A NOTE ON THE COLUMN ELIMINATION TREE
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Abstract. This short communication considers the LU factorization with partial pivoting and
shows that an all-at-once result is possible for the structure prediction of the column dependencies in
L and U. Specifically, we prove that for every square strong Hall matrix A there exists a permutation
P such that every edge of its column elimination tree corresponds to a symbolic nonzero in the upper
triangular factor U. In the symbolic sense, this resolves a conjecture of Gilbert and Ng [6].
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1. Introduction. Sparsity in matrix computations offers opportunities to save
memory space by storing only non-zero elements, shorten execution times by eliminat-
ing computations on zeros and exploit parallelism exposed by independent non-zero
structures. Exploiting these opportunities often relies on a symbolic computation
phase that predicts as accurately as possible which elements will have or can have
nonzero values during the numerical computation itself, based only on the nonzero
structure of the input matrix.

In LU factorization with partial pivoting, a square matrix A is factored as PA =
LU, where P is a permutation matrix that depends on the values of the nonzeros
of A and cannot be predicted only from the nonzero structure of A. Two structure
prediction questions have been studied for this problem. The first is to predict bounds
on the nonzero structure of the factors L and U. The second is to predict which
columns of L and U depend directly or indirectly on which earlier columns. We
restrict our attention to the class of matrices that satisfy an irreducibility condition
called the strong Hall property.

George and Ng [4] developed upper bounds on the nonzero structure of L and U
by employing a row merge graph. Gilbert and Ng [6] showed that this upper bound is
as tight as possible in what they called “the exact sense.” This means that, given the
nonzero structure of a strong Hall matrix, for every edge in the row merge graph there
is a choice of values for the nonzeros of A and a pivoting permutation P such that
the corresponding element of L or U is nonzero. This is a one-at-a-time result [6]:
any single position in the predicted structure can be made nonzero, but it may be the
case that no single choice of nonzero values makes all the predicted elements nonzero
at once.

The column elimination tree is a tree whose vertices are the columns of A, and
whose edges correspond to potential dependencies between columns (a complete defi-
nition is below.) Gilbert and Ng [6] showed that if & is the parent of j in the column
elimination tree of a strong Hall matrix A, there exists a choice of nonzero values
of A that will make column j update column k during factorization with partial
pivoting—that is, a choice of nonzero values for A that will make u;; # 0. This is
again a one-at-a-time result.
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A stronger statement would be an all-at-once result, showing that all the pre-
dicted positions can be made nonzero for the same input values. Unlike the case of
sparse QR factorization, no tight all-at-once prediction is possible for the structure
of L and U. The purpose of this short communication is to show that if we consider
only the edges of the column elimination tree, an all-at-once result is possible in the
symbolic sense. We prove that for every square strong Hall matrix A, there exists a
permutation P such that every edge of the column elimination tree corresponds to a
symbolic nonzero in the upper triangular factor U of A with partial pivoting. This
resolves a variant of a conjecture of Gilbert and Ng [6].

Our result is symbolic in the sense that we assume that addition or subtraction of
nonzeros always yields a nonzero result. Gilbert and Ng [6] also consider what they
call exact results; we discuss this further in the conclusion.

A motivation for the current result is its impact on solvers that use the column
elimination tree to model factorization in parallel. In solvers like the one described by
Gilbert [5] and in the shared memory version of SuperLU [3], the tasks are scheduled
dynamically on processors by using the precedence given by the column elimination
tree. Our result shows that, in fact, for every strong Hall nonzero structure there is a
matrix for which every dependency in the column elimination tree is a real constraint
on the order of computation of the columns of the factor.

The next section presents background results and notation used in the paper. Sec-
tion 3 introduces new results on the structure of the matrix during elimination. These
results help to prove the all-at-once structure prediction of the column elimination
tree. Section 4 concludes the paper.

2. Background. Let A = (a,.) be a square, possibly unsymmetric, sparse n x n
matrix which is to be factored as PA = LU using partial pivoting.

In the following we introduce the commonly used tree and graph structures, the
strong Hall property, a previously published theorem and lemma that will subse-
quently be used in our proofs. Most of our notation is similar or identical to that of
Gilbert and Ng [6].

The column intersection graph Gn(A) is undirected and has n vertices (one for
each column) and an edge (¢, j) if there is an » such that a,; # 0 and a,; # 0. This
graph is equal to the graph of AT A, unless there is numerical cancellation; in general
G(AT A) C Ga(A).

The directed graph G(A) has n vertices and an edge (¢, j) for each nonzero element
a;j. The bipartite graph H(A) has 2n vertices (one for each row and one for each
column) and an edge (7', ¢) whenever a,. is nonzero. In the bipartite graph, we use
primes on the names of row vertices. For any graph G and vertex v, we write Adj(v, G)
to represent the set of vertices w such that (v, w) is an edge of G.

The elimination tree structure (etree) was first introduced for the Cholesky factor-
ization of symmetric positive definite (SPD) matrices [8]. If L is the Cholesky factor
of the SPD matrix A, then this tree has n vertices, and k is the parent of j if and
only if £ = min{r > j : [,; # 0}. Later the elimination tree was adapted to the LU
factorization with partial pivoting [5]; the column eliminaiion iree is the elimination
tree of the column intersection graph Gn(A), or equivalently the elimination tree of
AT A if there is no numerical cancellation when computing or factoring A7 A.

A strong Hall graph is a bipartite graph with m rows and n columns that has the
strong Hall property [2, 6]: every set of k column vertices is adjacent to at least k + 1
row vertices, for all 1 < k < n. A square matrix has the strong Hall property if and
only if it is a fully indecomposable matriz, that is, there are no two permutations P
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and @ such that PAQ is block triangular.

Before introducing the necessary theorem and lemma, let us elaborate on an
additional definition, that of a sequence of bipartite graphs which model the structure
of L and U during the elimination. Let Hy = H(A) be the bipartite graph of A.
Suppose a,. is nonzero and is chosen as pivot at step 1. The deficiency of the edge
(', ¢) of Hy is defined as the set of edges

{(/',j): c€ Adj(i', Hy),j € Adj(r', Hy), and j ¢ Adj(i’, Ho)}

It corresponds to the zero elements of A that become nonzero when a,. is used as a
pivot in Gaussian elimination.

Knowing the sequence of pivoting elements (v}, ¢1),(rh, ¢2), ..., (r,_1, cn-1), We
can construct a sequence of bipartite graphs Hy, H1, ..., H,, where H; describes the

structure of the (n—1¢) x (n—%) Schur complement remaining after step ¢. The bipartite
graph H; of the (n — ¢) x (n — 1) submatrix that remains after eliminating (v}, ¢;) is
obtained as follows: delete from H;_; vertices r; and ¢; and all edges incident to them,
then add the edges in the deficiency of (7, ¢;). The bipartite filled graph H*(A) is
the bipartite graph containing all the edges of all H;.

If the diagonal elements of A are nonzero, and the pivots are chosen in the order
(1',1), (2,2),...,(n',n), then we write G*(A) for the filled graph of A, which is
obtained from H*(A) by merging each row vertex v’ with its corresponding column
vertex v. The filled column intersection graph G7 (A) is the filled graph of the column
intersection graph of A, that is, G (Gn(A)). If Hy is the bipartite graph of A, then
Gn(Hy) is equivalent to Gn(A) (GE(Hp) is equivalent to G (A)).

With these definitions at hand we now mention two results on which ours is based.

THEOREM 2.1 (Gilbert and Ng [6]). Let Hq be a bipartite graph and let (v, c) be
an edge of Hy. Let Hy be the bipartite graph resulting from the elimination of edge
(r',¢). If Hy has the strong Hall property, then Hy also has the strong Hall property.

For the following lemma (called the fill path lemma), a path is a sequence of edges
P = [(vo,v1),(v1,v2),...,(vp=1,vp)] = [vo,v1,...,vp] in which all the vertices are
distinct. The length of this path P is p.

LEMMA 2.2 (Rose, Tarjan and Lueker [7]). Let G be a directed or undirected graph
whose vertices are the integers 1 through n, and let Gt be its filled graph. Then (z,y)
is an edge of G if and only if there is a path in G from x to y whose intermediate
vertices are all smaller than min(z,y).

We conclude this section by presenting several previous results, outlining the role
of the different graphs, introduced here, in the structure prediction of L and U. If
the matrix A can be factored without row or column interchanges, then G(L + U) is
equal to Gt (A) unless numerical cancellation occurs.

If pivoting is necessary during the Gaussian elimination, then only upper bounds
on the structures of L. and U can be predicted. The filled column intersection graph
of A represents such an upper bound: G(U) C Gt (A), and a slightly different rep-
resentation of I is also a subgraph of G (A). Thus the graph G} (A) contains an
edge for each element of I and U that can possibly be nonzero during the numerical
computation. If the matrix A has the strong Hall property, then the filled column
intersection graph is a tight exact bound for the nonzero structure of U [6].

3. Structure prediction and the column elimination tree.

3.1. An example. The elimination tree plays an important role in the parallel
sparse Cholesky factorization of symmetric positive definite matrices. This tree de-
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scribes all the dependencies between column computations, and it represents the task
scheduling model of almost all parallel sparse Cholesky solvers.

In the LU factorization with partial pivoting, the column elimination tree pre-
dicts all potential dependencies between columns, and hence it can be used as a task
scheduling model in the unsymmetric case. For example, in the shared memory ver-
sion of SuperLU [3] this tree helps identifying two levels of parallelism in the LU
factorization with partial pivoting. As described in [3], a first level of parallelism
exploits the property that computations in disjoint subtrees are independent thus
leading to assigning disjoint subtrees to different processors; a second level of paral-
lelism sequences in a pipelining manner the computation of dependent columns in a
subtree. This level is especially useful in the superior part of the tree, where there
are more idle processors than disjoint subtrees.

The nonzero structure of U cannot be, in general, exactly determined prior to
the numerical factorization, and thus the column elimination tree can overestimate
the real column dependencies. Consider for example the strong Hall matrix A in
figure 3.1 with its bipartite graph Hy, the filled column intersection graph GK(HO)
and its column elimination tree.
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Fi1G. 3.1. Matriz example A, the bipartite graph Hy, the filled column intersection graph Gl-—l; (Ho)
and its column elimination tree. The dotted lines in the filled column intersection graph Gl-—l; (Ho)
represent fill-in.

Suppose that at the first elimination step the diagonal element is used as pivot.
This means that the element w3 1s zero and there is no dependency between the
computations of columns 1 and 3. In other words, the dependency between the nodes
1 and 3 in the column elimination tree of A corresponds to an overestimation of the
real dependencies.

Let us now analyze the later stages of the elimination. Consider the matrix P; A
in figure 3.2 (P; describes the first elimination step), the bipartite graph H; resulting
from the elimination of edge (1’,1), followed by its filled column intersection graph
Gﬁ(Hl) and the corresponding column elimination tree.

We note that while the edge (3,4) is present in the filled column intersection
graph of Hy, it does not belong to the filled column intersection graph of Hi, and
thus the structures of these two graphs are different. Hence, in general the graph
G%*(H,) cannot be simply obtained by deleting the vertex 1 and its incident edges
from the graph G (H).

As a consequence, the structure of the column elimination trees related to the
elimination graphs H; can change from one elimination step to another. In our ex-
ample, after the first step of elimination there is no potential dependency between
the computations of columns 3 and 4, and thus the edge (3,4) is not present in the
column elimination tree of Hy, and is replaced by the edge (3,5).
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F1G. 3.2. Matrizv PiA (including the deficiency of (1',1) represented by o), the bipartite graph
Hjy, the filled column intersection graph Gl-—l; (H1) and its column elimination tree.

This simple example shows that the column elimination tree may overestimate
the dependencies between columns. However, it has been shown that for a strong Hall
matrix, this is the tightest information we can obtain before the numerical factoriza-
tion of A. In other words, for each edge of the column elimination tree, there exists
a choice of numerical values of A such that this edge corresponds to a real column
dependency.

3.2. Main result. In this section we prove the main result of the paper, which is
that every strong Hall nonzero pattern admits a pivoting permutation for which every
edge of the column elimination tree corresponds to a symbolic column dependency.
We first prove a lemma saying that there is a choice of pivot element such that the
first elimination step creates the correct dependency (corresponding to an edge in the
column elimination tree) for the first column and also does not change the structure
of the filled column intersection graph. The lemma essentially says that (with this
pivoting order) we never learn anything more about the uncomputed rows of U than
we knew from G} at the beginning. We then prove the main theorem by induction.

We make two observations about symbolic elimination. First, the fact that  + 1
is the least-valued vertex in H; implies that there is no fill-in edge having i + 1 as an
endpoint. This gives us

(3.1)  Adj(i +1,Gr(H;)) = Adj(i + 1,Gn(H))
: ={v:i+1eAdj(t', H;) and v € Adj(t', H;)}.

Second, the fill path lemma implies that the vertices in the set {i + 1} U Adj(i +
1,G#(H;)) form a complete subgraph.

The next lemma shows that when we pivot on an element that is not the only
element in its column, enough fill is added to preserve the structure of the filled column
intersection graph. For each vertex i, we denote its parent in the column elimination
tree by parent[i]; by definition this is min{j > i : j € Adj(i, G} (Ho))}.

LEMMA 3.1. Let Hy be the structure of a square matriz A with at least two
nonzero elements in column 1. Let Py be the permutation matriz that interchanges
row v with row 1 such that the edge (1,parent[l]) of the elimination tree of Gn(A)
corresponds to a nonzero in the upper triangular factor U. If Hy is the bipartite graph
resulting from the elimination of edge (v, 1), then the filled column intersection graph
of Hy is obtained from the filled column intersection graph of Hq just by deleting vertex
1 and its incident edges. That is,

(3:3) G (H1) = G (Ho) — {1}
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Proof. We will prove that the deficiency set of (7', 1) introduces all the edges and
preserves all the paths that can disappear by the deletion of row ' and column 1,
while constructing the graph H;. We will also show that this deficiency set does not
introduce new edges or new fill paths in Gt (H;) compared to G (Ho).

Let us analyze what happens when adding the deficiency of (r/,1). Let S =
Adj(1, Hy) be the set of row indices of nonzeros in column 1. From the lemma state-
ment, recall that column 1 is adjacent to at least two row vertices, so that r’ is not
the only element in set S.

By using the definition of the deficiency of (', 1), for each ¢’ € S such that ¢’ # '
and for each edge v # 1 adjacent to v’ in Hg, we see that v belongs to Adj(t', Hy).
For each two vertices v1,vs € Adj(t', H1), by using the definition of the column
intersection graph, we see that (v, vs) is an edge of Gn(Hy).

Let us make an analysis depending on the origin of vertices vy, vs. First, if vy, v
are adjacent to v’ in Hy, (that is v1,vs € Adj(r’, Hy)) the fact that (vy, ve) is an edge
of Gn(H1) proves that the deletion of the row 7’ does not change the structure of
Gn(H1) compared to the structure of Gn(Hy).

Second, if v1 € Adj(r', Hy) and ve € Adj(t', Hy), then vy and vy are both adjacent
to 1in the column intersection graph of Hy, so v1,v2 € Adj(1, Gn(Hy)). By using the
observation at the beginning of this section, we see that (v1,vs) belongs to G (Hy).
This proves that the deficiency set does not introduce new edges in G} (Hy).

Using this analysis of edges introduced in H;, we can easily check that

(3.4)  Adj(1,Gna(Ho)) — {v} C Adj(v, Gn(H1)), Yo € Adj(r', Ho), v # 1.

Suppose that [z1,...,z,], r > 2 is a fill path in G&(H,) and has 1 as an in-
termediate vertex. This means that zy < min{zq,z,} forall k = 2,...,r — 1, and
the edge (21, z,) belongs to G (Hy). Suppose that z; = 1,k > 1,k < r. By using
relation (3.4), we see that zp_1, z541 € Adj(parent[l], Gn(H1)). If 21 = parent[1]
or z41 = parent[l], it is evident that the fill path is preserved, since we can suppress
1 from the path while preserving adjacency in the path. Otherwise, vertex 1 can be
replaced by parent[1] in the path [z1,...,2t—1, parent[l], gy1, ..., 2z,]. By using the
definition of the column etree, we see that z;_1, 2541 > parent[l], and this shows that
[£1,...,2,] is a fill path in G{(H;). This proves that all the fill paths are preserved

in Gt (H1) and no new fill path is introduced. O
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Fi1G. 3.3. Matriz ezample A, the bipartite graph Hy, the filled column intersection graph Gl-—l; (Ho)
and its column elimination tree. The dotted lines in the filled column intersection graph Gl-—l; (Ho)
represent fill-in.
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Figure 3.3 shows a matrix example A, its bipartite graph Hy, followed by the
filled column intersection graph G (Ho) with its column elimination tree. Figure 3.4
presents the permuted matrix P; A, the bipartite graph H; with its filled column
intersection graph G#(H;) and the corresponding column elimination tree.
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Fi1G. 3.4. Matrizv Pi A (including the deficiency of (4',1) represented by o), the bipartite graph
Hjy, the filled column intersection graph Gl-—l; (H1) and its column elimination tree.

Consider the elimination of edge (4',1) in matrix example A, figure 3.3. The
vertices 3 and 7 are adjacent to 4’ in the bipartite graph Hg. Deleting the row 4’ has
as consequence that the edge (3, 7) dissapears from G# (H;). By adding the deficiency
of (4/,1), the edge (3,7) is introduced in G} (H1) due to row vertex 2. Now consider
the vertex 3 adjacent to vertex 4’ and the vertex 5 adjacent to vertex 2’ in the bipartite
graph Hg. By the permutation of row 4’ with row 1’, the edge (3,5) is introduced
in the filled column intersection graph G (H;). However, we remark that (3,5) was
already present in the filled column intersection graph Gt (Hp). Finally, we consider
the fill path [5 1 3 6] in G (H,) which is preserved in G{t(H;) in a compact form
[53 6].

The next theorem is the main result of this paper. It proves the conjecture of
Gilbert and Ng [6] in the symbolic sense, that is, if we assume that zeros are introduced
only by explicit elimination and not by cancellation.

THEOREM 3.2. Let A be an unsymmetric square sparse mairiz having the strong
Hall property. There 1s a permutation P such that every edge of the elimination tree
of Gn(A) corresponds to a nonzero in the upper triangular factor U in symbolic sense,
when the factorization PA = LU 1s computed.

Proof. We will prove this by induction. Let Hy = H(A) be the bipartite graph of
A.

Initial phase. We show that there exists a permutation P; such that the element
U1 parens[1] 1S NONZETO.

Using relation (3.1), we see that (1, parent[l]) belongs to Gn(Hg). There exists
a row vertex r} such that (r{,1) and (7], parent[1]) are edges of Hy. We choose r{
as pivot, and P; describes this permutation. Row 1 is interchanged with row r{;
therefore the element u; parens[1] is nonzero.

Induction phase (m — 1 — m). We suppose that there is a sequence of permuta-
tions Pp_1,..., Py such that for all k =1...m — 1, ug parens(s] is nonzero. We show
that there is a permutation P, such that the element uy, parentm] is nonzero.

According to Theorem 2.1, at each elimination step k, the bipartite graph Hy, is
strong Hall because Hy_; is. In particular, this means that at each elimination step
we have at least two elements as choices to pivot on (column vertex k is adjacent to
at least two row vertices in the graph Hy_1).
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Therefore, Lemma 3.1 applies, and says that at each elimination step k, the
structure of the filled column intersection graph is preserved

(3.5) GE(Hy) = GE(Hp_y) — {k} 1<k <m.

This relation shows that the induction hypothesis has as direct consequence that
the structure of the filled column intersection graph was preserved until this step m of
elimination. We can deduce that (m, parent[m]) belongs to G (H,,—1). Even more,
relation (3.1) says that this edge belongs to Gn(Hm-1).

Thus, there is some vertex r. such that (r/,,m) and (r/,, parent[m]) are edges of
Hp,—1. We choose 7}, as pivot, and let P, describe this permutation. The permuta-
tion of the row m with the row r], will make the element w,, parentjm] be nonzero.

Let P = P,_1,..., P, be the permutation matrix that includes the n — 1 row
interchanges. We have proved that every edge of the column elimination tree corre-
sponds to a symbolic nonzero in the upper triangular factor U, when the factorization
PA = LU is computed with partial pivoting. O

4. Concluding remarks. The main result of this paper is Theorem 3.2, which
gives an all-at-once structure prediction result, under the assumption that the matrix
A is strong Hall. In the proof, we showed that if at each elimination step k the
element uy parent[z] is nonzero, the structure of the filled column intersection graph
is preserved during the elimination. One way to interpret this result is that (for a
strong Hall matrix) there is a pivot sequence for which the only information about
the structure of U exposed by each elimination step is the single newly computed row.
In other words, the elimination does not give progressively more partial information
about the uncomputed rows of U/ than was available from G# at the beginning.

We remark that, in the proof of Theorem 3.2, the strong Hall property was used
in only one place for each elimination step. We used the strong Hall property to
conclude that at each step (except the last), there is always a choice of at least two
elements to pivot on. One could ask whether the strong Hall property is necessary as
well as sufficient for this.

Our result is symbolic, in the sense that we assume that during Gaussian elimina-
tion the result of adding or subtracting two nonzeros is never zero. A stronger result
would be what Gilbert and Ng [6] called ezact, which would assume only that the
nonzero values in A were algebraically independent from each other; in other words,
it would assume that any computed zeros were due to combinatorial properties of the
nonzero structure rather than to coincidence in choice of values. We do not know
whether the exact version of our main theorem holds or not, though we conjecture
that it does. An exact version holds, for example, for the class of strong Hall matrices
with exactly two nonzeros in every row and every column, because every elimination
step creates exactly one new nonzero and that nonzero is algebraically independent
of the other remaining nonzeros.

We conclude by mentioning an open problem: what is the case for non strong
Hall matrices, either for the elimination tree or for the structures of L and U? In this
case, it is known that G (A) may not be a tight bound for U. Is there a tight bound
on U? If so, does it share the property that there is no new information revealed
during the elimination except the structure of the current row of U?

Acknowledgments. The authors thank the anonymous reviewers for their help-
ful comments and suggestions to improve the presentation of the paper.
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