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Abstract. We present parallel and sequential dense QR factorization algorithms that are both
optimal (up to polylogarithmic factors) in the amount of communication they perform and just as
stable as Householder QR. We prove optimality by deriving new lower bounds for the number of
multiplications done by “non-Strassen-like” QR, and using these in known communication lower
bounds that are proportional to the number of multiplications. We not only show that our QR
algorithms attain these lower bounds (up to polylogarithmic factors), but that existing LAPACK
and ScaLAPACK algorithms perform asymptotically more communication. We derive analogous
communication lower bounds for LU factorization and point out recent LU algorithms in the literature
that attain at least some of these lower bounds. The sequential and parallel QR algorithms for tall
and skinny matrices lead to significant speedups in practice over some of the existing algorithms,
including LAPACK and ScaLAPACK, for example, up to 6.7 times over ScaLAPACK. A performance
model for the parallel algorithm for general rectangular matrices predicts significant speedups over
ScaLAPACK.
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1. Introduction. The large and increasing costs of communication motivate
redesigning algorithms to avoid it whenever possible. In the parallel case, communi-
cation refers to messages between processors, which may be sent over a network or
via a shared memory. In the sequential case, communication refers to data movement
between different levels of the memory hierarchy. In both the parallel and sequential
cases we model the time to communicate a message of n words as α + βn, where α
is the latency and β is the reciprocal bandwidth. Many authors have pointed out
technology trends causing floating point to become faster at an exponentially higher
rate than bandwidth, and bandwidth at an exponentially higher rate than latency
(see, e.g., Graham, Snir, and Patterson [25]). Thus the importance of minimizing
communication will only grow.

We present parallel and sequential dense QR factorization algorithms that both
(1) attain known communication lower bounds (sometimes only up to polylogarithmic
factors) for the total number of words moved and the total number of messages, and (2)
are just as numerically stable as conventional Householder QR. Some of the algorithms
are novel, and some extend earlier work. The first set of algorithms, “Tall Skinny QR”
(TSQR), are for matrices with many more rows than columns, and the second set,
“Communication-Avoiding QR” (CAQR), are for general rectangular matrices. The
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Table 1.1

Performance models of parallel TSQR, ScaLAPACK’s parallel QR factorization PDGEQRF, se-
quential TSQR, and blocked sequential Householder QR on an m × n matrix, along with lower
bounds on the number of flops, words, and messages. The parallel algorithms assume P processors
and m/P ≥ n. The sequential algorithms assume fast memory size W , m � n, and W ≥ 3n2/2.

W̃ = W − n(n + 1)/2, which is at least about 2
3
W . The sequential Householder QR algorithm

analyzed here is ScaLAPACK’s out-of-DRAM PFDGEQRF, which requires that the entire panel and
at least one column of the trailing matrix fit in fast memory: mb > W , for panel width b. In Ap-
pendix A, we analyze LAPACK’s in-DRAM blocked sequential QR factorization DGEQRF, which lacks
that restriction; there, we show that DGEQRF as well requires asymptotically more memory traffic than
sequential CAQR.

Par. TSQR PDGEQRF Lower bound

# flops 2mn2

P
+ 2n3

3
logP 2mn2

P
− 2n3

3P
Θ

(
mn2

P

)
# words n2

2
logP n2

2
logP n2

2
logP

# messages logP 2n logP logP

Seq. TSQR Householder QR Lower bound

# flops 2mn2 2mn2 Θ(mn2)

# words 2mn m2n2

2W
2mn

# messages 2mn/W̃ mn2/2W 2mn/W

algorithms have significantly lower latency cost (i.e., fewer messages) in the parallel
case, and significantly lower latency and bandwidth costs (i.e., fewer words moved) in
the sequential case, than existing algorithms in LAPACK [1] and ScaLAPACK [8].

It will be easy to see that our parallel and sequential TSQR implementations
communicate as little as possible (see Table 1.1 and section 4). For CAQR we need a
different approach: in [7] lower bounds on communication (both the total number of
words moved and the total number of messages) are derived for a variety of dense lin-
ear algebra algorithms, including QR and LU, assuming they are implemented using
non-Strassen-like algorithms, and assuming the QR algorithm satisfies certain tech-
nical assumptions, discussed more carefully in section 4. All these lower bounds are
proportional to the number of multiplications performed. Here (see section 4) we de-
rive lower bounds on the number of multiplications required by any non-Strassen-like
implementation of QR (in a sense made formal later). These lower bounds are within
modest constant multiples of the number of operations used by current algorithms.
This in turn provides the communication lower bounds in Tables 1.2 and 1.3. We
show that CAQR attains these lower bounds (sometimes only up to polylogarithmic
factors).

Tables 1.1 through 1.3 summarize our performance models and lower bounds for
TSQR, CAQR, and the sequential and parallel blocked QR factorizations represented
in LAPACK, respectively, ScaLAPACK. Our model of computation looks the same
for the parallel and sequential cases, with running time = #flops× time per flop+
#words moved × (1/bandwidth) + #messages× latency, where the last two terms
constitute the communication. We do not model overlap of communication and com-
putation, which while important in practice can at most improve the running time by
a factor of 2, whereas we are looking for asymptotic improvements. In the tables we
give the #flops, #words moved, and #messages as functions of the number of rows m
and columns n (assumingm ≥ n), the number of processors P in the parallel case, and
the size of fast memory W in the sequential case. In Tables 1.1 and 1.3, we make some
assumptions onW for simplicity. We relax these assumptions in Appendix A and show
that nevertheless blocked Householder QR as implemented in LAPACK’s DGEQRF rou-
tine cannot be optimal, unlike sequential CAQR. Furthermore, to make these tables
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Table 1.2

Performance models of parallel CAQR and ScaLAPACK’s parallel QR factorization PDGEQRF

on an m × n matrix and a square n × n matrix with P processors, along with lower bounds on the
number of flops, words, and messages. The matrix is stored in a two-dimensional Pr × Pc block
cyclic layout with square b × b blocks. We choose b, Pr, and Pc optimally and independently for
each algorithm.

m× n matrix Par. CAQR PDGEQRF Lower bound

# flops 2mn2

P
+ 2n3

3
2mn2

P
+ 2n3

3
Θ
(
mn2/P

)
# words

√
mn3

P
logP − 1

4

√
n5

mP
log

(
nP
m

) √
mn3

P
logP − 1

4

√
n5

mP
log

(
nP
m

)
Θ
(√

mn3/
√
P
)

# messages 1
4

√
nP
m

log2
(

mP
n

)
· log

(
P
√

mP
n

)
n
4
log

(
mP5

n

)
log

(
mP
n

)
Θ

(√
nP/

√
m

)
n× n matrix

# flops 4n3/3P 4n3/3P Θ
(
n3/P

)
# words (3n2/4

√
P ) logP (3n2/4

√
P ) logP Θ

(
n2/

√
P
)

# messages (3/8)
√
P log3 P (5n/4) log2 P Θ

(√
P
)

Table 1.3

Performance models of sequential CAQR and blocked sequential Householder QR on an m× n
matrix and on a square n × n matrix with fast memory size W , along with lower bounds on the
number of flops, words, and messages. As in Table 1.1, the sequential Householder QR algorithm
analyzed here is ScaLAPACK’s out-of-DRAM PFDGEQRF, which requires that at least two columns of
the matrix fit in fast memory (i.e., that W ≥ 2m). See Appendix A for an analysis of LAPACK’s
in-DRAM blocked sequential QR factorization DGEQRF, which does not have this requirement yet also
requires asymptotically more memory traffic than sequential CAQR.

m × n matrix Seq. CAQR Householder QR Lower bound

# flops 2mn2 − 2n3

3
2mn2 − 2n3

3
Θ(mn2)

# words 3mn2√
W

m2n2

2W
Θ

(
mn2√

W

)
# messages 12 mn2

W3/2
mn2

2W
Θ

(
mn2

W3/2

)
n× n matrix

# flops 4n3

3
4n3

3
Θ(n3)

# words 3 n3√
W

n4

3W
Θ

(
n3√
W

)
# messages 12 n3

W3/2
n3

2W
Θ

(
n3

W3/2

)

easier to read: we omit most lower-order terms, make boldface the terms where the
new algorithms differ significantly from Sca/LAPACK, and make the optimal choice
of matrix layout for each parallel algorithm. The latter means optimally choosing the
block size b as well as the processor grid dimensions Pr × Pc in the two-dimensional
block cyclic layout. (See section 3 for discussion of these parameters and detailed
performance models for general layouts.) We note that although our new algorithms
perform slightly more floating point operations than LAPACK and ScaLAPACK, they
have the same highest order terms in their floating point operation counts.

Tables 1.1 and 1.2 present the parallel performance models for TSQR, CAQR
on general rectangular matrices, and CAQR on square matrices, respectively. First,
Table 1.1 shows that parallel TSQR requires only logP messages, which is both
optimal and a factor 2n smaller than for ScaLAPACK’s parallel QR factorization
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PDGEQRF. Parallel TSQR and PDGEQRF both communicate the minimimum number

of words possible, namely, n2

2 logP . Parallel TSQR performs more flops, but this
represents a lower order term when n is small compared to m/P . Table 1.2 shows that
parallel CAQR needs only Θ(

√
nP/m) messages (ignoring polylogarithmic factors) on

a general m× n rectangular matrix, which is both optimal and a factor Θ(
√
mn/P )

fewer messages than ScaLAPACK. Note that
√
mn/P is the square root of the size

of the local matrix stored in each processor’s local memory, up to a small constant
factor. Table 1.2 also presents the same comparison for the special case of a square
n× n matrix.

Next, Tables 1.1 and 1.3 present the sequential performance models for TSQR
and CAQR on general rectangular matrices and CAQR on square matrices, respec-
tively. Table 1.1 compares sequential TSQR with sequential blocked Householder
QR. These tables show performance models for ScaLAPACK’s out-of-DRAM QR fac-
torization routine PFDGEQRF, for which fast memory is DRAM and slow memory is
disk. Appendix A shows the slightly different memory traffic model for LAPACK’s
QR factorization routine DGEQRF, for which fast memory is cache and slow memory
is DRAM. Sequential TSQR transfers fewer words between slow and fast memory:
2mn, which is both optimal and a factor mn/(4W ) fewer words than transferred by
blocked Householder QR. Note that mn/W is how many times larger the matrix is
than the fast memory size W . Furthermore, TSQR requires fewer messages: at most
about 3mn/W , which is close to optimal and Θ(n) times lower than Householder QR.

Table 1.3 compares sequential CAQR and sequential blocked Householder QR
on a general rectangular matrix. Sequential CAQR transfers fewer words between
slow and fast memory: Θ(mn2/

√
W ), which is both optimal and a factor Θ(m/

√
W )

fewer words transferred than blocked Householder QR. Note that m/
√
W =

√
m2/W

is the square root of how many times larger a square m × m matrix is than the
fast memory size W . Sequential CAQR also requires fewer messages: 12mn2/W 3/2,
which is optimal. The analysis of the sequential blocked Householder QR algorithm
in Tables 1.1 and 1.3 assumes for simplicity that that at least two columns of the
matrix fit in fast memory (that is, W ≥ 2m); Appendix A relaxes this restriction but
nevertheless shows that sequential blocked Householder QR requires asymptotically
more memory traffic than sequential CAQR. Finally, Table 1.3 also presents the same
comparison for the special case of a square n× n matrix.

We also describe the implementation and performance results of these algorithms.
The efficient implementation of the QR factorizations of tall and skinny matrices dis-
tributed in a one-dimensional layout is very important, since this operation arises in
a wide range of applications. We cite three important examples. First, block iterative
methods frequently compute the QR factorization of a tall and skinny dense matrix.
This includes algorithms for solving linear systems Ax = B with multiple right-hand
sides, as well as block iterative eigensolvers. Second, recent research has reawakened
an interest in alternate formulations of Krylov subspace methods, called s-step Krylov
methods, in which some number s steps of the algorithm are performed all at once, in
order to reduce communication. For new s-step methods and a literature review, see
Hoemmen [30]. Some s-step methods, after generating a basis for the Krylov subspace,
use a QR factorization to orthogonalize the basis vectors. This is an ideal application
for TSQR and in fact inspired its (re)discovery. Third, Householder QR decomposi-
tions of tall and skinny matrices also make up the panel factorization step for typical
QR factorizations of matrices in a more general, two-dimensional layout. This in-
cludes the current parallel QR factorization routine PDGEQRF in ScaLAPACK, as well
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as ScaLAPACK’s out-of-DRAM QR factorization PFDGEQRF [15]. Both algorithms use
a standard column-based Householder QR for the panel factorizations, but in the par-
allel case this is a latency bottleneck, and in the out-of-DRAM case it is a bandwidth
bottleneck. Our CAQR algorithm for computing the QR factorization of general
rectangular matrices uses TSQR for its panel factorization and removes the latency
bottleneck in the parallel case and the bandwidth bottleneck in the sequential case.

The main insight behind the TSQR algorithm is to perform the QR factorization
of a tall skinny matrix as a reduction operation over row blocks. This idea itself is
not novel (see, for example, [2, 9, 13, 24, 28, 35, 41, 42, 43]), but we have a number
of optimizations and generalizations:

• Our algorithms can perform almost all their floating-point operations using
any fast sequential QR factorization routine. For example, we can use blocked
Householder transformations exploiting BLAS 3 operations, or invoke Elm-
roth and Gustavson’s recursive QR (see [20, 21]).

• We use TSQR as a building block for CAQR. Any reduction tree can be used
by TSQR during the panel factorization, and this triggers the update of the
trailing matrix in CAQR. We discuss in particular the parallel, respectively,
sequential, CAQR factorization of arbitrary rectangular matrices in a two-
dimensional block cyclic layout.

• Most significantly, we prove optimality for both our parallel and sequential
algorithms, with a one-dimensional layout for TSQR and two-dimensional
block layout for CAQR, i.e., that they minimize bandwidth and latency costs.
This assumes Θ(n3) (non-Strassen-like) algorithms and is usually shown in
an asymptotic or “big O” sense.

• We describe special cases in which existing sequential algorithms by Elmroth
and Gustavson [21] and also LAPACK’s DGEQRF attain minimum bandwidth,
though not minimum latency.

• We observe that there are alternative LU algorithms in the literature that
attain at least some of these communication lower bounds: [26, 27] describe
stable parallel and sequential LU algorithms attaining both bandwidth and
latency lower bounds.

• We outline how to extend both algorithms and optimality results to certain
kinds of hierarchical architectures, with either multiple levels of memory hi-
erarchy or multiple levels of parallelism (e.g., where each node in a parallel
machine consists of other parallel machines, such as multicore). In the case
of TSQR we do this by adapting it to work on general reduction trees.

We note that the Q factor will be represented as a tree of smaller Q factors, which
differs from the traditional layout. Many previous authors did not explain in detail
how to apply a stored TSQR Q factor, quite possibly because this is not required
for solving a single least squares problem. However, many of our applications require
storing and working with the implicit representation of the Q factor. Our performance
models show that applying this tree-structured Q has about the same cost as the
traditionally represented Q.

The rest of this paper is organized as follows. Section 2 presents TSQR, describ-
ing its parallel and sequential optimizations, performance models, comparisons to
LAPACK and ScaLAPACK, and how it can be adapted to other architectures. Sec-
tion 3 presents CAQR analogously. Section 4 presents our lower bounds for TSQR and
for CAQR (as well as LU). Section 6 describes related work. Section 7 describes open
problems and future work. Finally, Appendix A extends the memory traffic analysis
of sequential blocked Householder QR to LAPACK’s QR factorization DGEQRF. This
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A =

⎛⎜⎜⎝
A0

A1

A2

A3

⎞⎟⎟⎠ =

⎛⎜⎜⎝
Q0R0

Q1R1

Q2R2

Q3R3

⎞⎟⎟⎠
(a) First step of parallel TSQR

⎛⎜⎜⎝
R0

R1

R2

R3

⎞⎟⎟⎠ =

⎛⎜⎜⎝
(
R0

R1

)
(
R2

R3

)
⎞⎟⎟⎠ =

(
Q01R01

Q23R23

)
(b) Second step of parallel TSQR

Fig. 2.1. First two steps of parallel TSQR.

paper is based on the technical report [16], to which we leave many of the detailed
derivations of the algorithms and performance models.

2. TSQR. In this section, we present TSQR, a family of algorithms for the QR
factorization of an m × n matrix A, stored in a one-dimensional block row layout1

A = [A1;A2; . . . ;Ap], where Ai is mi×n. We use MATLAB-style notation to indicate
that the row blocks Ai are vertically stacked. We assume mi ≥ n and typically m � n
(hence “tall and skinny”). Our parallel TSQR algorithm requires only logP messages
on P processors, as opposed to Θ(n logP ) messages for standard Householder QR. Our
sequential TSQR algorithm only moves 2mn words between fast and slow memory,
which is optimal and asymptotically less than sequential Householder QR.

We begin in section 2.1 by describing parallel TSQR. Section 2.2 shows sequential
TSQR. Section 2.3 illustrates how differently shaped trees can be used to construct
more general TSQR algorithms that improve performance on different computer ar-
chitectures. Section 2.4 illustrates the three primitive operations on which all TSQR
algorithms are based and shows how these can be implemented to save memory, avoid
unnecessary floating-point operations, and improve performance. Finally, section 2.5
shows that TSQR communicates less than numerically equally stable QR factoriza-
tions and is about as fast as the fastest numerically unstable alternative.

2.1. Parallel TSQR. In this section, we show a simple parallel TSQR algo-
rithm. We begin by illustrating the algorithm for the case of P = 4 processors.
Later, we will give the general version of the algorithm and derive its performance
model. Suppose that the m × n input matrix A is divided into four row blocks
A = [A0;A1;A2;A3], where Ai is mi × n with mi ≥ n. Each row block Ai is stored
on a different processor2 i. First, each processor computes the QR factorization of its
row block, as in Figure 2.1(a). Then, processors work in pairs, combining their local R
factors by computing the QR factorization of the 2n×n matrix [R0;R1], respectively,
[R2;R3], as in Figure 2.1(b). Thus, [R0;R1] is replaced by R01 and [R2;R3] is re-
placed by R23. Here and later, the subscripts on a matrix like Rij refer to the original
row blocks Ai and Aj on which they depend. Finally, the 2n × n QR factorization
[R01;R23] = Q0123R01234 is computed.

We claim that R0123 is the R factor in the QR factorization of the original ma-
trix A = [A0;A1;A2;A3]. To see this, we combine all steps above into (2.1), which
expresses the entire computation as a product of intermediate orthonormal factors:

(2.1) A =

⎛⎜⎜⎝
A0

A1

A2

A3

⎞⎟⎟⎠ =

⎛⎜⎜⎝
Q0

Q1

Q2

Q3

⎞⎟⎟⎠ ·
(

Q01

Q23

)
·Q0123 ·R0123.

1See the ScaLAPACK Users’ Guide [8] for a description of one-dimensional and two-dimensional
layouts.

2We present the parallel algorithm using a distributed-memory programming model, but the
algorithm is equally valid in a shared-memory model.
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A3

A2

A1

A0

→
→
→
→

R3

R2

R1

R0

↗
↘
↗
↘

R23

R01

↗
↘

R0123

(a) Parallel TSQR

A3

A2

A1

A0

�
�����

���
�
�	

R0123

(b) Householder QR

Fig. 2.2. Graphical comparison of parallel TSQR and Householder QR.

For this product to make sense, we must choose the dimensions of the intermediate
Q factors consistently. They can all be square, or when all mi ≥ n, they can all have
n columns (in which case each R factor will be n × n). (The usual representation
of Q factors by Householder reflectors encodes both possibilities.) In either case,
we have expressed A as a product of (block diagonal) orthogonal matrices (which
must therefore also be orthogonal) and the triangular matrix R0123. By uniqueness
of the QR decomposition (modulo signs of diagonal entries of R0123), this is the QR
decomposition of A.

We abbreviate this algorithm with the simple notation of Figure 2.2(a), which
makes the binary tree apparent. The notation has the following meaning: if one or
more arrows point to the same matrix, that matrix is the R factor of the matrix ob-
tained by stacking all the matrices at the other ends of the arrows atop one another.
This notation not only helps visualize the parallelism in the algorithm (all QR decom-
positions at the same depth in the tree may be done in parallel), but implies that any
tree leads to a valid QR decomposition. For example, the conventional Householder
QR decomposition may be expressed as the “trivial” tree in Figure 2.2(b).

Algorithm 1. Parallel TSQR factorization.

Require: Π is the set of P processors; my processor’s index is i
Require: Tree with P leaves and height L, describing communication pattern
Require: m× n matrix A in block row layout; Ai is processor i’s block
1: Compute QR factorization Ai = Qi,0Ri,0

2: for k from 1 to L = do
3: if I have q − 1 > 0 neighbors in the tree at this level = then
4: Send Ri,k−1 to each neighbor not myself
5: Receive Rj,k−1 from each neighbor j not myself
6: Stack the Rj,k−1 from all neighbors (incl. my Ri,k−1), in j order, into the

qn× n matrix Ci,k, and factor Ci,k = Qi,kRi,k

7: else
8: Ri,k := Ri,k−1, and Qi,k := In×n � The latter is stored implicitly
9: end if
10: end for
Ensure: Ri,L is the R factor of A, for all processors i
Ensure: Q factor is implicitly represented by the tree of intermediate Q factors

{Qi,k}: i ∈ Π, k ∈ {0, 1, . . . , L}}.

Now, we describe the parallel TSQR factorization algorithm in more detail and
show how to apply the Q factor or compute its explicit representation. We also give
performance models of each. Algorithm 1 shows the parallel TSQR factorization of
a matrix A distributed in a block row layout among P processors. It computes an
R factor which is duplicated over all P processors and a Q factor which is stored
implicitly in a distributed way.
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On Line 1 of Algorithm 1, each processor computes a QR factorization of an
m/P × n matrix, at a cost of 2mn2/P − 2n3/3 flops. If we use a binary tree to
factor the matrix, and if P is a power of two, then each subsequent stage of the
factorization involves pairs of processors exchanging n × n upper triangular factors,
and redundantly computing the QR factorization of the 2n×n matrix formed by the
two upper triangular matrices. If we count operations only along the critical path
of the algorithm, each of logP stages requires one message of n(n− 1)/2 words, and
2n3/3 floating-point operations. Thus, the run time of TSQR is estimated to be

(2.2) TimePar. TSQR(m,n, P )

=

(
2mn2

P
+

2n3

3
logP

)
γ +

(
1

2
n2 logP

)
β + (logP )α,

where γ is the floating-point throughput, β the inverse message bandwidth, and α the
message latency. For detailed derivations of the floating-point operation counts, see
Demmel et al. [16].

Algorithm 1 stores the Q factor implicitly as a tree of intermediate factors. To
apply the resulting Q factor to an m × r matrix (with r ≤ mi for all i), we execute
a similar procedure as the factorization but apply the tree in reverse order of its
computation (from root to leaves, rather than from leaves to root). Applying the
transpose or the conjugate transpose (in the complex arithmetic case) of the implicitly
stored Q factor involves applying the tree in the same order as in the factorization
(from leaves to root). The performance model for each of these cases is similar to that
of the factorization (equation (2.2)). Details are in Demmel et al. [16]. Computing
an explicit representation of the Q factor as an m × n matrix requires applying the
implicitly represented Q factor to the first n columns of the m × n identity matrix
(distributed in block row fashion so that processor i gets an mi × n row block). It is
not possible, as far as we know, to compute the explicit Q factor in place (in a way
analogous to LAPACK’s ORGQR routine).

2.2. Sequential TSQR. In this section, we show a sequential TSQR algorithm.
We begin by illustrating the algorithm for the case of P = 4 row blocks. Then, we
derive a performance model for the general case, where fast memory has a capacity of
W floating-point words. We show an example for the case of P = 4 row blocks, so that
A = [A0;A1;A2;A3]. Sequential TSQR begins by computing the QR factorization of
A0, as in Figure 2.3(a). It then computes the QR factorization [R0;A1] = Q01R01, as
in Figure 2.3(b). The algorithm continues this process for each row block in turn, first
with the QR factorization [R01;A2] = Q012R012, and finally with the QR factorization
[R012;A3] = Q0123R0123. One can show using a product representation analogous to
(2.1) that R0123 is the R factor in the QR factorization of A and that the tree of
intermediate Q factors implicitly represents the Q factor in the QR factorization
of A.

Using the visual notation introduced in section 2.1, sequential TSQR corresponds
to the “flat tree” of Figure 2.4. The idea of sequential TSQR is that if fast memory
can only hold a little more than a fraction m/P of the rows of A (a little more than
m/4 for the above example), then all computations occur in fast memory, and the
algorithm need only read the entire matrix once from slow memory and write it back
once. This is the minimal amount of data movement possible for a QR factorization.
We omit writing out the sequential TSQR algorithm here; it is analogous to Algo-
rithm 1. Sequential TSQR performs the same number of floating-point operations
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(a) First step of sequential TSQR
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(b) Second step of sequential TSQR

Fig. 2.3. First two stages of sequential TSQR.
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Fig. 2.4. Graphical representation of sequential TSQR.

as sequential Householder QR, namely, 2mn2 − 2n3/3 flops. However, it performs
less communication than Householder QR, as we will show in section 2.5. Sequential
TSQR transfers 2mn−n(n+1)/2+mn2/W̃ words between slow and fast memory, in

which W̃ = W − n(n + 1)/2, and performs 2mn/W̃ transfers between slow and fast
memory. Thus the run time for sequential TSQR is given by

(2.3) TimeSeq. TSQR(m,n,W )

=

(
2mn2 − 2n3

3

)
γ +

(
2mn− n(n+ 1)

2
+

mn2

W̃

)
β +

(
2mn

W̃

)
α,

where γ is the floating-point throughput, β the inverse bandwidth between slow and
fast memory (we assume read and write bandwidth are the same; modeling asymmet-
ric bandwidth is a simple exercise), and α the latency between slow and fast memory.

Since W̃
>≈ 2W/3, the number of messages 2mn/W̃

<≈ 3mn/W .

2.3. More general TSQR algorithms. All TSQR algorithms use at least two
of the three primitive operations described in section 2.4 to combine the blocks, until a
single R factor remains. This combination process forms a tree, with the row blocks Ai

as the leaves and the final R factor as the root. The algorithms differ only in the tree
topology and the use of parallel processors. For example, parallel TSQR above uses
a binary tree, and sequential TSQR uses a flat tree. More general tree shapes can be
used to minimize communication and tune TSQR performance for different computer
architectures. For example, see Demmel et al. [18] for a tree shape that minimizes both
communication between processors and the volume of memory traffic between main
memory and each processor’s cache, in a shared-memory implementation. Demmel et
al. [16, section 4.3] show a different tree shape that optimizes for the case of multiple
processors sharing a single connection to memory.

Parallel TSQR looks like a reduction operation over intermediate R factors and
is indeed a reduction if we only desire the final R factor of A. This is because the QR
factorization is unique (in exact arithmetic), up to the choice of the signs of the diago-
nal entries of R. The latter can always be chosen nonnegative in a numerically stable
way; see, e.g., Demmel et al. [17]. However, if we want the Q factor as well, TSQR is
not a reduction, since applying the Q factor or computing its explicit representation
requires using the same tree as when factoring the matrix A. Nevertheless, we can
use the same performance tuning techniques as with standard parallel reductions in
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order to discover efficient tree shapes automatically. See, e.g., Nishtala, Almási, and
Caşcaval [39].

2.4. Primitive operations. All TSQR variants perform floating-point compu-
tations only in the following three primitive local operations:

1. Compute the QR factorization of the mi × n row block Ai (with mi ≥ n).
2. Compute the QR factorization of [Ri;Aj ], where Ri is an n× n upper trian-

gular matrix and Aj is an mj × n row block (with mj ≥ n).
3. Compute the QR factorization of [R1;R2; . . . ;Rk], where k ≥ 2 andR1, . . . , Rk

are all n× n upper triangular matrices.
Each of the three primitive factorizations is computed “in place,” that is, by overwrit-
ing the input. This can be done without introducing any new nonzero entries. Only n
scaling factors (corresponding to the TAU output of LAPACK’s GEQRF) must be stored
for each QR factorization. These operations can exploit faster QR algorithms, such
as Schreiber and Van Loan’s Y TY T representation [45] or Elmroth and Gustavson’s
recursive QR [21]. See Demmel et al. [16] for details.

2.5. TSQR versus alternative algorithms. In this section, we compare per-
formance models of parallel and sequential QR to those of alternative QR factorization
algorithms. These include (blocked) Householder QR, classical and modified Gram–
Schmidt (CGS, respectively, MGS), and CholeskyQR (which computes the Cholesky
factorization RTR = ATA and forms Q = AR−1). In summary, TSQR is as nu-
merically accurate as Householder QR but communicates asymptotically less than
Householder QR. TSQR also communicates only a small constant factor more than
the much less accurate CholeskyQR algorithm. We only outline our approach here
and give details in Demmel et al. [16, Section 9].

The version of sequential Householder QR we model here was optimized to mini-
mize data movement when fast memory is DRAM and slow memory is disk (“out-of-
DRAM”). This routine, PFDGEQRF [14], was designed to exploit ScaLAPACK’s paral-
lelism for the panel factorization and for updates of trailing matrix panels. We assume
here that it is running sequentially, since we are interested only in modeling memory
traffic. PFDGEQRF is left looking, as usual with out-of-DRAM algorithms (left-looking
schemes write less than right-looking schemes, and disk write bandwidth is often less
than read bandwidth). It keeps two panels in memory: a left panel of fixed width b,
and the current panel being factored, whose width c can expand to fill the available
memory. Details may be found in [14] and Demmel et al. [16, Appendix F]. In the lat-
ter, we choose b and c to minimize disk traffic. Here, we summarize the performance
model in Table 2.1 for optimal choices of b and c.

The implementation of PFDGEQRF requires mb < W : the left panel and at least
one column of the trailing matrix must fit in fast memory. LAPACK’s right-looking
sequential blocked QR factorization routine DGEQRF does not have this requirement:
the current panel need not fit in fast memory. Nevertheless, DGEQRF also does not
attain the communication lower bound, for almost all reasonable matrix dimensions
and fast memory sizes. See Appendix A for a detailed derivation.

Examining Table 2.1, we see that all parallel algorithms have the same highest

order term in their flop counts, 2mn2/P , and also use the same bandwidth, n2

2 logP ,
but that parallel TSQR sends a factor of 2n fewer messages than the only stable alter-
native (PDGEQRF), and is about as fast as the fastest unstable method (CholeskyQR).
In other words, only parallel TSQR is simultaneously fastest and stable. Examining
Table 2.1, we see a similar story, with sequential TSQR sending a factor of about mn

4W
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Table 2.1

Performance models of various parallel and sequential QR algorithms for matrices with m � n.

PFDGEQRF is our model of Householder QR; W is the fast memory capacity, and W̃ = W−n(n+1)/2.
Lower-order terms omitted.

Parallel algorithm # flops # messages # words

TSQR 2mn2

P
+ 2n3

3
log(P ) log(P ) n2

2
log(P )

PDGEQRF 2mn2

P
− 2n3

3P
2n log(P ) n2

2
log(P )

MGS 2mn2

P
2n log(P ) n2

2
log(P )

CGS 2mn2

P
2n log(P ) n2

2
log(P )

CholeskyQR 2mn2

P
+ n3

3
log(P ) n2

2
log(P )

Sequential algorithm # flops # messages # words

TSQR 2mn2 − 2n3

3
2mn
˜W

2mn− n(n+1)
2

+ mn2

˜W

PFDGEQRF 2mn2 − 2n3

3
2mn
W

+ mn2

2W
m2n2

2W
− mn3

6W
+ 3mn

2
− 3n2

4

MGS 2mn2 2mn2

˜W

3mn
2

+ m2n2

2˜W

CholeskyQR 2mn2 + n3

3
6mn
W

3mn

fewer words and n/4 fewer messages than the only stable alternative, PFDGEQRF. Note
that mn/W gives how many times larger the matrix A is than the fast memory ca-
pacity. Since we assume W ≥ n2, sequential TSQR sends fewer words than sequential
CholeskyQR.

3. Communication-avoiding QR—CAQR. We present the CAQR algorithm
for computing the QR factorization of an m-by-n matrix A, with m ≥ n. Stated most
simply, CAQR simply implements the right-looking QR factorization using TSQR as
the panel factorization. The update of the trailing matrix after each panel factoriza-
tion is triggered by the shape of the reduction tree used by TSQR.

We discuss parallel CAQR and compare its performance to ScaLAPACK. We also
show, given m, n, and the number of processors P , how to choose a distribution of
the input matrix to minimize running times of both algorithms; our proof of CAQR’s
optimality depends on these choices. Then we do the same for sequential CAQR
and an out-of-DRAM algorithm from ScaLAPACK, whose floating point operations
are counted sequentially. We also discuss other sequential QR algorithms, including
showing that recursive QR routines of Elmroth and Gustavson [21] also minimize
bandwidth, though possibly not latency.

3.1. Parallel CAQR. We describe parallel CAQR algorithm and a few details
most relevant to the complexity but refer the reader to [16, section 13] for details.
The matrix A is stored on a two-dimensional grid of processors P = Pr × Pc in a
two-dimensional block-cyclic layout, with blocks of dimension b× b. We assume that
all the blocks have the same size; we can always pad the input matrix with zero
rows and columns to ensure this is possible. For a detailed description of the two-
dimensional block cyclic layout, see [8]. CAQR is based on TSQR in order to minimize
communication. At each step of the factorization, TSQR is used to factor a panel of
columns, and the resulting Householder vectors are applied to the rest of the matrix.
The block column QR factorization as performed in PDGEQRF is the latency bottleneck
of the current ScaLAPACK QR algorithm. Replacing this block column factorization
with TSQR based on a binary tree, and adapting the rest of the algorithm to work
with TSQR’s representation of the panel Q factors, removes the bottleneck.
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(a) Step j of CAQR (b) TSQR reduction tree

Fig. 3.1. Step j of CAQR factorization (a), and an example of a binary TSQR reduction tree
with eight processors (b). First, the current panel of width b, B = [B0;B1; · · · ;Bq−1] is factorized
using TSQR. Here, q is the number of blocks in the current panel. Second, the trailing matrix,
C = [C0;C1; · · · ;Cq−1], is updated.

CAQR is defined iteratively. We assume that the first j−1 iterations of the CAQR
algorithm have been performed. That is, j−1 panels of width b have been factored and
the trailing matrix has been updated. The active matrix at step j (that is, the part of
the matrix which needs to be worked on) is of dimension (m−(j−1)b)×(n−(j−1)b) =
mj × nj .

Figure 3.1(a) shows the execution of the QR factorization. For the sake of simplic-
ity, we suppose that processors 0, . . . , Pr−1 lie in the column of processes that hold the
current panel j and that Pr is a power of 2. The mj×bmatrix B = [B0;B1; . . . ;Bq−1]
represents the current panel j. The mj × (nj − b) matrix C = [C0;C1; . . . ;Cq−1] is
the trailing matrix that needs to be updated after the TSQR factorization of B. For
each processor i, the first b rows of its first block row of B and C are Bi and Ci,
respectively.

We first introduce some notation to help us refer to different parts of a binary
TSQR reduction tree. TSQR takes place in (log2 Pr + 1) steps, starting from the
bottom level k = 0 of a binary tree. Each node of the binary tree is associated with
a set of processors. We use the following notation:

• level(i, k) =
⌊

i
2k

⌋
denotes the node at level k of the reduction tree which is

assigned to a set of processors that includes processor i.
• first proc(i, k) = 2klevel(i, k) is the index of the “first” processor associated
with the node level(i, k) at stage k of the reduction tree. In a reduction, it
receives the messages from its neighbors and performs the local computation.

• target first proc(i, k) = first proc(i, k) + 2k−1 is the index of the processor
with which first proc(i, k) exchanges data in a reduction at level k.

A binary TSQR reduction tree for eight processors is shown in Figure 3.1(b). For
example, the processors P4 and P6 are affected to the right node at level k = 2.
With the above notation, the processors in the range i = 4, . . . , 7 can compute
easily the two processors affected to this node, that is, first proc(i, 2) = 4 and
target first proc(i, 2) = 6.

Algorithm 2 outlines the right-looking parallel QR decomposition. At iteration
j, first, the block column j is factored using TSQR. After the block column factoriza-
tion is complete, the trailing matrix is updated as follows. The update corresponding
to the QR factorization at the leaves of the TSQR tree is performed locally on ev-
ery processor. The updates corresponding to the upper levels of the TSQR tree are
performed between groups of neighboring trailing matrix processors. Note that only
one of the trailing matrix processors in each neighbor group continues to be involved



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A218 J. DEMMEL, L. GRIGORI, M. HOEMMEN, AND J. LANGOU

Algorithm 2. Right-looking parallel CAQR factorization.

1: for j = 1 to n/b = do
2: The column of processors that holds panel j computes a TSQR factorization of this

panel. The Householder vectors are stored in a tree-like structure.
3: Each processor p that belongs to the column of processes holding panel j broadcasts

along its row of processors the mj/Pr × b matrix that holds the two sets of House-
holder vectors. It also broadcasts two arrays of size b each, containing the Householder
multipliers τp.

4: Each processor in the same process row as processor p, 0 ≤ p < Pr, forms Tp0 and
updates its local trailing matrix C using Tp0 and Yp0. (This computation involves all
processors.)

5: for k = 1 to logPr, the processors that lie in the same row as processor p, where
0 ≤ p < Pr equals first proc(p, k) or target first proc(p, k), respectively. = do

6: Processors in the same process row as target first proc(p, k) form Tlevel(p,k),k

locally. They also compute pieces of W = Y T
level(p,k),kCtarget first proc(p,k), leaving the

results distributed. This computation is overlapped with the communication in Line 7.
7: Each processor in the same process row as first proc(p, k) sends to the processor

in the same column and belonging to the row of processors of target first proc(p, k) the
local pieces of Cfirst proc(p,k).

8: Processors in the same process row as target first proc(p, k) compute pieces of

W = T T
level(p,k),k

(
Cfirst proc(p,k) +W

)
.

9: Each processor in the same process row as target first proc(p, k) sends to the
processor in the same column and belonging to the process row of first proc(p, k) the
local pieces of W .

10: Processors in the same process row as first proc(p, k) and target first proc(p, k)
each complete the rank-b updates Cfirst proc(p,k) := Cfirst proc(p,k) − W and
Ctarget first proc(p,k) := Ctarget first proc(p,k)−Ylevel(p,k),k ·W locally. The latter compu-
tation is overlapped with the communication in Line 9.

11: end for
12: end for

in successive trailing matrix updates. This allows overlap of computation and com-
munication, as the uninvolved processors can finish their computations in parallel
with successive reduction stages. Table 3.1 expresses the performance model over a
rectangular Pr × Pc grid of processors. A detailed derivation of the model is given
in [16]. According to the table, the number of arithmetic operations and words trans-
ferred is roughly the same between parallel CAQR and ScaLAPACK’s parallel QR
factorization, but the number of messages is a factor b times lower for CAQR.

When choosing b, Pr, and Pc to minimize the run time, they must satisfy the
following conditions: 1 ≤ Pr, Pc ≤ P , Pr · Pc = P , 1 ≤ b ≤ m

Pr
, and 1 ≤ b ≤ n

Pc
. For

simplicity we will assume that Pr evenly dividesm and that Pc evenly divides n. These
values are chosen simultaneously to minimize the approximate number of words sent,
n2/Pc+mn/Pr, and the approximate number of messages, 5n/b, where for simplicity
we temporarily ignore logarithmic factors and lower order terms in Table 3.1. This
suggests the ansatz

(3.1) Pr = K ·
√

mP

n
, Pc =

1

K
·
√

nP

m
, and b = B ·

√
mn

P
,

for general values of K and B ≤ min{K, 1/K}, since we can thereby explore all
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Table 3.1

Performance models of parallel CAQR and ScaLAPACK’s PDGEQRF routine when factoring an
m × n matrix, distributed in a two-dimensional block cyclic layout on a Pr × Pc grid of processors
with square b × b blocks. All terms are counted along the critical path. In this table, “flops” only
includes floating-point additions and multiplications, not floating-point divisions. Some lower order
terms are omitted. We generally assume m ≥ n.

Parallel CAQR

# messages 3n
b

logPr + 2n
b

logPc

# words
(

n2

Pc
+ bn

2

)
logPr +

(
mn−n2/2

Pr
+ 2n

)
logPc

# flops 2n2(3m−n)
3P

+ bn2

2Pc
+ 3bn(2m−n)

2Pr
+

(
4b2n
3

+ n2(3b+5)
2Pc

)
logPr − b2n

ScaLAPACK’s PDGEQRF

# messages 3n logPr + 2n
b

logPc

# words
(

n2

Pc
+ bn

)
logPr +

(
mn−n2/2

Pr
+ bn

2

)
logPc

# flops
2n2(3m−n)

3P
+ bn2

2Pc
+

3bn(2m−n)
2Pr

− b2n
3Pr

possible values of b, Pr, and Pc. Using the substitutions in (3.1), the flop count
(neglecting lower order terms, including the division counts) becomes

(3.2)
mn2

P

(
2− B2 +

3B

K
+

BK

2

)
− n3

P

(
2

3
+

3B

2K

)
+

mn2

P
log

(
K ·

√
mP

n

)(
4B2

3
+

3BK

2

)
.

We wish to choose B and K so as to minimize the flop count. We know at least
that we need to eliminate the dominant mn2 log(. . . ) term, so that parallel CAQR
has the same asymptotic flop count as ScaLAPACK’s PDGEQRF. This is because we
know that CAQR performs at least as many floating-point operations (asymptotically)
as PDGEQRF, so matching the highest order terms will help minimize CAQR’s flop
count. To make the high order terms of (3.2) match the 2mn2/P − 2n3/(3P ) flop
count of ScaLAPACK’s parallel QR routine, while minimizing communication as well,
we can pick K = 1 and B = o(log−1(

√
mP/n)); for simplicity we will use B =

log−2(
√

mP/n).
Using the substitutions in (3.1) and the above choices of B and K, the results are

shown in Table 1.2, which also shows the results for ScaLAPACK, whose analogous
analysis appears in [16, section 15], and the communication lower bounds, which are
discussed in section 4. In summary, if we choose b, Pr, and Pc independently and
optimally for both algorithms, the two algorithms match in the number of flops and
words transferred, but CAQR sends a factor of Θ(

√
mn/P ) messages fewer than

ScaLAPACK QR. This factor is the local memory requirement on each processor, up
to a small constant.

3.2. Sequential CAQR. As stated above, sequential CAQR is just a right-
looking QR factorization with TSQR used for the panel factorization. (In fact, left-
looking QR with TSQR has the same costs, as we show in [16, Appendix C]. We
describe only the right-looking algorithm here for simplicity.) We also assume that
the m by n matrix A is stored in a Pr × Pc two-dimensional blocked layout, with
individual m

Pr
by n

Pc
blocks stored contiguously in memory with m ≥ n and m

Pr
≥ n

Pc
.
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For TSQR to work as analyzed we need to choose Pr and Pc large enough for
one such m

Pr
by n

Pc
block to fit in fast memory, plus a bit more. For CAQR we will

need to choose Pr and Pc a bit larger, so that a bit more than three such blocks fit in
fast memory; this is in order to perform an update on two such blocks in the trailing

matrix given Householder vectors from TSQR occupying mn
PrPc

+ n2

2P 2
c
words, or at most

4mn
P altogether. In other words, we need 4mn/P ≤ W or P ≥ 4mn/W .

Leaving details to [16, Appendix C], we summarize the complexity analysis by

(3.3) Tseq. CAQR(m,n, Pc, Pr)

≤
(
3

2
P (Pc − 1)

)
α+

(
3

2
mn

(
Pc +

4

3

)
− 1

2
n2Pc

)
β +

(
2n2m− 2

3
n3

)
γ,

where we have ignored lower order terms and used Pr as an upper bound on the
number of blocks in each panel since this increases the run time only slightly and is
simpler to evaluate than for the true number of blocks Pr − �(J − 1) nPr

mPc
�.

Now we choose P , Pr, and Pc to minimize the run time. From the above formula
for Tseq. CAQR(m,n, Pc, Pr), we see that the run time is an increasing function of Pr

and Pc, so that we would like to choose them as small as possible, within the limits
imposed by the fast memory size P ≥ 4mn

W . So we choose P = 4mn
W (assuming here

and elsewhere that the denominator evenly divides the numerator). But we still need
to choose Pr and Pc subject to Pr · Pc = P .

Examining Tseq. CAQR(m,n, Pc, Pr) again, we see that if P is fixed, the run time
is also an increasing function of Pc, which we therefore want to minimize. But we
are assuming m

Pr
≥ n

Pc
, or Pc ≥ nPr

m . The optimal choice is therefore Pc = nPr

m or

Pc =
√

nP
m , which also means m

Pr
= n

Pc
, i.e., the blocks in the algorithm are square.

This choice of Pr = 2m√
W

and Pc =
2n√
W

therefore minimizes the runtime, yielding

TSeq. CAQR(m,n,W ) ≤
(
12

mn2

W 3/2

)
α+

(
3
mn2

√
W

+

)
β +

(
2mn2 − 2

3
n3

)
γ.(3.4)

We note that the bandwidth term is proportional to mn2√
W

, and the latency term is

W times smaller, both of which match (to within constant factors) the lower bounds
on bandwidth and latency to be described in section 4.

The results of this analysis are shown in Table 1.3. That table also shows the
results for an out-of-DRAM algorithm PFDGEQRF from ScaLAPACK, whose internal
block sizes b and c have been chosen to minimize disk traffic, and where we count the
floating point operations sequentially (see [16, Appendix F]). We analyze LAPACK’s
DGEQRF routine in detail in Appendix A, where we show that this routine also is not
bandwidth optimal for most reasonable matrix dimensions and fast memory sizes.

3.3. Other bandwidth minimizing sequential QR algorithms. In this sec-
tion we discuss two variants of Elmroth’s and Gustavson’s recursive sequential QR
factorization: RGEQR3 and RGEQRF [21]. We describe special cases in which these
algorithms also minimize bandwidth, although they do not minimize latency.

The fully recursive routine RGEQR3 is analogous to Toledo’s fully recursive LU
routine [47]. Both routines factor the left half of the matrix (recursively), use the
resulting factorization of the left half to update the right half, and then factor the
right half (recursively again). The base case consists of a single column. When applied
to an m× n matrix, RGEQR3 returns the Q factor in the form I − Y TY T , where Y is



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COMMUNICATION-OPTIMAL QR AND LU FACTORIZATIONS A221

the m × n lower triangular matrix of Householder vectors and T is an n × n upper
triangular matrix. A simple recurrence for the number of memory references of either
RGEQR3 or Toledo’s algorithm is

(3.5)

B(m,n) =

⎧⎪⎪⎨⎪⎪⎩
B
(
m, n

2

)
+B

(
m− n

2 ,
n
2

)
+O

(
mn2√
W

)
if mn > W and n > 1,

mn if mn ≤ W ,

m if m > W and n = 1

≤

⎧⎪⎪⎨⎪⎪⎩
2B
(
m, n

2

)
+O

(
mn2√
W

)
if mn > W and n > 1,

mn if mn ≤ W ,

m if m > W and n = 1

= O
(
mn2/

√
W
)
+mn.

So RGEQR3 attains our bandwidth lower bound. (The mn term must be included
to account for the case when n <

√
W , since each of the mn matrix entries must be

accessed at least once.) However, RGEQR3 performs a factor greater than one times as
many floating point operations as sequential Householder QR.

Now we consider RGEQRF. This is a right-looking algorithm that differs from
LAPACK’s DGEQRF only in how it performs the panel factorization: RGEQRF uses
RGEQR3, and DGEQRF uses DGEQR2, respectively. Let b be the panel width in either algo-
rithm. It is easy to see that a reasonable estimate of the number of memory references
just for the updates by all the panels is the number of panels n/b times the minimum
number of memory references for the average size update Θ(max(mn,mnb/

√
W )), or

Θ(max(mn2/b,mn2/
√
W )). Thus we need to pick b at least about as large as

√
W to

attain the desired lower bound O(mn2/
√
W ).

Concentrating now on RGEQRF, we get from inequality (3.5) that the n/b panel
factorizations using RGEQR3 cost at most an additional number of memory references,

# memory references = O

(
n

b
·
[
mb2√
W

+mb

])
= O

(
mnb√
W

+mn

)
.

This is O(mn) if we pick b =
√
W . Thus the total number of memory references for

RGEQRF with b =
√
W is O(mn2/

√
W +mn), which attains the desired lower bound.

RGEQR3 does not always minimize latency. For example, consider applying RGEQR3
to a single panel with n =

√
W columns and m > W rows, stored in a block-column

layout with
√
W -by-

√
W blocks stored columnwise, as above. Then a recurrence for

the number of messages RGEQR3 requires is

L(m,n) =

⎧⎨⎩L
(
m, n

2

)
+ L

(
m− n

2 ,
n
2

)
+O

(
m√
W

)
if n > 1,

O
(

m√
W

)
if n = 1

= O

(
mn√
W

)
= O(m) when n =

√
W ,

which is larger than the minimum O(mn/W ) = O(m/
√
W ) attained by sequential

TSQR when n =
√
W .

In contrast to DGEQRF, RGEQRF, and RGEQR3, CAQR minimizes flops, bandwidth,
and latency for all values of W .
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4. Arithmetic and communication lower bounds for QR factorization.
In this section we give a lower bound on the number of arithmetic operations per-
formed by any “non-Strassen-like” implementation of QR decomposition. We then
combine this with the communication lower bounds for QR decomposition in [7, sec-
tion 4], which is proportional to the number of arithmetic operations, to establish
a communication lower bound for QR decomposition, subject to certain technical
assumptions discussed below, that is met by our CAQR algorithm.

Now we discuss the technical assumptions under which our lower bounds hold and
how to interpret the results of this section. The original technical report on which this
paper is based [17] proved a communication lower bound for QR decomposition but
made an implicit assumption that not all QR implementations necessarily satisfy. The
results in [7, section 4] examine QR decomposition more closely and prove the desired
communication bound given two different kinds of technical assumptions. Not all QR
algorithms, even the ones we propose here, necessarily satisfy these assumptions. We
believe that these assumptions are not necessary for the communication lower bound
to hold, in part because it would be very surprising if QR decomposition turned
out to be “easier” than matrix multiplication, for which the lower bounds do hold.
Also, the arithmetic lower bounds proven here (to which the communication bounds
are proportional) do not require these assumptions. Therefore, these communication
lower bounds establish natural targets for any QR algorithm to attain, which is the
main goal of this paper.

Here are the technical assumptions (see [7, section 4] for details). We assume
that the algorithm uses blocked Householder (or Givens) transformations; write such
a blocked transformation as I −UTUT . Furthermore, the algorithm must apply such
a transformation as A := A − U(TUTA) = A − UZ, i.e., Z = TUTA is computed
first. The lower bound only counts the multiplications performed in all the matrix
multiplications UZ, which is a significant fraction of the total work. So far, these
assumptions apply to any algorithm discussed in this paper. To establish the lower
bound, either one of the following two additional technical assumptions is needed: (1)
Assuming A is m×n, the total number of entries of all Z matrices produced during the
algorithm is O(mn). This must hold, for example, if one uses only one Householder
transformation per column to zero it out below the diagonal, but not necessarily for
all variations of CAQR. (2) First, the algorithm must make “forward progress” [7,
section 4.2.2]; roughly, this means that it is allowed to zero out any entry only once.
Second, all T matrices must be 1× 1, i.e., no blocking is allowed. This sounds like a
drastic limitation, but in fact there are some CAQR variants that do satisfy it. For
example, if we perform CAQR without blocking any of the local updates (which does
not change the communication costs in either the sequential or parallel model), then
the lower bound result of [7, Theorem 4.10] applies, and this variant of CAQR attains
that lower bound.

Existing implementations of QR decomposition of an m-by-n matrix with m ≥ n
all take Θ(mn2) flops. Our main contribution is to show that this is necessary for any
non-Strassen-like algorithm (in a sense made formal below) and to establish that the
constant factor is at least 1

3 .
In fact, our approach can be used to get arithmetic lower bounds for any one-sided

factorization (including LU and QR), on dense or sparse matrices, but we leave this
generalization to future work [6].

From the definition of the QR decomposition, we see that columns i of R and Q
only depend mathematically on columns 1 through i of A. Furthermore, R = QTA
implies that the first i − 1 entries of column i of R are given by R(1 : i − 1, i) =
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(Q(:, 1 : i− 1))T · A(:, i), i.e., the product of a matrix that depends on the first i− 1
columns of A, with the ith column of A.

The independence of these two sets of parameters (first i − 1 columns of A, and
column i of A) will let us describe the non-Strassen-like algorithms for which we can
get a lower bound. Suppose B(x) is an m-by-n linear operator parametrized by the
vector x (in our case, the entries of columns 1 to i − 1 of A) and that we want to
multiply z = B(x) · y, where each entry of y is an independent parameter (in our
case, the entries of column i of A). We assume the directed acyclic graph (DAG)
implementing z = B(x) · y has the following properties.

Definition 4.1 (non-Strassen-like multiplication z = B(x) · y). We label the
input nodes of the DAG as xin or yin with no overlap allowed. We give the same label
to the edges carrying their values to inputs of other nodes. If more computations just
on xin nodes are performed to compute other functions just of x, label these nodes and
their output edges by xin too (we will not count these operations in our lower bound).
We label output nodes as zout. The other nodes performing computations are labeled
as follows:

1. A node multiplying an xin edge and a yin edge is labeled mul(xin, yin) and
produces an output edge labeled yhomo, which is short for “linear homogeneous
function of y with coefficients that are functions of x.”

2. A node multiplying an xin edge and a yhomo edge is labeled mul(xin, yhomo)
and produces an output edge also labeled yhomo.

3. A node multiplying anything (an f ∈ {xin, yin, yhomo}) by a constant like
3.1416 is labeled mul(f, 3.1416), and its output edge is labeled xin or yhomo

as appropriate.
4. A node that adds or subtracts its inputs is labeled either add/sub(xin) if both

its inputs are xin (in which case its output edge is xin) or labeled add/sub(yhomo)
if both its inputs are yin and/or yhomo (in which case the output edge is
yhomo).

In particular, no nodes that add or subtract one xin edge with either a yin or
yhomo edge are permitted. That is because these cannot contribute to creating a
yhomo, which is what each zout must finally be. Similarly, we are not allowed to
compute quadratic or higher degree functions (or reciprocals or square roots . . . ) of
yin or yhomo, because these are also not yhomo.

This also captures the idea of non-Strassen-like multiplication, because column y
cannot be combined with other columns to participate in later operations. In other
words, no intermediate results can depend on data on which the final result does not
depend, namely, on data from other columns.

Our lower bound depends on the following result:
Lemma 4.2. Consider performing the multiplication z = B(x) · y using an algo-

rithm satisfying Definition 4.1. Suppose that as a subset of Rm×n, the set of all B(x)
has dimension d ≤ m · n or is a union of various manifolds, at least one of which
has dimension d. Then at least d multiplications (nodes labeled mul(·) in the above
definition) are needed to implement the multiplication z = B(x) · y.

Proof. Consider running the algorithm on all possible inputs (x, y). Use the
DAG symbolically to express each of the m zout nodes as the symbolic sum z(i) =∑n

j=1 fij(x)·y(j), and create the point F (x) = (f11(x), . . . , fmn(x)) in Rm×n, which is
an explicit representation of the B(x) that is multiplied by y. The set F of all points
F (x) has to have dimension d (or some manifold it contains must have dimension
d). Only mul(yin, xin) and mul(yhomo, xin) nodes can introduce a dependence of an
output on a new function of x; let #muls be the number of such nodes. Thus F (x)
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can only depend on #muls different functions of x. In other words, the set F is the
image of the composition of two functions F (x) = g(h(x)), where h(x) maps the set of
all x values to Rq, where q ≤ #muls is the number of different functions of x that the
DAG can use, and g(·) maps from Rq to Rm×n. So F (x) must lie in a set of dimension
at most q (since g(·) and h(·) are smooth functions), and thus #muls ≥ q ≥ d as
desired.

We note that this result would not apply to a Strassen-like algorithm used to
multiply B(x) times many vectors yi, because such algorithms would form linear
combinations of different yi, which is excluded by our model.

This lemma let us prove the following lower bound on the number of multiplica-
tions needed to compute R factor of the QR decomposition.

Theorem 4.3. Consider computing the QR decomposition of the m-by-n real
dense matrix A, with m ≥ n, where the computation of just the strict upper triangle
of R uses an algorithm satisfying Definition 4.1. Then the number of multiplications
needed to compute the R factor is at least

(4.1) G(m,n) ≡ mn(n− 1)

2
− n(n2 − 1)

6
=

n2

2

(
m− n

3

)
− mn

2
+

n

6
.

Proof. We observe that R = QT · A implies that R(1 : i − 1, i) is the product
(Q(:, 1 : i− 1))T ·A(:, i), and that Q(:, 1 : i− 1) depends only on columns 1 : i− 1 of
A. Thus Lemma 4.2 applies to the computation of each column of the upper triangle
of R. The dimension of the set of m-by-i real orthogonal matrices is the dimension
of the Stiefel manifold, namely mi− i(i+ 1)/2. Applying Lemma 4.2, summing from
i = 1 to n− 1, yields the claimed lower bound on the number of multiplications.

We emphasize that Theorem 4.3 is quite general, covering CGS, MGS, and
CholeskyQR, as well as various conceivable hybrids (QR computed using (block)
Householder transformations is considered below). When m � n, CholeskyQR does
mn(n+1)

2 + n3

6 +O(n2) multiplications just to compute R, which agrees with the lower

bound in the highest order term mn2

2 . When m = n, the lower bound underestimates
the number of multiplications by about a factor of two (versus CholeskyQR) or three
(versus Gram–Schmidt), because we are not including the work to compute Q in our
lower bound. This is good enough for our Big-Omega lower bounds.

Now we combine this result with communication lower bounds for orthogonal
decompositions in [7].

Theorem 4.4. Consider computing the QR decomposition of the m-by-n real
dense matrix A with m ≥ n, where the computation of just the strict upper triangle
of R uses an algorithm satisfying Definition 4.1, and also that the algorithm satisfies
the technical assumptions discussed above [7, section 4]. Let G(m,n) be defined as
in Theorem 4.3. Suppose that the computation is done on a computer with a single
large (slow) memory and another smaller (fast) memory of size W words, in which
the arguments and result of any arithmetic operation must reside. Then the number
of words moved between the fast and slow memory is at least

#words moved ≥ G(m,n)

8W 1/2
−W = Ω

(
mn2

W 1/2

)
and the number of messages containing these words that are sent between fast and
slow memory is at least

#messages ≥ G(m,n)

8W 3/2
− 1 = Ω

(
mn2

W 3/2

)
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Proof. This follows either from [7, Lemma 4.1] or from [7, Theorem 4.10], de-
pending on the technical assumptions made.

Analogous to Corollary 3.2 in [7], this result may be extended to the case of
a parallel distributed memory computer, where we assume either that (1) the load
is balanced, i.e., each of P processors does G(m,n)/P multiplications, or (2) the
memory is balanced, i.e., each of the P processors stores mn/P words. Then at least
one processor must send or receive at least

#words moved ≥ G(m,n)/P

8(mn/P )1/2
− mn

P

= Ω

(
n2

P 1/2

)
if m = n

number of words with some other processor(s) and use at least the following number
of messages to do so:

#messages ≥ G(m,n)/P

8(mn/P )3/2
− 1 = Ω

(√
Pn

m

)
= Ω(P 1/2) if m = n.

We note that whenm > Pn, the lower bounds become vacuous. This occurs just when
TSQR only needs log2 P messages along its critical path, each of size n2/2 (which is
consistent with each processor sending and/or receiving Θ(1) messages of this size).

Section 4.1 in [7] discusses CholeskyQR, CGS and MGS. The steps of CholeskyQR
(forming ATA, and doing its Cholesky factorization) individually satisfy the lower
bound #muls/(8

√
W ) − W in [7, Theorem 2.2]. Since one could conceivably save

some memory traffic by computing the Cholesky factorization of ATA “on the fly”
without writing it out to memory, one can use the technique of imposing reads and
writes of [7, section 5.1.1], in which one writes out ATA and reads it back in, even if
this is not required. This reduces the lower bound to #muls/(8

√
W )−W−2n2, which

is asymptotically the same, and lets us use the lower bound #mul ≥ G(m,n) from
Theorem 4.3. Since implementations of ATA and Cholesky exist that attain these
communication lower bounds, they can be combined to do CholeskyQR optimally.

Section 4.1 in [7] also discusses CGS and MGS and derives the lower bound
#words moved ≥ #muls/(8

√
W ) − W just for the computation of R, again letting

us use #muls ≥ G(m,n). Existing implementations of CGS and MGS do not attain
these lower bounds.

These results justify the communication lower bounds presented in Tables 1.2
and 1.3, which are expressed using Θ(·) notation for simplicity. Table 1.2 assumes the
matrix is sufficiently rectangular (n sufficiently larger than m/p) to not use TSQR,
so that the lower bounds above are not vacuous. The communication lower bounds
for parallel TSQR in Table 1.1 follow from the need to do reductions on P locally
computed n-by-n R factors, and the communication lower bounds for sequential TSQR
in Table 1.1 follow from the need to read the entire matrix at least once from slow
memory.

Finally, we briefly mention another, simpler reduction-based approach to lower
bounds, which is most easily applied to LU decomposition. The simple identity

(4.2)

⎛⎝I 0 −B
A I 0
0 0 I

⎞⎠ =

⎛⎝I
A I
0 0 I

⎞⎠⎛⎝I 0 −B
I A ·B

I

⎞⎠
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shows that any routine that can do LU factorization can be used to multiply square
matrices (of 1/3 the size). Thus, any lower bound for communication (or arithmetic)
for matrix-multiplication becomes a lower bound (modulo the factor 1/3 to some
power) for LU decomposition. Thus, the lower bounds for communication by Hong
and Kung [31] and by Irony, Toledo, and Tiskin [32] apply to LU decomposition as well.
(The communication lower bounds for LU in [7] take a different but related approach.)

5. Experimental results. In this section we present the performance of se-
quential and parallel TSQR on several computational systems. We also use the per-
formance model of CAQR in Table 3.1 to predict its performance and compare it
to PDGEQRF. Detailed performance evaluation on two different parallel machines, an
existing IBM POWER5 and a grid formed by 128 processors linked together by the
Internet, can be found in the technical report [16].

5.1. Sequential TSQR tests. In Demmel et al. [18], we describe an implemen-
tation of the sequential TSQR algorithm of section 2.2 that minimizes memory traffic
between cache and DRAM. TSQR occurs in that work as part of a communication-
avoiding sparse iterative solver, where it shows significant speedups over competing
algorithms. The implementation combines both sequential and parallel optimizations
in complicated ways, so we do not discuss its performance further here.

We also developed an out-of-DRAM version of the sequential TSQR algorithm
of section 2.2. It uses standard POSIX blocking file operations, with no attempt to
overlap communication and computation. Exploiting overlap could at best double the
performance. For implementation details, see Demmel et al. [16]. The point of this
implementation was not maximum performance but to use TSQR to solve problems
too large to fit in DRAM. We show that for such matrices, TSQR is a much better
approach than relying on LAPACK’s implicit use of virtual memory.

We benchmarked our out-of-DRAM sequential TSQR code on a single-CPU lap-
top. The 1.5 GHz PowerPC G4 CPU has 512 KB of L2 cache, 512 MB of DRAM on a
167 MHz bus, and one Fujitsu MHT2080AH 80 HB hard drive spinning at 5400 RPM.
In our experiments, we first used both out-of-DRAM TSQR and standard LAPACK
QR (DGEQRF) to factor a collection of matrices that use only slightly more than half
of the total DRAM for the factorization. This was so that we could collect compar-
ison timings. Then, we ran only out-of-DRAM TSQR on matrices too large to fit in
DRAM or swap space, so that an out-of-DRAM algorithm is necessary to solve the
problem at all. For the latter timings, we used a power law model to extrapolate the
standard LAPACK QR timings up to the larger problem sizes, in order to estimate
the run time if memory were unbounded. LAPACK’s QR factorization swaps so much
for out-of-DRAM problem sizes that its actual run times are many times larger than
these extrapolated unbounded-memory run time estimates. In some cases we had to
abandon the computation because it rendered the computer unusable.

Figure 5.1(a) shows the measured in-DRAM results on the laptop platform, and
Figure 5.1(b) shows the (measured TSQR, extrapolated LAPACK) out-of-DRAM
results on the same platform. In these figures, the amount of memory, and so the
total number of matrix entries, is constant for all the experiments: m · n = 224. This
fixes the total volume of communication for all experiments. The number of blocks
P used, and so the number of matrix entries per block mn/P , is the same for each
group of five bars and is shown in a label under the horizontal axis. Within each
group of 5 bars, we varied the number of matrix columns to be 4, 8, 16, 32, and 64.
Note that we have not tried to overlap I/O and computation in this implementation.
The trends in Figure 5.1(a) suggest that the extrapolation is reasonable: TSQR takes
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(a) Measured data (b) Extrapolated runtime

Fig. 5.1. Run times (in seconds) of out-of-DRAM TSQR compared against (a) measured data
and (b) extrapolated (power-law) run time of standard QR (LAPACK’s DGEQRF) on a single-CPU
laptop. For the measured data, we limit memory usage to 256 MB (half of total system memory), so
that we can collect DGEQRF performance data. The graphs show different choices of block dimensions
and number of blocks P . The top of the blue bar is (a) the benchmarked total runtime for DGEQRF and
(b) the extrapolated total runtime for DGEQRF, the top of the green bar is the benchmarked compute
time for TSQR, and the top of the brown bar is the benchmarked total time for TSQR. Thus the
height of the brown bar alone is the I/O time. Note that LAPACK starts and ends in DRAM (if it
could fit in DRAM), and TSQR starts and ends on disk.

about twice as much time for computation as does standard LAPACK QR, and the
fraction of time spent in I/O is reasonable and decreases with problem size.

TSQR assumes that the matrix starts and ends on disk, whereas LAPACK starts
and ends in DRAM. Thus, to compare the two, one could also estimate LAPACK
performance with infinite DRAM but where the data starts and ends on disk. The
height of the reddish-brown bars in Figures 5.1(a) and 5.1(b) is the I/O time for
TSQR, which can be used to estimate the LAPACK I/O time. This is reasonable
since the volume of communication in the two cases is the same, and the fact that
the reddish-brown bars are of similar height for different values of P shows that the
communication is bandwidth dominated. Add this to the blue bar (the LAPACK
compute time) to estimate the run time when the LAPACK QR routine must load
the matrix from disk and store the results back to disk.

Our results show that using an out-of-DRAM version of sequential TSQR makes
it possible to factor matrices too large to fit in DRAM. If we attempt to use LAPACK
and rely on the virtual memory system to factor these matrices, either the computer
hangs or it takes orders of magnitude more time to complete. Furthermore, our
mostly unoptimized implementation of sequential TSQR on matrices too large for
DRAM requires only two times longer than LAPACK on a hypothetical computer
with infinite DRAM.

5.2. Tests of parallel TSQR on a binary tree. We also present results for
a parallel messsage-passing interface (MPI) implementation of TSQR on a binary
tree. Rather than LAPACK’s DGEQRF, the code uses a custom local QR factorization,
DGEQR3, based on the recursive approach of Elmroth and Gustavson [21]. Tests show
that DGEQR3 consistently outperforms LAPACK’s DGEQRF by a large margin for matrix
dimensions of interest.
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Table 5.1

Run time in seconds of various parallel QR factorizations on the Beowulf machine. The total
number of rows m = 100,000 and the ratio �n/√P� = 50 (with P being the number of processors)
were kept constant as P varied from 1 to 64. This illustrates weak scaling with respect to the square
of the number of columns n in the matrix, which is of interest because the number of floating-point
operations in sequential QR is O(mn2). If an algorithm scales perfectly, then all the run times
in that algorithm’s column should be constant. Both Q and R factors were computed explicitly; in
particular, for those codes which form an implicit representation of Q, the conversion to an explicit
representation was included in the run time measurement.

# procs CholeskyQR TSQR CGS MGS TSQR ScaLAPACK
(DGEQR3) (DGEQRF) (PDGEQRF)

1 1.02 4.14 3.73 7.17 9.68 12.63
2 0.99 4.00 6.41 12.56 15.71 19.88
4 0.92 3.35 6.62 12.78 16.07 19.59
8 0.92 2.86 6.87 12.89 11.41 17.85
16 1.00 2.56 7.48 13.02 9.75 17.29
32 1.32 2.82 8.37 13.84 8.15 16.95
64 1.88 5.96 15.46 13.84 9.46 17.74

We ran parallel TSQR on the following distributed-memory machines:
• Pentium III cluster (“Beowulf”), operated by the University of Colorado,
Denver. It has 35 dual-socket 900 MHz Pentium III nodes with Dolphin
interconnect. Peak floating-point rate is 900 Mflop/s per processor, network
latency is less than 2.7 μs, benchmarked,3 and network bandwidth is 350
MB/s, benchmarked upper bound.

• IBM BlueGene/L (“Frost”), operated by the National Center for Atmospheric
Research. We use one BlueGene/L rack with 1024 700 MHz compute CPUs.
Peak floating-point rate is 2.8 Gflop/s per processor, network4 latency is 1.5
μs, hardware, and network one-way bandwidth is 350 MB/s, hardware.

The experiments compare many different implementations of a parallel QR fac-
torization. TSQR was tested both with the recursive local QR factorization DGEQR3,
and the standard LAPACK routine DGEQRF. Both CGS and MGS (by row) were timed.

Tables 5.1 and 5.2 show the results of two different performance experiments on
the Pentium III cluster. In the first of these, the total number of rows m = 100,000
and the ratio �n/√P� = 50 (with P being the number of processors) were kept con-
stant as P varied from 1 to 64. This was meant to illustrate weak scaling with respect
to n2 (the square of the number of columns in the matrix), which is of interest because
the number of floating-point operations in sequential QR is O(mn2). If an algorithm
scales perfectly, then all the run times shown in that algorithm’s column should be
constant. Both the tall and skinny Q and the square R factors were computed ex-
plicitly; in particular, for those codes which form an implicit representation of Q, the
conversion to an explicit representation was included in the run time measurement.
The results show that TSQR scales better than CGS or MGS (by row) and signifi-
cantly outperforms ScaLAPACK’s QR. Also, using the recursive local QR in TSQR,
rather than LAPACK’s QR, more than doubles performance. CholeskyQR gets the
best performance of all the algorithms, but at the expense of significant loss of orthog-
onality when the initial matrix A is ill-conditioned. Note that in this case (Q and R

3See http://www.dolphinics.com/products/benchmarks.html.
4The BlueGene/L has two separate networks—a torus for nearest-neighbor communication and

a tree for collectives. The latency and bandwidth figures here are for the collectives network.
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Table 5.2

Run time in seconds of various parallel QR factorizations on the Beowulf machine, illustrating
weak scaling with respect to the total number of rows m in the matrix. The ratio �m/P � = 100,000
and the total number of columns n = 50 were kept constant as the number of processors P varied
from 1 to 64. If an algorithm scales perfectly, then all the run times in that algorithm’s column
should be constant. For those algorithms which compute an implicit representation of the Q factor,
that representation was left implicit.

# procs CholeskyQR TSQR CGS MGS TSQR ScaLAPACK
(DGEQR3) (DGEQRF) (PDGEQRF)

1 0.45 3.43 3.61 7.13 7.07 7.26
2 0.47 4.02 7.11 14.04 11.59 13.95
4 0.47 4.29 6.09 12.09 13.94 13.74
8 0.50 4.30 7.53 15.06 14.21 14.05
16 0.54 4.33 7.79 15.04 14.66 14.94
32 0.52 4.42 7.85 15.38 14.95 15.01
64 0.65 4.45 7.96 15.46 14.66 15.33

Table 5.3

Run time in seconds of various parallel QR factorizations on the Frost machine on a 106 × 50
matrix. This metric illustrates strong scaling (constant problem size, but number of processors
increases).

# procs CholeskyQR TSQR CGS MGS TSQR ScaLAPACK
(DGEQR3) (DGEQRF) (PDGEQRF)

32 0.140 0.453 0.836 0.694 1.132 1.817
64 0.075 0.235 0.411 0.341 0.570 0.908
128 0.038 0.118 0.180 0.144 0.247 0.399
256 0.020 0.064 0.086 0.069 0.121 0.212

requested), CholeskyQR, CGS, and MGS perform half the flops of the Householder-
based algorithms, TSQR DGEQR3, TSQR DGEQRF, and PDGEQRF (2mn2 versus 4mn2).

Table 5.2 shows the results of the second set of experiments on the Pentium III
cluster. In these experiments, we also illustrate weak scaling with respect to the
total number of rows m in the matrix. For this, the ratio �m/P � = 100, 000 and the
total number of columns n = 50 were kept constant as the number of processors P
varied from 1 to 64. Unlike in the previous set of experiments, for those algorithms
which compute an implicit representation of the Q factor, that representation was left
implicit. The results show that TSQR scales well. In particular, when using TSQR
with the recursive local QR factorization, there is almost no performance penalty
for moving from one processor to two, unlike with CGS, MGS, and ScaLAPACK’s
QR. Again, the recursive local QR significantly improves TSQR performance; here
it is the main factor in making TSQR perform better than ScaLAPACK’s QR. Note
that in this case (only R requested), CholeskyQR, performs half the flops of all the
others algorithm CGS, MGS, TSQR DGEQR3, TSQR DGEQRF, and PDGEQRF (mn2 versus
2mn2).

Table 5.3 shows the results of the third set of experiments, which was performed
on the BlueGene/L cluster Frost. These data show performance per processor (Mflop
/ s / (number of processors)) on a matrix of constant dimensions 106 × 50, as the
number of processors was increased. This illustrates strong scaling. If an algorithm
scales perfectly, then all the numbers in that algorithm’s column should decrease
proportionally to P , i.e., halve from row to row. For ScaLAPACK’s QR factoriza-
tion, we used PDGEQRF. We observe that using the recursive local QR factorization
with TSQR makes it clearly outperform ScaLAPACK. Note that, in this case (Q
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and R requested), CholeskyQR, CGS, and MGS perform half the flops of the House-
holder based algorithms, TSQR DGEQR3, TSQR DGEQRF, and PDGEQRF (2mn2 versus
4mn2).

Both the Pentium III and BlueGene/L platforms have relatively slow processors
with a relatively low-latency interconnect. TSQR was optimized for the opposite case
of fast processors and expensive communication. Nevertheless, TSQR outperforms
ScaLAPACK’s QR by over 6.7 times on 16 processors (and 3.5 times on 64 processors)
on the Pentium III cluster, and 4.0 times on 32 processors (and 3.3 times on 256
processors) on the BlueGene/L machine.

5.3. Performance estimation of parallel CAQR. We use the performance
model developed in section 3.1 to estimate the performance of parallel CAQR on a
model of a petascale machine. We expect CAQR to outperform ScaLAPACK, in part
because it uses a faster algorithm for performing most of the computation of each
panel factorization (DGEQR3 versus DGEQRF) and in part because it reduces the latency
cost. Our performance model uses the same time per floating-point operation for
both CAQR and PDGEQRF. Hence our model evaluates the improvement due only to
reducing the latency cost. Our projection of a petascale machine (“Peta”) has 8192
processors. Each “processor” of Peta may itself be a parallel multicore node, but we
consider it as a single fast sequential processor for the sake of our model. Here are
the parameters we use: peak floating-point rate is 500 Gflop/s per processor, network
latency is 10 μs, and network bandwidth is 4 GB/s.

We evaluate the performance using matrices of size n × n, distributed over a
Pr × Pc grid of P processors using a two-dimensional block cyclic distribution, with
square blocks of size b× b. We estimate the best performance of CAQR and PDGEQRF

for a given problem size n and a given number of processors P by finding the optimal
values for the block size b and the shape of the grid Pr×Pc in the allowed ranges. The
block size b is varied in the range 1, 5, 10, . . . , 50, 60, . . . , min(200,m/Pr, n/Pc). The
values for P , Pr, and Pc are chosen to be powers of two. When we evaluate the model,
we set the floating-point performance value in the model so that the modeled floating-
point rate is 80% of the machine’s peak rate, so as to capture realistic performance on
the local QR factorizations. The white regions in the plots signify that the problem
needed more memory than available on the machine.

Figure 5.2 shows our performance estimates of CAQR and PDGEQRF on the Petas-
cale machine, in which we display (a) the best speedup obtained by CAQR, with
respect to the run time using the fewest number of processors with enough memory
to hold the matrix (which may be more than one processor); (b) the best speedup
obtained by PDGEQRF, computed similarly; and (c) the ratio of PDGEQRF run time to
CAQR run time.

As can be seen in Figure 5.2(a), CAQR is expected to show good scalability for
large matrices. For example, for n = 105.5, a speedup of 1431, measured with respect
to the time on 2 processors, is obtained on 8192 processors. For n = 106 a speedup
of 167, measured with respect to the time on 32 processors, is obtained on 8192
processors. CAQR leads to more significant improvements when the latency represents
an important fraction of the total time; see the bottom right of Figure 5.2(c). The
best improvement is a factor of 22.9, obtained for n = 104 and P = 8192. The
speedup of the best CAQR compared to the best PDGEQRF for n = 104 when using at
most P = 8192 processors is larger than 8, which is still an important improvement.
The best performance of CAQR is obtained for P = 4096 processors and the best
performance of PDGEQRF is obtained for P = 16 processors.
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(a) Speedup CAQR (b) Speedup PDGEQRF

(c) Comparison

Fig. 5.2. Performance prediction comparing CAQR and PDGEQRF on Peta.

Table 5.4

Estimated run time of PDGEQRF divided by estimated runtime of parallel CAQR on a square
n× n matrix, on the Peta platform for those values of P (number of processors) for which PDGEQRF

performs the best for that problem size.

log10 n Best log2 P for PDGEQRF CAQR speedup
3.0 1 1
3.5 2–3 1.1–1.5
4.0 4–5 1.7–2.5
4.5 7–10 2.7–6.6
5.0 11–13 4.1–7.4
5.5 13 3.0
6.0 13 1.4

Useful improvements are also obtained for larger matrices. For n = 106, CAQR
outperforms PDGEQRF by a factor of 1.4. When the computation dominates the parallel
time, Figure 5.2(c) predicts that there is no benefit from using CAQR. However,
CAQR is never slower. For any fixed n, we can take the number of processors P
for which PDGEQRF would perform the best, and measure the speedup of CAQR over
PDGEQRF using that number of processors. We do this in Table 5.4, which predicts
that CAQR always is at least as fast as PDGEQRF and often significantly faster (up to
7.4 times faster in some cases).

6. Related work. The central idea in this paper is factoring tall skinny matrices
using a tree-based Householder QR algorithm. A number of authors previously figured



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A232 J. DEMMEL, L. GRIGORI, M. HOEMMEN, AND J. LANGOU

out the special case of a binary reduction tree for parallel QR. As far as we know,
Golub et al. [24] were the first to suggest it, but their formulation requires n logP
messages for QR of an m×n matrix on P processors. Pothen and Raghavan [41] were
the first to implement parallel TSQR using only logP messages. Da Cunha et al. [13]
independently rediscovered parallel TSQR.

Other authors have worked out variations of the algorithm we call “sequential
TSQR” [9, 10, 28, 35, 42, 43]. They do not use it by itself but rather use it as the
panel factorization step in the QR decomposition of general matrices. The references
[9, 10, 28, 35, 42] refer to the latter algorithm as “tiled QR,” which is the same as
our sequential CAQR with square blocks. However, they use it in parallel on shared-
memory platforms, especially single-socket multicore. They do this by exploiting the
parallelism implicit in the directed acyclic graph of tasks. Often they use dynamic
task scheduling, which we could use but do not discuss in this paper. Since the
cost of communication in the single-socket multicore regime is low, these authors are
less concerned than we are about minimizing latency; thus, they are not concerned
about the latency bottleneck in the panel factorization, which motivates our parallel
CAQR algorithm. We also model and analyze communication costs in more detail
than previous authors did.

Here are recent examples of related work on sequential CAQR. Gunter and van de
Geijn develop a parallel out-of-DRAM QR factorization algorithm that uses a flat tree
for the panel factorizations [28]. Buttari et al. suggest using a QR factorization of this
type to improve performance of parallel QR on commodity multicore processors [9].
Quintana-Orti et al. develop two variations on block QR factorization algorithms and
use them with a dynamic task scheduling system to parallelize the QR factorization
on shared-memory machines [42].

A different “cache-oblivious” approach is presented by Frens and Wise [22], based
on a recursive two-dimensional decomposition of the matrix and using Morton order-
ing of the subblocks. This sequential algorithm minimizes communication (bandwidth
and latency costs) across multiple levels of memory hierarchy, but at the cost of pos-
sibly tripling the number of floating point operations.

As far as we know, CAQR that uses TSQR based on any reduction tree as a
building block, and in particular parallel CAQR (based on a binary tree), is novel.
Nevertheless, there is a body of work on theoretical bounds on exploitable parallelism
in QR factorizations. These bounds apply to both parallel TSQR and parallel CAQR
if one replaces “matrix element” in the authors’ work with “block” in ours. Cosnard,
Muller, and Robert proved lower bounds on the critical path length Opt(m,n) of any
parallel QR algorithm of an m×n matrix based on Givens rotations [11]; it is believed
that these apply to any QR factorization based on Householder or Givens rotations.
Leoncini et al. show that any QR factorization based on Householder reductions or
Givens rotations is P-complete [37]. The only known QR factorization algorithm in
arithmetic NC (see [12]) is numerically highly unstable [19], and no work suggests
that a stable arithmetic NC algorithm exists.

Hong and Kung [31] and Irony, Toledo, and Tiskin [32] proved lower bounds on
communication for sequential and parallel matrix multiplication, and Ballard et al.
[7] extended these results to most “direct” linear algebra problems (LU, QR, finding
eigenvalues and eigenvectors, etc.), for dense or sparse matrices, and for sequential
and parallel machines. Elmroth and Gustavson proposed a recursive QR factorization
(see [20, 21]) which can also take advantage of memory hierarchies. For parallel LU
with pivoting that minimizes communication, see [26, 27], and for sequential LU, see
[47, 27].
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Block iterative methods frequently compute the QR factorization of a tall and
skinny dense matrix. This includes algorithms for solving linear systems Ax = B with
multiple right-hand sides (such as variants of GMRES, QMR, or CG [48, 23, 40]), as
well as block iterative eigensolvers (for a summary of such methods, see [4, 36]). In
practice, MGS orthogonalization is usually used when a (reasonably) stable QR factor-
ization is desired. Sometimes unstable methods (such as CholeskyQR) are used when
performance considerations outweigh stability. Eigenvalue computation is particu-
larly sensitive to the accuracy of the orthogonalization; two recent papers suggest that
large-scale eigenvalue applications require a stable QR factorization [29, 33]. Many
block iterative methods have widely used implementations, on which a large com-
munity of scientists and engineers depends for their computational tasks. Examples
include TRLAN (thick restart Lanczos), BLZPACK (block Lanczos), Anasazi (various
block methods), and PRIMME (block Jacobi–Davidson methods) [49, 38, 34, 3, 5, 46].

7. Conclusions and open problems. We have presented lower bounds on the
bandwidth costs (number of words moved) and latency costs (number of messages) for
parallel and sequential dense QR factorization and presented some new and some old
QR algorithms that attain these bounds. We have also presented a simple reduction
argument to derive similar lower bounds for LU factorization and referred to LU
algorithms in the literature that attain at least some of these bounds.

There are numerous ways in which one could hope to extend these results. For
example, one could seek dense linear algebra algorithms for other problems, like eigen-
problems, that attain the same communication lower bounds [7]. One could also seek
algorithms attaining the corresponding lower bounds for sparse matrices [7]. Or one
could seek analogous communication lower bounds for asymptotically faster dense
linear algebra algorithms like those based on Strassen’s algorithm, or indeed of any
matrix multiplication algorithm, based on Raz’s theorem converting any matrix mul-
tiplication algorithm to be “Strassen-like” (bilinear noncommutative) [44].

But the following question is perhaps of more practical importance. Our TSQR
and CAQR algorithms have been described and analyzed in most detail for simple
machine models: either sequential with two levels of memory hierarchy (fast and
slow) or a homogeneous parallel machine, where each processor is itself sequential.
Real computers are more complicated, with many levels of memory hierarchy and
many levels of parallelism (multicore, multisocket, multinode, multirack. . . ) all with
different bandwidths and latencies. So it is natural to ask whether our algorithms
and optimality proofs can be extended to these more general situations. We hinted
at how TSQR could be extended to general reduction trees in section 2, which could
in turn be chosen depending on the architecture. But we have not discussed CAQR,
which we do here.

First suppose there are multiple, nested levels of memory hierarchy (with words in
the cache at level i also contained inside the larger, slower cache at level i+1). Then
by applying our lower bounds at each level (treating levels 1 through i as a single
level, and levels i+ 1 and larger as another), we get lower bounds on communication
between each pair of consecutive levels. It is known in the case of matrix multiplication
that either recursive “cache-oblivious” algorithms can attain all these lower bounds
or algorithms with explicit caching at each level.

It is natural to ask how this extends to QR. As mentioned in section 6, Frens
and Wise [22] have a sequential cache oblivious QR algorithm that minimizes both
latency and bandwidth costs across multiple layers of memory hierarchy, but at the
cost of up to three times more flops. The sequential cache-oblivious algorithm due
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to Elmroth and Gustavson [20, 21] minimizes only bandwidth costs, not latency. So
it is also natural to ask whether CAQR can be organized to work with multiple
levels of memory hierarchy; the challenge is that the subproblems into which CAQR
decomposes the subproblem are not all “smaller CAQR” that would permit obvious
recursion.

The problem becomes more challenging with multiple levels of parallelism as
well. Finally, we have been assuming the machines are homogeneous, that all process-
ing elements and memories (at the same level) have common processing rates, sizes,
bandwidths, and latencies. But many architectures are heterogeneous, e.g., consist of
multiple CPUs and GPUs with different properties. Deriving lower bounds, and algo-
rithms that attain them, for this broad array of emerging architectures is future work.

Appendix A. Memory traffic for right-looking BLAS 3 QR.
In this section, we estimate the amount of data movement between fast and slow

memory performed by LAPACK’s sequential QR factorization DGEQRF for an m × n
matrix withm ≥ n. DGEQRF uses a right-looking BLAS 3 algorithm with panel width b.
Its volume of data movement (if reads and writes are counted together, as we do) does
not differ significantly from that of the left-looking out-of-core algorithm PFDGEQRF

mentioned in section 3.2. That algorithm is described and analyzed in detail in [16,
Appendix F]. The important difference is that PFDGEQRF requires mb < W : the panel
of width b must fit in fast memory, and at least one column of the trailing matrix
must also reside in fast memory. The LAPACK algorithm DGEQRF does not require
this; in fact, not even an entire row of the matrix need fit in fast memory (W < n is
allowed). This matters because in some cases, choosing b so that the panel does not
fit in fast memory reduces overall memory traffic. This counterintuitive result holds
because the trailing matrix update also contributes to memory traffic: wider panels
mean fewer trailing matrix updates, though they may result in more data movement
from the panel factorizations.

We include this appendix because we wish to demonstrate that while DGEQRF’s
greater freedom to choose the panel width may result in less data movement than
the PFDGEQRF algorithm (see Case 3 in section A.2), both algorithms nevertheless
still require asymptotically more data movement than sequential CAQR and than
the lower bound, for almost all matrix dimensions and fast memory sizes of practical
interest. We demonstrate this by estimating up to a small constant factor the volume
of data movement performed by DGEQRF, as a function of the panel width b (which
may range from 1 to n inclusive). In practice, the panel width resulting in best
performance depends on the particular computer architecture. It is chosen in practice
via performance tuning (a typical value may be 16 or 32). Instead, we will choose b
here in order to minimize the volume of data movement, as a function of the matrix
dimensions m and n and the fast memory capacity W . We will show that with an
optimally chosen panel width, DGEQRF requires asymptotically more memory traffic
than the lower boundmn2/

√
W for QR factorizations for nearly all matrix dimensions

and fast memory sizes of interest.

A.1. Memory traffic as a function of panel width. We first estimate the
volume of memory traffic for DGEQRF as a function of the panel width b. In section A.2,
we will choose b to minimize memory traffic. In this appendix, we label the number of
floating-point words transferred between slow and fast memory as Words(m,n,W, b).
In our model, this is a function of the matrix dimensions m and n, the fast memory
size W , and the panel width b. In this analysis, we ignore insignificant constant
factors and lower order terms. In particular, we neglect the fact that the panels and
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trailing matrix shrink as the factorization progresses. Since we assume m ≥ n, the
shrinkage reduces memory traffic by no more than half (in the highest order term).
We will estimate Words(m,n,W, b) as a maximum of three terms. The analysis splits
into two cases:

• mb ≤ W (the m× b panel fits in fast memory) and
• mb > W (the m× b panel does not fit in fast memory).

Recall that the implementation of the left-looking out-of-core algorithm mentioned in
section 3.2 and described in detail in [16, Appendix F] requiresmb < W , so the second
case above applies only to DGEQRF. The first case applies to both the out-of-core and
in-core algorithms.

First, suppose that the m × b panel fits in fast memory: mb ≤ W . Then, up to
some small constant factor, the volume of memory traffic is given by

(A.1) Words(m,n,W, b) = max

{
mn,

mn2

√
W

,
mn2

b

}
.

The mn term comes from reading the matrix from slow memory into fast memory,
which is a strict lower bound on memory traffic for the QR factorization (which
depends on all the matrix entries). The mn2/

√
W and mn2/b terms come from two

things:
• the BLAS 3 update of the trailing matrix, at a cost of max{mnb/

√
W ,

mn,mb} words for each update; the total number of updates is n/b, so the
total cost is max{mn2/

√
W,mn2/b,mn};

• the n/b panel factorizations, each of an m× b panel; each panel factorization
costs mb words, for a total cost of mn.

Next, suppose that the m × b panel does not fit in fast memory: mb > W . (We
explained above why the algorithm will still work in this case. This is what distin-
guishes the analysis in this section from the analysis of the left-looking out-of-core
factorization in section 3.2.) Then, up to some small constant factor, the volume of
memory traffic is given by

(A.2) Words(m,n,W, b) = max

{
mnb,

mn2

√
W

,
mn2

b

}
.

The mnb term comes from the n/b panel factorizations, each of which requires the
worst case of mb2 memory accesses. The other two terms come from the n/b updates
of the trailing matrix, at a cost of max{mnb/

√
W,mn,mb} words per update, for a

total cost of max{mn2/
√
W,mn2/b,mn} words. Since mnb > mn/b, we leave out

the mn/b term for equation (A.2).

A.2. Optimal panel width. In this section, we minimize the memory traffic
formulae derived in section A.2. We do so by choosing the panel width b as a function
of the matrix dimensions m and n and the fast memory size W . This means mini-
mizing the one of (A.1) or (A.2) that results in the least memory traffic, depending
on m, n, and W . We find the optimal b by considering five different cases of values
of W :

1. 1 ≤ W < n (not even one row fits in fast memory);
2. n ≤ W < m (at least one row, but not one column, fits in fast memory; recall

that we assume m ≥ n);
3. m ≤ W < m

√
n (at least one column, but less than

√
n columns, fit in fast

memory);
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4. m
√
n ≤ W < mn (at least

√
n columns, but not the whole matrix, fit in fast

memory); and
5. W ≥ mn (the whole matrix fits in fast memory).

The factorization has minimal memory traffic when

(A.3) min
b

Words(m,n,W, b) = max

{
mn,

mn2

√
W

}
.

For each case, we will point out whether it attains this minimum for the best possible
choice of panel width b. We divide the cases into two groups: W < m includes Cases
1 and 2, and W ≥ m includes Cases 3, 4, and 5.

Suppose first that W < m. Then mb > W for any choice of panel width b, and
equation (A.2) applies. To minimize that expression, choose b so mnb = mn2/b, i.e.,
b =

√
n. Thus, minb Words(m,n,W, b) = max{mn3/2,mn2/

√
W}. We can split this

into two cases:
• Case 1 (W < n ≤ m—not even one row fits in fast memory): Choose b =

√
n,

so that minb Words(m,n,W, b) = mn2/
√
W . This attains the desired lower

bound of max{mn,mn2/
√
W} (equation (A.3)).

• Case 2 (n ≤ W < m—at least one row, but not one column, fits in fast
memory): Choose b =

√
n, so that minb Words(m,n,W, b) = mn3/2. This

does not attain the desired lower bound of max{mn,mn2/
√
W}, since n ≤ W .

Now suppose that W ≥ m. One possibility is to choose b as large as possible subject
to mb <= W and b <= n, i.e., b = min{W/m,n}. This yields

(A.4)

min
b

Words(m,n,W, b) = max

{
mn,

mn2

√
W

,
mn2

b

}
= max

{
mn,

mn2

√
W

,
m2n2

W

}
=

m2n2

W
.

We justify the third line of (A.4) as follows. First, comparing mn2/
√
W < m2n2/W

simplifies to W < m2, which is true (since m ≥ n and the matrix does not fit in
fast memory). Second, comparing mn < m2n2/W simplifies to W < mn, which is
also true (since the matrix does not fit in fast memory). Note that m2n2/W is the
memory traffic model for the out-of-core algorithm PFDGEQRF. Allowing b > W/m is
impossible for that algorithm, but possible for DGEQRF. If we do so, then (A.2) applies.
We can divide the analysis into three cases, based on the value of W :

• Case 3 (m ≤ W < m
√
n): Choose b =

√
n > W/m. With that value

of b, minb Words(m,n,W, b) = mn3/2. As in Case 2 above, this does not
attain the desired lower bound ofmn2/

√
W . Note that this case distinguishes

LAPACK’s QR factorization from the out-of-core left-looking factorization
analyzed in section 3.2. There, we require that the panel and at least one
column of the trailing matrix fit in fast memory, which constrains b < W/m.
LAPACK’s QR factorization allows the panel not to fit in fast memory.

• Case 4 (m
√
n ≤ W < mn): Choose b = W/m. This means (A.4) applies.

Since W < mn, m2n2/W > mn. Since W ≥ m
√
n, mn2/

√
W ≥ m2n5/2 ≥

mn. Finally, (m2n2/W )/(mn2/
√
W ) = m/

√
W , and since m

√
n ≤ W ,

m/
√
W ≥ m1/2/n1/4 ≥ 1 (since we assume m ≥ n). Thus, the memory

traffic is given by minb Words(m,n,W, b) = m2n2/W , which exceeds the de-
sired lower bound by a factor of m/

√
W ≥ m1/2/n1/4 ≥ m1/4.
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• Case 5 (mn ≤ W ): Choose b = n, so that minb Words(m,n,W, b) = mn. This
attains the desired lower bound, which is easy to see because in this case, the
matrix fits entirely in fast memory. For this case, the optimal block size is
b = n, meaning that the ordinary Householder (BLAS 2) QR factorization
suffices for minimal memory traffic.

In summary, the LAPACK QR factorization requires asymptotically more mem-
ory traffic than the lower bound, when at least one row fits in fast memory, but the
whole matrix does not fit in fast memory. The worst case is the the boundary between
Cases 3 and 4, namely, when W = m

√
n. There, minb Words(m,n,W, b) = mn3/2,

which exceeds the lower bound mn2/
√
W by a factor of

√
W/n when at least one row

of the matrix fits in fast memory.
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