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ABSTRACT
Previous work has shown that a lower bound on the num-
ber of words moved between large, slow memory and small,
fast memory of size M by any conventional (non-Strassen
like) direct linear algebra algorithm (matrix multiply, the

LU, Cholesky, QR factorizations, . . . ) is Ω(#flops/
p

(M)).
This holds for dense or sparse matrices. There are analogous
lower bounds for the number of messages, and for parallel
algorithms instead of sequential algorithms.

Our goal here is to find algorithms that attain these lower
bounds on interesting classes of sparse matrices. We focus
on matrices for which there is a lower bound on the number
of flops of their Cholesky factorization. Our Cholesky lower
bounds on communication hold for any possible ordering of
the rows and columns of the matrix, and so are globally op-
timal in this sense. For matrices arising from discretization
on two dimensional and three dimensional regular grids, we
discuss sequential and parallel algorithms that are optimal in
terms of communication. The algorithms turn out to require
combining previously known sparse and dense Cholesky al-
gorithms in simple ways.

Categories and Subject Descriptors: F.2.1 [Theory of
Computation]: Analysis of Algorithms and Problem Com-
plexity - Numerical Algorithms and Problems, Computa-
tions on matrices

General Terms: Algorithms

Keywords: communication bounds, sparse Cholesky

1. INTRODUCTION
Recent research has raised an increasing interest on iden-

tifying lower bounds on communication for operations in lin-
ear algebra and algorithms that attain them. This research
started with results from [10, 11] that show that a lower
bound on the volume of communication (bandwidth) for

computing the product of two dense matrices is Ω(W/M1/2)
and a lower bound on the number of messages transferred
(latency) is Ω(W/M3/2), where W is the number of flops and
M is the fast memory size in the case of a sequential algo-
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rithm and the local memory size in the case of a parallel al-
gorithm. Here communication refers to the data transferred
between large, slow memory and fast, small memory for a
sequential algorithm, and to the data transferred between
processors for a parallel algorithm. It has been shown that
the same bound applies to LU factorization [4], Cholesky
factorization [2], and other operations in linear algebra and
their sparse implementations in [3]. Some of the algorithms
in the literature attain the bounds, as the block algorithm
and Cannon algorithm for sequential and parallel matrix
multiplication. For QR and LU factorizations, new optimal
algorithms have been designed [4, 8] that show significant
speedups in practice.

In this paper we derive bounds on communication for
sparse Cholesky factorization A = LLT . We focus our anal-
ysis on matrices whose graphs satisfy a property, from which
a lower bound on the number of flops of the Cholesky factor-
ization can be derived [12]. This includes matrices arising
from the discretization of PDEs (in particular using a finite
difference operator) on regular grids of dimension ks. The
graphs of these matrices have good separators, and in this
case the Cholesky factors L are sparse and the Cholesky
factorization can be performed efficiently. In contrast, the
Cholesky factors of matrices whose graphs don’t have good
separators are almost dense, and so the Cholesky factoriza-
tion costs almost as much as the dense case. Lipton et al.
show that almost all graphs don’t have good separators [12].

For two dimensional (2D) and three dimensional (3D) reg-
ular grids, we describe a sequential algorithm and we iden-
tify that the parallel algorithm implemented in PSPASES [9]
(when using an optimal layout) attain the lower bounds on
communication. Both algorithms use nested dissection to
order the input matrix [6].

2. SPARSE CHOLESKY FACTORIZATION
In this section we derive lower bounds on communication

for matrices whose graphs satisfy a property that we de-
scribe in the following. Let A be a symmetric matrix of size
n × n. Its undirected graph, denoted G = (V, E), has a
vertex i ∈ V for each row and column of A, and an edge
(i, j) ∈ E for each nonzero symmetric off-diagonal element
Aij = Aji. We consider in this paper a matrix whose graph
has the following property for some l: every set of vertices
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W ⊂ V such that n/3 ≤ |W | ≤ 2n/3, is adjacent to at least
l vertices in V − W . Here |W | denotes the cardinality of
W . Then Lemma 2 and Theorem 10 in [12] show that for
any ordering of A, its Cholesky factor contains a dense lower
triangular matrix of size l × l . This property can be used
to compute a lower bound on the number of flops performed
in the Cholesky factorization, independent of any reorder-
ing of the input matrix. These results can be applied to
matrices resulting from a finite difference operator on regu-
lar grids [12], that is matrices whose graphs are defined on
a k × k × . . . × k (s times) mesh of ks points, where each
point is connected to its nearest neighbours (points on the
boundary have fewer neighbours). In this particular case,
similar results are also derived in [5].

Theorem 1. Consider the Cholesky factorization LLT of

an n × n symmetric matrix A whose undirected graph G =
(V, E) has the following property for some l: every set of

vertices W ⊂ V with n/3 ≤ |W | ≤ 2n/3 is adjacent to at

least l vertices in V −W . A lower bound on communication

for computing the Cholesky factorization of A is

#words ≥ Ω

„

W√
M

«

, #messages ≥ Ω

„

W

M3/2

«

For a sequential algorithm, W = l3 and M is the fast mem-

ory size. For a parallel algorithm executed on P processors

that is work-balanced, W = l3

P
. We assume that the ma-

trix and the L factor are distributed evenly over all the pro-

cessors and the local memory size used is estimated to be

M = Θ(nnz(L)/P ).

Proof. Lemma 2 in [12] says that the graph of the Cholesky
factor L contains a clique of at least l vertices. This means
that L contains a dense lower triangular matrix Ls of size
l × l. Theorem 10 in [12] uses this result to derive a lower
bound on the number of floating point operations of the
Cholesky factorization of l(l − 1)(l − 4)/6.

The lower bounds on communication developed in [2, 3]
provide a lower bound on communication for the computa-
tion of Ls, and hence a lower bound for the Cholesky fac-
torization of the entire matrix A. This leads to the commu-
nication bounds in the theorem.

For a regular grid of dimension ks, with n = ks, l = Θ(n(s−1)/s).
For 2D and 3D regular grids, the lower bounds derived from
Theorem 1 are presented in Table 1 for the parallel case and
Table 2 for the sequential case. We note that [3] presents
also the lower bound for the 2D case. However our results
apply to a larger class of graphs and in particular to regular
grids of higher dimension. Nested dissection is an optimal
ordering for the grid [6], and consists of partitioning the as-
sociated undirected graph of the sparse symmetric matrix
using a divide-and-conquer paradigm. The nested dissec-
tion method is based on finding a small vertex separator, S,
that partitions the graph into two disconnected subgraphs.
The rows and columns associated with the vertices of the
disconnected subgraphs are ordered first, followed by those
corresponding to the vertices of the separator S. The per-
muted matrix PAP T has the form

0

@

A11 0 A13

0 A22 A23

AT
13 AT

23 A33

1

A .

The partitioning can then be applied recursively on the sub-
graphs corresponding to the submatrices A11 and A22. The

partitioning defines a binary tree structure, called the sepa-
rator tree. Each node of this tree corresponds to a separator.
The root of the tree corresponds to the separator from the
first level partitioning.

In the following we briefly analyze sequential and parallel
algorithms that attain the communication bounds. Detailed
performance counts for these algorithms will be presented
in an extended version of this paper. Our analysis consid-
ers that nested dissection uses + separators. That is, in
the case of 2D grids, a separator partitions a square grid
into four square subgrids. In the case of 3D grids, a sepa-
rator formed by three orthogonal planes partitions the grid
into eight subgrids. We discuss multifrontal methods, that
compute the Cholesky factorization by using the separator
tree. We give a brief description here. Each node in the
separator has associated a frontal matrix. This matrix is
formed by the vertices of the separator and the vertices that
correspond to columns modified by the vertices of the sep-
arator. The Cholesky factorization is performed during a
bottom-up traversal of the separator tree. At each node of
the tree, a number of steps equal to the size of the separa-
tor of Cholesky factorization is performed on the associated
frontal matrix. Then, the update matrix is transmitted to
the parent node. At the parent node, the update matrices
are merged through extend-add operations to form a frontal
matrix. And then the factorization continues on this new
frontal matrix.

The parallel algorithm implemented in PSPASES is based
on a multifrontal method and uses the separator tree to dis-
tribute the input matrix over the processors using a cyclic
approach and a subtree to subcube mapping [7]. This algo-
rithm maps nodes to processors during a top-down traversal
of the separator tree. It starts by assigning all the P proces-
sors to the root. Then it assigns (recursively) P/4 processors
to each of the four subtrees of the root. The frontal matrix
is distributed among those processors using a 2D cyclic dis-
tribution. The communication complexity of the algorithm
is analyzed in [9], and we display it in Table 1. With an ap-
propriate layout as described in [9], the merge of the update
matrices has a low communication cost. Hence the commu-
nication in the Cholesky factorization of the frontal matrices
associated with nodes in the separator tree dominates the
overall communication. PSPASES attains the lower bound

PSPASES PSPASES with Lower bound
optimal layout Thm. 1

2D grids

# flops O
“

n3/2

P

”

O
“

n3/2

P

”

O
“

n3/2

P

”

# words O( n
√

P
) O

“

n
√

P
log P

”

Ω
“

n
√

P log n

”

# messages O(
√

n) O
“√

P log3 P
”

Ω

„

√

P

(log n)3/2

«

3D grids

# flops O
“

n2

P

”

O
“

n2

P

”

O
“

n2

P

”

# words O( n4/3
√

P
) O

“

n4/3
√

P
log P

”

Ω
“

n4/3
√

P

”

# messages O(n2/3) O
“√

P log3 P
”

Ω
“√

P
”

Table 1: Performance of PSPASES, PSPASES with optimal

layout and lower bounds on communication when factoring

an n×n matrix resulting from 2D and 3D regular grids. Some

lower order terms are omitted. The analysis assumes the local

memory of each processor is M = O(n log n/P ) in the 2D case

and M = O(n4/3/P ) in the 3D case.

on bandwidth, but not on latency, as displayed in Table 1.
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This is due to the fact that the analysis of PSPASES uses a
cyclic distribution, and this involves the exchange of a mes-
sage for each step of Cholesky factorization. A block cyclic
distribution will decrease the latency but will still not allow
to attain the lower bound. To attain the lower bound on la-
tency an optimal layout needs to be used. We use the same
approach as in [4] in which the matrix is distributed in a two
dimensional block cyclic layout using square blocks of size
b × b and letting b be close to its maximal value. In other
words, we consider that the factorization of each frontal ma-
trix is performed using a ScaLAPACK-like algorithm with
an optimal layout. This leads to performance results pre-
sented in Table 1, which show that with an optimal layout,
PSPASES attains the latency and bandwidth lower bounds,
modulo polylog factors. The number of floating point oper-
ations is optimal, modulo constant factors.

We discuss now an optimal algorithm for sequentially com-
puting the Cholesky factorization of matrices arising from
2D and 3D regular grids. The analysis is performed in a big
O sense. The algorithm considers that the input matrix has
been ordered using nested dissection based on + separators
and uses a multifrontal Cholesky factorization. The algo-
rithm computes the factorization during a postorder traver-
sal of the separator tree. At each node of the tree, the fac-
torization consists of two main steps. The update matrices
of its child nodes are read from slow memory and merged
through an extend-add operation to form the frontal matrix
of this node. The postorder traversal ensures that the up-
date matrices can be stored on a stack. Then a number of
steps of Cholesky factorization are performed on this frontal
matrix. The update matrix is then stored on slow mem-
ory, such that the parent node can use it. For the partial

Problem Optimal Cholesky Lower bound

# flops O
“

n3/2
”

O
“

n3/2
”

2D grids # words O
“

n3/2
√

M
+ n log n

”

Ω
“

n3/2
√

M

”

# messages O
“

n3/2

M3/2
+ n log n

M

”

Ω
“

n3/2

M3/2

”

# flops O
`

n2
´

O
`

n2
´

3D grids # words O
“

n2
√

M
+ n4/3

”

Ω
“

n2
√

M

”

# messages O
“

n2

M3/2
+ n4/3

M

”

Ω
“

n2

M3/2

”

Table 2: Performance of optimal sequential multifrontal

Cholesky factorization when factoring an n × n matrix re-

sulting from 2D and 3D regular grids. The lower bounds on

communication are also presented, and M is the fast memory

size. The analysis assumes M = O(
√

n) in the 2D case and

M = O(n2/3) in the 3D case.

Cholesky factorization of each frontal matrix, the algorithm
uses a recursive Cholesky factorization algorithm. This algo-
rithm presented in [1] has been shown to be optimal through
multiple levels of memory hierarchy with an appropriate re-
cursive block storage [2], where each block fits in the fast
memory of size M . The communication necessary to copy
a dense matrix of size n × n stored in column major or row
major order into a block format is asymptotically equal to
the communication necessary to perform the Cholesky fac-
torization of this matrix given M = O(n) [2]. We assume
this or a smaller bound in our analysis, depending on the
size of the frontal matrix. The reads and writes between
different levels of memory occur at two different phases of
the algorithm, when the partial Cholesky factorization of a
frontal matrix is computed, and when the update matrices

are merged to form a frontal matrix. The upper bounds
on communication of this optimal Cholesky algorithm, pre-
sented in Table 2, attain the lower bounds of Theorem 1.

3. CONCLUSIONS
In this paper we have discussed bounds on communication

for sparse Cholesky factorization of a certain class of ma-
trices, that includes matrices resulting from regular grids.
The approach used here to derive optimal algorithms can
be used for other classes of graphs with good separators as
well. Consider the case when the computation and commu-
nication to factor the submatrix formed by the vertices of
the first separator dominates the overall communication and
computation. Then an optimal algorithm can be derived by
using an optimal dense algorithm to factor the submatrix
formed by the vertices of the separator.

We do not discuss other approaches as right-looking or
left-looking. It is possible that a right looking factorization
with an appropriate optimal layout that takes into account
the sparsity of the input matrix might be optimal. This
remains as future work.
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