ for all i 
= j,
∪t
j=1δj = {1, 2, 3, . . . , n}, and |δi| ≈ n

t . Then each processor i is assigned the n
t × n

rowwise part of the matrix A (A(δi, :) = A(:, δi) since A is SPD), the n
t × 1 rowwise

part of the vector b (b(δi)), and the vector x0(δi), where δi = Adj(G(A), δi) is the
adjacent of δi in the graph of A. Processor i computes xk(δi).

However, for performance reasons and due to the multicore nature of most ar-
chitectures, it is possible to use a number of processors greater than t, preferably a
multiple of t. In this case, we start by partitioning the graph of A into t subdomains
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using k-way partitioning or another graph partitioning, where δi for i = 1, 2, . . . , t
are the subsets of indices obtained from the partitioning. This partitioning is used to
define the T (.) operator and eventually the enlarged Krylov subspace. Assuming that
we have jt processors, then every j processors are assigned an n

t × n rowwise part of

the matrix A, A(δi, :),
n
t ×1 rowwise part of the vector b (b(δi)) and the vector x0(δi),

and should output xk(δi). In other words, we partition each of our t subdomains into
j nonoverlapping subdomains to obtain a total of jt subdomains with set of indices
δi,l, where i = 1, 2, . . . , t, l = 1, 2, . . . , j, and δi = ∪j

l=1δi,l. Then, in the discussion
below on the number of messages and words sent, log(t) is replaced by log(jt), and n

t
is replaced by n

jt .
In MSDO-CG, SRE-CG, SRE-CG2, and truncated SRE-CG2, we A-orthonormalize

the basis. As mentioned in section 4, MGS, CGS2+A-CholQR, and CGS2+Pre-
CholQR A-orthonormalizations are numerically the most stable and allow the conver-
gence of MSDO-CG for the matrices in our test set. As discussed in Appendix B
of the technical report [13], the most parallelizable versions of MGS, Algorithms
14 and 15, require sending (tk + 1)log(t) and 2(t − 1)log(t) messages, respectively,
whereas CGS2, Algorithm 22 in [13], requires sending 4log(t) messages. On the other
hand, Algorithm 25 from [13] of A-CholQR requires sending log(t) messages, and
Pre-CholQR Algorithm 27 requires sending 3log(t) messages. The CGS2+A-CholQR
and CGS2+Pre-CholQR A-orthonormalizations can be called communication avoid-
ing since they require sending 5log(t) and 7log(t) messages, respectively, unlike the
MGS A-orthonormalization. Since both methods are stable and CGS2+A-CholQR
requires less communication, it can be used in the four mentioned CG versions.

In Algorithms 1, 2, and 3, we have two types of communication. The first is an “all
reduce” communication that requires synchronization between all the processors and
is equivalent to log(t) messages, each of the same size (refer to [30]). For example, the
dot products require “all reduce” communication. The second type of communication
is a point-to-point communication between each processor i and its mi neighboring
processors for computing a matrix block of vectors muliplication, specifically AT(r).
Moreover, several communication steps could be overlapped with other computations.
For a detailed description refer to [13].

The estimated time of k iterations of Algorithm 1 in parallel with t processors is

Time MSDO-CG(k) ≈ γc(2
nnz
t + 12ntk + 10nt+ 17n)k + αc(7log(t) +mMB)k

+ βc(
n
t mMB + t2klog(t))k,

where nnz is the number of nonzero entries in A, and mMB = max{mi| i =
1, 2, . . . , t}, the largest number of neighboring processors, with mi ≤ mMB ≤ (t− 1)
for all i.

The estimated time of k iterations of Algorithm 2 in parallel with t processors is

Time SRE-CG(k) ≈ γc(2nnz + 24nt+ 5n)k + αc(6log(t) +mMB)k
+ βc(

n
t mMB + 4t2log(t))k.

And that of k iterations of Algorithm 3 in parallel with t processors is

Time SRE-CG2(k) ≈ γc(2nnz + 12ntk + 5n)k + αc(6log(t) +mMB)k
+ βc(

n
t mMB + t2klog(t))k.

The SRE-CG and SRE-CG2 methods exchange fewer messages than the MSDO-
CG method. Moreover, the SRE-CG method sends fewer words and computes fewer
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flops than the SRE-CG2 method. Hence, it is clear that computing k iterations of
the SRE-CG method requires less time than MSDO-CG and SRE-CG2. However, as
portrayed in the convergence section, for some matrices SRE-CG requires many more
iterations than SRE-CG2 and MSDO-CG to converge. Hence it is not possible to
claim that one of these methods will always be faster than the others in practice. For
example, for the matrices Poisson2D and Nh2D, SRE-CG is the method to be used.
But for the matrice Sky2D and Ani3D, SRE-CG2 or the truncated SRE-CG2 might
be faster than SRE-CG.

6. Conclusion. In this paper we have introduced several new iterative methods,
MSDO-CG, LRE-CG, SRE-CG, SRE-CG2, and truncated SRE-CG2, which are based
on the enlarged Krylov subspace. After introducing the related existing methods (B-
CG, coop-Cg, and MCD-CG), we have defined the properties of the enlarged Krylov
subspace, derived the new methods in the context of projection CG versions, provided
parallel versions that reduce communication, and shown that the methods converge
at least as fast as classical CG in exact precision arithmetic. The convergence results
show that they also converge faster than CG in finite precision arithmetic.

MSDO-CG is a variation of the MSD-CG version, where we A-orthonormalize
the t search directions against previous directions and against each others. Due to
the A-orthonormalization, we lose the short recurrence property of CG and we are
obliged to save all the tkc search directions, where kc is the number of iterations till
convergence. In LRE-CG we start by building an orthonormal basis for the enlarged
Krylov subspace, then we use the whole basis to update the solution. The main
difference between both methods in terms of performance, is that at each iteration
of MSDO-CG, we use t search directions to update the new approximate solution,
whereas in LRE-CG, at each iteration i, we use the entire basis formed by ti vectors
to update the approximate solution and we solve a ti × ti system. However, this use
of the whole basis leads to a relatively faster convergence than MSDO-CG. One way
to limit this increasing cost is by restarting LRE-CG after some iterations.

Another alternative is to A-orthonormalize the basis rather than orthonormal-
izing it. In this case, we get three short recurrence enlarged CG methods, where
the approximate solution is updated using the last t basis vectors. The difference
between the three methods, SRE-CG, SRE-CG2, and truncated SRE-CG2, is in the
A-orthonormalization of the basis. In the SRE-CG method, the t newly computed
basis vectors at iteration i, are only A-orthonormalized against the previous 2t vec-
tors. This limits the memory needed but affects the convergence of SRE-CG which,
for some matrices, requires more iterations than MSDO-CG and LRE-CG to con-
verge. In the SRE-CG2 method, the t newly computed basis vectors at iteration i,
are A-orthonormalized against all the previous basis vectors. This leads to an iden-
tical convergence behavior as LRE-CG. In the truncated SRE-CG2 method, the t
newly computed basis vectors at iteration i, are A-orthonormalized against a subset
of the previous basis vectors, defined based on the available memory. This version
converges faster than SRE-CG for most matrices, and requires less memory than
SRE-CG2.

Although each iteration of the MSDO-CG, LRE-CG, SRE-CG, SRE-CG2, and
truncated SRE-CG2 methods is at least t times more expensive than the CG iteration
in terms of flops, as shown in section 5, these methods use less communication, and
Blas2 and Blas3 operations that can be parallelized in a more efficent way than the
dot products in CG. Moreover, the introduced methods converge faster than CG in
terms of iterations as shown in section 4.
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Our future work will focus on implementing, testing, and comparing the runtime
of the introduced enlarged CG versions on parallel machines. We will also test these
methods on other real applications’ matrices, and with different preconditioners. We
will also derive and test other enlarged Krylov methods, like enlarged GMRES which
has been derived but not tested yet.
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