Towards an Accurate Performance Modeling of Parallel Sparse
Factorization

Laura Grigori Xiaoye S. Li
March 9, 2007

Abstract

We present a simulation-based performance model to analyze a parallel sparse LU factoriza-
tion algorithm on modern cached-based, high-end parallel architectures. We consider supernodal
right-looking parallel factorization on a bi-dimensional grid of processors, that uses static piv-
oting. Our model characterizes the algorithmic behavior by taking into account the underlying
processor speed, memory system performance, as well as the interconnect speed. The model is
validated using the implementation in the SuperLU_DIST linear system solver, the sparse matri-
ces from real application, and an IBM POWERS parallel machine. Our modeling methodology
can be adapted to study performance of other types of sparse factorizations, such as Cholesky
or QR, and on different parallel machines.

1 Introduction

Finding the solution of sparse linear systems of equations by a direct method is at the heart of
many scientific and engineering applications and its performance has an important impact on the
application’s overall performance. There has been much research dedicated to efficient parallel
implementation of the sparse LU factorization. Although the factorization has been made more
and more scalable, loss of performance is often observed with increasing number of processors, and
more so with very sparse and unsymmetric problems. It is difficult to predict the performance of a
parallel sparse factorization, which largely depends on the sparsity of the matrix, and the sparsity
patterns vary with applications. Several analytical results exist in the literature [3, 8, 12], which
were obtained for particular classes of matrices arising from the discretization of certain PDEs.

In our previous work we considered a supernodal right-looking parallel factorization on two di-
mensional grids of processors, using static pivoting [7]. We derived an analytical estimation of the
parallel runtime for arbitrary input matrices, as presented in Equation (14) later in this paper. This
was obtained by considering a simple machine architecture and by making several simplified assump-
tions on the parallel algorithm. We assumed that the floating-point operations are performed at a
constant rate throughout the factorization, that was determined for every matrix by the sequential
runtime and the number of floating point operations necessary to factorize it. We also assumed
that the messages are transferred at a fixed bandwidth value independent of their sizes and that
the load and the data is evenly distributed among processors. The analytical model allowed us to
obtain performance upper bounds on parallel computers, to perform scalability analysis, and to de-
rive a relation between parallel runtime and matrix sparsity. We used the SuperLU_DIST solver [11]
to compare its actual runtime with the model’s predicted speed, and observed that the speedup
predicted by the analytical performance model started to deviate above the measured speedup of
SuperLU_DIST with increasing number of processors.

In this paper we present a much refined model that removes the unrealistic assumptions. In
addition, our new model takes into account not only the speeds of CPU and interconnect network,
but also the memory system performance. We will show that the new model can accurately predict
the actual performance of the code. First, we develop a runtime model for the sequential algorithm.

For this, we perform a detailed analysis of the numerical kernels used in the sparse LU factorization,
which takes into account that blocking and loop unrolling are used for obtaining high performance.
Moreover, instead of estimating the runtime by counting the floating-point operations alone and
assuming that they are performed at a constant speed, we also evaluate the cost of memory ac-
cesses, because in a sparse factorization, a nontrivial amount of time is often spent in streaming
through data. The cost of memory access is different whether the data are already in cache or they
have to be fetched from main memory. Thus, different latencies are incurred when the data are
fetched at different levels of the memory hierarchy. Second, for the parallel runtime, we include the
classical latency-bandwidth communication cost model, but with varying bandwidth values which
are calibrated off-line based on the message size distribution throughout the factorization.

The new performance model is based on a simulation of the execution of the right-looking su-
pernodal LU factorization, which accounts for one pass over the structure of the factors L and U.
This simulation estimates, at each step of factorization, the time spent in computation, the time
spent in communication and the possible overlap of communication and computation. The model
uses several input parameters, that include the dimensions of the blocks and loop unrollings used
in the numerical kernels, the line size and the total size of the cache memories, the policies used
for evicting lines from cache, and the bandwidth values for different message sizes. The parameters
for a specific parallel architecture are determined off-line. They are either taken from the machine’s
specification sheet if available, or obtained using the hardware counter results.

In this paper, we validate our performance model using the right-looking factorization algo-
rithm implemented in SuperLU_DIST, representative matrices from several applications and an
IBM POWERS parallel machine. In the future, we plan to validate the model on different parallel
machines. This involves mainly tuning the parameters of the model on the targeted machine.

The rest of the paper is organized as follows. Section 2 describes our modeling methodology and
assumptions. Section 3 analyzes the performance of the numerical kernels. Section 4 describes our
methodology for estimating the number of cache misses. Section 5 describes a performance model
that estimates the execution time of the sequential and parallel factorization. The results validating
the performance model are presented in Section 6. Finally, Section 7 draws the conclusions.

2 Background

Algorithm 1 presents a right-looking algorithm that factorizes a sparse unsymmetric n X n matrix
A into the product of a unit lower triangular matrix L and an upper triangular matrix U. The
matrix is partitioned into N x N blocks of submatrices using unsymmetric supernodes (columns of
L with the same nonzero structure). The algorithm loops over N supernodes. At the k-th step, the
first £ — 1 block columns of L and block rows of U are already computed. Now, the block column
L(k : N,k) is factored, the triangular solves are performed to compute U(k,k + 1 : N), and the
trailing matrix is updated using L(k +1: N, k) and U(k,k + 1: N). The last step requires most of
the work and also exhibits most of the parallelism in the right-looking approach.

Algorithm 1 Right-looking factorization
for k:=1to N do
(1) Factorize block column L(k : N, k)
(2) Perform triangular solves: U(k,k+1: N) := L(k, k)" x A(k,k+1:N)
for j:=k+1to N with U(k,7) #0 do
for i :=k+ 1 to N with L(i, k) # 0 do
(3) Update trailing submatrix:
end for
end for

end for

The parallel algorithm in SuperLU_DIST uses a data distribution on a two dimensional process

grid and a look-ahead technique to overlap communication and computation, as shown in Algo-
rithm 2. Figure 1 illustrates the data distribution on a 2D grid of six processors. The blocks of the
matrix partitioned by supernodes are distributed among P, x P. (= P) processors using a block
cyclic distribution. A block at position (7, j) of the matrix (0 < 4,5 < N) will be mapped on the
process at position (i mod P, j mod P,) of the grid. U(k,j) (L(k,j)) denotes a submatrix of U (L)
at row block index k and column block index j. We use (L + U)(k, j) to denote a block of L or U
at block row k and block column j.

The look-ahead technique in Algorithm 2 appears in the update of the trailing matrix. At step
k, we first update the block column (k + 1) and perform the block factorization (steps (3.1) and
(1.2)). The column processes owning block column & + 1 then send it to all the processes that need
it using nonblocking sends, while the potential receivers post nonblocking receives (steps (a.3) and
(a.4)). Afterwards, the rest of the trailing matrix (block columns k42 : N)) is updated (step (3.2)),
which overlaps with the communication in steps (a.3) and (a.4). Steps (c.1) and (c.2) contain the
matching waits for the nonblocking send and receive from steps (a.3) and (a.4).

Distributed matrix Grid of processors
2 o|1]2
||| 3|45
2

Figure 1: Illustration of parallel right-looking factorization

The performance model we developed has the following characteristics:

e We identify which part of the code spends most of the time on floating-point operations (i.e.,
flops-bound) and which part of the code spends most of the time in loading and storing the data
(i.e., memory-bound). Flops-bound means that the number of cycles spent in floating-point
operations is larger than that spent in loads and stores, and hence we consider that the loads
and stores are overlapped with computation. For the loops that are flops-bound, the model
uses one parameter to describe the processor’s speed, denoted as 7y, which is the time taken to
perform one flop. For in-cache data, we assume that the processor performs at the peak speed.

e We consider a hierarchy of caches with a perfect nesting and that accessing different memory
levels incurs different latencies. We use «; to denote the level i cache access latency (in cycles),
and Qupem to denote the main memory access latency. We only account for the capacity and
compulsory misses but ignore the conflict misses. We assume that the cache memories are
fully associative.

e We do not model TLB misses in detail. But in our experimental section, we count the effect of
TLB misses by considering a value for a,,ep, that includes a memory access and a TLB miss.

e For interprocessor communication, we estimate the time for sending a message of m items
between two processors as a + mf, where « denotes the latency and (the inverse of the
bandwidth. We ignore the effect of message collisions. The value of the bandwidth is dependent
on the size of message being transferred.

Algorithm 2 Parallel right-looking factorization with look-ahead in SuperLU_DIST

let myPe be my process number
if myPe owns blocks of the block column L(:, 1) then
(1.1) Factorize block column L(:, 1)
(a.1) Nonblocking Send L(:,1) to processes in my row that need it
else
(a.2) Nonblocking Receive L(:, 1) from a process in my row
end if
for block k:=1to N do
if myPe owns blocks of the block column L(:, k) then
(c.1) Wait for posted send of L(:, k) to complete
else
(c.2) If myPe needs L(:, k), wait for posted receive of L(:, k) to complete
end if
if myPe owns blocks of the block row U(k,:) then
(2) Perform triangular solves: U(k,k+1: N):= L(k,k)™' x A(k,k+1: N)
(b.1) Send U(k, :) to processes in my column that need it
else
(b.2) Receive U(k,:) from a process in my column if I need it
end if
if (k+1) <N then
if myPe owns blocks of the block column L(:,k + 1) then
(3.1) Update A(:,k+1) :== A(:;,k+1) — L(:,k) x U(k,:)
(1.2) Factorize block column L(:, k + 1)
(a.3) Nonblocking Send L(:, k + 1) to processes in my row that need it
else
(a.4) Nonblocking Receive L(:,k + 1) from a process in my row if myPe needs it
end if
end if
for j:= k+ 2 to N with U(k,j) # 0 do
for i := k+ 2 to N with L(i, k) # 0 do
if myPe owns block A(7,7) then
(3.2) Update trailing submatrix: A(%,j) := A(4,5) — L(3, k) x U(k, 7)
end if
end for
end for
end for

3 Performance Analysis of the Relevant BLAS Routines

In this section we model the performance of the numerical kernels used in Algorithm 2: the matrix
multiply and update routines (steps (3.1) and (3.2)), the triangular solve routine (step (2)) and the
rank one update routine (steps (1.1) and (1.2)). In SuperLU_DIST, these correspond to calls to the
BLAS routines DGEMM, DGER and DTRSV.

The triangular solve and the rank one update operations (DTRSV and DGER) are memory-bound,
since there is only O(1) flop associated with each data item and most of the time is spent in
accessing the data. For the matrix multiply and update operations (DGEMM), depending on the size
of the matrices, the model determines if the routine is memory-bound or flops-bound. We assume
that all the computing kernels are implemented using register blocking, which decreases the number
of loads and stores between registers and memory and ensures that the multiple functional units are
effectively utilized. When using the vendor-supplied BLAS library, the number of registers used for
every routine is not known. We determined the number of registers experimentally such that the
hardware counter results match well with our estimations.

Analysis of DGEMM. Most of the computation in SuperLU_DIST takes place in the rank-k
updates (steps (3.1) and (3.2) of Algorithm 2), which are performed using DGEMM. The operation is
C = aAB + bC, where C' is an M x N dense matrix, A is an M x K dense matrix, B is an K x N
dense matrix and a and b are scalars. We use the superscalar implementation [9, 10] described in
Algorithm 3 to analyze DGEMM.

Algorithm 3 Superscalar matrix multiply routine
for J =1 to N step Ng do
for L =1 to K step Kp do
for I =1 to M step Mg do
Ty = ax A(I,L)
C(I,J) =bC(I,J)+ T B(L,J)
end for
end for

end for

The algorithm is designed for cache reuse: every block B(L, J) is used multiple times by looping
over the block rows of matrix A. At each step of the inner loop, a block of matrix A is multiplied
with a and copied into a temporary buffer 77, which avoids bad leading dimension problem. Then a
block of matrix C'is updated with the result of the product of T with a block of B. Loop unrolling is
used to ensure good performance of the innermost in-cache matrix multiplication, which we assume
is done as follows. F, registers are used for the elements of 17, Ej registers are used for the elements
of B and E,E) registers are used for the elements of C. An E, x Ej block of C(I,J) is computed
in the innermost loop. First, the F, x E} block of C' is multiplied with b and stored in the registers,
second, the registers are updated with elements of the product T/ B(L,J), and third, the content
of the registers are stored back to the block of C. The innermost loop of the product T{ B(L, J)
requires (E, + Ep) loads and (2E, FE},) multiply and add operations.

For the in-cache matrix multiply operation C(I,.J) = bC(I,J) + T B(L,J), the number of
floating-point operations for multiplying C' with b is given by the second term of Equation (3). The
number of loads and flops for the product T B(L,J) are given in Equation (1) and the first term
of Equation (3). The number of stores for copying the registers to a block of C' is given in Equation

(2).
MBNBKB MBNBKB

Loads = £, + . (1)
Matrixz Tq Matriz B
Stores = MpgNp (2)
—
Matrixz C

FlOpS = QMBNBKB—FMBNB (3)
—_———— ——
Multiply—Add Multiply

If the innermost loop is flops-bound and the blocks are all in cache, the performance of the
in-cache block multiplication C (I, .J) = bC(I,J)+T{ B(L, J) can be estimated by using the number
of Stores in Equation (2) and the number of Flops in Equation (3), which gives (2MpNpKp +
MpNp) x v+ MpNp x ;. If the innermost loop is memory-bound, the performance can be
estimated as MgNpg X v+ (MBNB + MBNBKB/Eb +MBNBKB/EG) X o7.

If the innermost loop of the in-cache matrix multiplication is flops-bound, the overall performance
of Algorithm 3 is given by:

Loads = MNK/Np (4)
—_———
Copy A into T1

Stores = MNK/Np + MNK/Kpg (5)
—— S——
Copy A into T1 Copy from registers to C

Flops = 2MNK + MN (6)
— ~—
Multiply—Add Multiply

The choice to base our simulation on the superscalar matrix multiplication routine was motivated
by the experiments presented in the IBM POWERS Introduction and Tuning Guide [2] (page 155),
which compare its performance to the performance of DGEMM implemented in IBM’s ESSL. POWERS3-
enhanced library. The results showed the performances are close for square matrices. The authors
expect that ESSL may perform better for rectangular matrices.

The routine DGEMM is used at each step k of Algorithm 2, step (3) for the rank-k update of a
block of the trailing matrix. To estimate the performance of step (3), we use the following notations.
Flopsqgemm denotes the number of floating-point operations for all the calls to DGEMM that are
computed as follows. For the calls to DGEMM that are flops-bound, the number of flops in Equation
(6) is added to Flopsdgemm. For the calls to DGEMM that are memory-bound, only the second term
in Equation (6) is added to Flopsqgemm. Loadsqgemm denotes the number of loads computed in
Equation (4). When the matrix multiplication is memory-bound, the number of loads computed
with Equation (1) is added to Loadsdgemm. Storesqgemm denotes the number of stores of all calls
to DGEMM as computed in Equation (5).

Analysis of DGER. Consider the rank one update A = A — zy”, where A is a M x N dense
matrix, z is a dense vector of length M and y is a dense vector of length N.

Since the matrix uses a column oriented storage, we assume that the outermost loop loops over
columns, which minimizes the cache and TLB misses. The optimal unrolling factor of the innermost
loop should be such that the size of each subcolumn is the same as the cache line size. But because
of the floating-point register limitation, the unrolling factor may be restricted to a smaller number.
The innermost loop then will operate on the number of columns in a vertical block. We denote the
unrolling of the outermost loop as E, and of the innermost loop as E,. The number of loads and
stores are calculated as:

Loads = MN + - + N (7)
Matrixz A ~—— Vector y
Vector x
Stores = MN (8)
~—~

Matrixz A

The routine DGER is used in step (1) of Algorithm 2 for factorizing block column L(k : N, k).
This factorization is based on rank-1 updates and scaling. We estimate the memory accesses of step
(1) by summing the loads and stores corresponding to all the calls to DGER, which are denoted as
Loadsger and Storesgger.

Analysis of DTRSV. Consider the triangular solve Lz = y, where L is a N x N lower triangular
dense matrix, and = and y are dense vectors. In our analysis we consider a column oriented (axpy)
algorithm. The estimation of the number of loads and stores is similar to the one described by
Vuduc et al. [14]. It assumes that register blocking is used such that the matrix is partitioned into
register blocks of size E;, x Fp,, which leads to E, loads of the vector x for each register block.

N(N+1) N[N N? 1 3N

Loads = —— 1242 (2 4 N = 14— | + =

oads 5 +2<EL+>+ - +EL +2 (9)

Vector y

Matrixz L Vector
N (N

Stores = §<E—L+1) (10)
~—_——

Vector x

The computation of the row block U(k,:) (step (2)) of Algorithm 2 is performed through calls
to DTRSV. An estimation of the memory accesses of this step can be therefore computed by adding
the number of loads and stores associated with all the calls to DTRSV, which we denote as Loads iy sv
and Storesgirsy -

4 Estimation of Cache Misses

In this section we first present analytical lower and upper bounds for the number of cache misses.
We then describe a method that provides a better estimation of the cache misses by simulating the
factorization algorithm.

Considering level ¢ (Lq) cache, we use [, to denote its line size and C, to denote its capacity,
both in doubles.

At step k of Algorithm 2, the working storage consists of the space needed to store the block
columns k and k+1 of L, the block row k of U, the blocks of the trailing matrix that will be updated,
and several temporary arrays used during the updates.

We now give lower and upper bounds for the number of times each block of L and U is brought
into cache. Consider block L(4, j), we use x;; to denote the number of updates performed on L(3, j),
and y;; to denote the cost of finding L(¢, j) when it is the destination of an update. z; denotes the
number of nonzero blocks in block row j of U, which equals the number of updates performed at
step j and for which L(4,) is the source of an update. We denote sz(L(4, 7)) as the size (in doubles)
of the block L(i,j) (nonzero values and indices). Our estimation takes into account the storage by
columns, the leading dimension and the line size of the cache.

A lower bound M, on the number of cache misses is obtained by assuming that there is only one
compulsory miss for every block. That is, during the first update on the block L(¢,), this block is
brought into cache, and it will stay in cache throughout the rest of the updates when it is either
source or destination, and during its own factorization.

N
Z (s2(L+U)(i,7) + i) (11)

3,j=1

My ~

Nl’_l

An upper bound My for the number of misses is obtained by assuming that for every block,
there is a compulsory/capacity miss each time when it is the destination of an update, when its
factorization is computed, and when it is the source of an update.

N
Z (zij + 25 + 1) s2(L+ U)(i, j) + wijyi;) (12)

i,j=1

My =

NlH

Note that these analytic bounds do not take into account the working space needed at each step
of the algorithm compared to the size of the cache Cy. If the working space fits in cache, at most one
compulsory/capacity miss is generated for each element of the working space. If some of the blocks
updated at step £ — 1 are also updated at step k and the blocks are still in cache, then fewer misses
will be incurred. If the working space does not fit in cache, it means that the cache is not large
enough to hold the block row U(k,:) and the block column L(:, k) during the column factorization,
triangular solves and the update of the trailing matrix. Then, when updating the trailing matrix,
in addition to the misses incurred for every updated block, there is one additional capacity miss for
the elements of U(k,:) (values and indices), and for every block of U(k, :), there is one capacity miss
for the elements of L(:, k) (values and indices). This discussion shows that it is difficult to derive
realistic analytic bounds for the number of cache misses. We expect that at the beginning of the
factorization, when the matrix is very sparse, the working space will fit in cache. But when the
trailing matrix becomes denser, the working space will no longer fit in cache.

To obtain accurate account of cache misses, we wrote a simulator that simulates the factorization
algorithm and the memory system behavior. Every level of cache is associated with a policy for
evicting blocks from cache, such as the least recently used (LRU) or the round robin policy. Every
time a block of the matrix is accessed, the simulator checks whether the block is already in cache and
at which level. If it exists and the eviction policy is LRU, this block is marked as the least recently
used. If the block is not in cache, it is is brought in cache, and the counter for the cache misses
is incremented. When the cache capacity is exceeded, some blocks are evicted. The experimental
results in Section 6 show that this simulation leads to results close to the cache misses obtained from
the hardware counters.

5 Runtime Estimation

We first present an estimation of the sequential algorithm, and then describe the communication
model that extends the sequential runtime estimation to an estimation of the parallel runtime.

5.1 Sequential runtime estimation.

In an earlier work on performance analysis of sparse matrix-vector multiply [14], only the cost
of memory accesses needs to be accounted, because that algorithm is entirely memory-bound and
there is little data reuse. Sparse factorization algorithms on the other hand contain both flops- and
memory-bound kernels, and the kernel mix changes at different stages of the factorization, which
complicates our analysis.

Assume that there are C' cache levels. We denote by h; the number of hits and by m; the
number of misses at the ith cache level. The execution time charges for the memory accesses to
different levels of the memory hierarchy in a similar way to [14]. The hits for ¢ > 1 are computed as
hi+1 = m; — m;+1. The sequential runtime is estimated as follows:

c
Tseq = Flopsdgemm'}/ + Z hioy + Mo Omem (13)

i=1
The memory access cost is computed using the number of loads and stores performed for the
memory-bound parts of Algorithm 2. For steps (1.1) and (1.2), the number of loads and stores
is given by Loadsqger and Storesgger. For step (2), the number of loads and stores is given by
Loadsirsy and Storesgirsy. For steps (3.1) and (3.2), we sum up the number of loads and stores in
the calls to DGEMM (denoted by Loadsqgemm and Storesggemm), and the number of loads and stores
in copying the matrix blocks into a temporary buffer to prepare for the call to DGEMM (denoted by

Loadstemp and Storestemp). The L1 cache hit by is computed as follows:

hi = Loadsqger + Storesqger + Loadsairsy + Storesdirsy + Loadsqgemm + Storesqgemm =+

+Loadsiemp + Storesiemp — my

As described in Section 3, Loadsqgemm represents the number of loads performed in the memory-
bound loops of DGEMM, plus the number of loads involved in copying the matrix blocks to temporary
buffers. Storesigemm represents the number of stores involved in copying into the temporary buffers
or copying from the registers back to the matrix destination. The time spent in the flops-bound
loops of DGEMM is counted in the first term of Tseq in Equation (13) (FlopsdgemmY)-

5.2 Parallel runtime estimation.

In our previous work, under some simplifying assumptions, we have established the following parallel
runtime estimation using a square grid of processors [7]:

(2nnz(L) + 2nnz(U)log P)
VP

where N is the order of the matrix; F' is the total number of flops in the factorization; nnz(L)
is the number of nonzeros in the off-diagonal blocks of L; nnz(U) is the number of nonzeros in
the off-diagonal blocks of U. The first term represents the parallelization of the computation. The
second term represents the number of broadcast messages. The third term represents the volume of
communication.

For more accurate accounting of the parallel runtime, we wrote a simulator to simulate the
execution of Algorithm 2. This simulation has several purposes. First, the simulation can provide an
accurate estimation of the cache misses which otherwise cannot be determined analytically. Second,
the simulation also allows us to include load imbalance factor in the model. Third, using simulation
we can analyze the critical path behavior by considering load balance at each step and the amount
of overlap of computation and communication.

We use the commonly adopted latency-bandwidth cost model to analyze the interprocessor com-
munication. An improvement we made is that different values of the inverse of the communication
bandwidth § are used based on the size of the messages.

The simulation algorithm needs to estimate at each iteration of Algorithm 2 the time spent in
each computation step. This is obtained using Equation (13), where the number of loads, stores,
flops and cache misses are the numbers associated with that step and performed during the current
iteration by each processor.

The time spent in communication is estimated at each iteration as follows. In steps (b.1) and
(b.2), messages are communicated using blocking sends and receives, which is implemented as follows.
Consider for example that processor PEQ needs to send a message of size m to processors PE1 and
PE2. PEO first sends it to PE1 and then sends it to PE2. The time spent by all the processors
PEO, PE1 and PE2 in this communication is estimated as 2(a+mg3). In steps (a.1), (a.2), (a.3) and
(a.4), messages are communicated using nonblocking sends and receives, in which case the time is
estimated as (a + mg).

The parallel runtime of Algorithm 2 is obtained by computing for each processor the runtime of
the steps that lie on the critical path. In the initialization step, each processor that owns blocks of
L(:,1) factorizes L(:,1) and then sends the blocks to processors in the same row of the grid that
need them. The processors that participate in this step and that are in the same row of the grid
have the same runtime, which is given by the time spent in factorizing block column 1, and the time
spent in the communication (a.l), (a.2).

At each iteration k of Algorithm 2, the runtime is estimated as follows. The time spent in the
computation of block row U(k,:) via triangular solves (step (2)) is added to the processors in the
row of the grid that own blocks of U(k,:). Then each processor that owns blocks sends the blocks
to processors in the same column of the grid. The time spent in the communication (b.1), (b.2) is
added to the sender. And the time of the processors in the same column is updated with the time
of the slowest processor.

For the processors that own blocks of the block column L(:, k+1), the update and the factorization
of block column L(:, k 4+ 1) lie on the critical path. Then, the larger of the time spent in the non-
blocking send (step (a.3)) and the time spent in updating the trailing submatrix (step (3.2)) is

T(N,VP x VP) ~ gﬂy—i— (2N + %NlogP)a—k B, (14)

counted as on the critical path. For the processors that do not own blocks of the block column
L(:,k + 1), the larger of the time spent in receiving block column L(:, k + 1) (step (a.4)) and the
time spent in updating the trailing matrix (step (3.2)) is added to the parallel runtime. This
communication/computation overlap is determined in steps (c.1) and (c.2), when several processors
belonging to the same row of the grid of processors wait for the posted sends and receives to complete.
Their runtime is then determined by the processor that waits the longest.

6 Experimental Results

In this section we compare the analytic bounds and the simulation results against the actual per-
formance of the code. We used the IBM SP RS/6000 distributed memory machine at NERSC
(National Energy Research Scientific Computing Center). The system contains 2944 compute pro-
cessors distributed among 184 compute nodes. Each node of 16 processors has 16 to 64 Gbytes of
shared memory. Each POWERS processor is clocked at 375 Mhz and has a peak performance of 1.5
GFlops. It has a L1 data cache of 32 KBytes and a L2 cache of 8192 KBytes. The cache line for
both L1 and L2 is 128 bytes. The L1 access latency is a; = 1 cycle. A data access that misses L1
but hits L2 incurs a load latency of as = 9 cycles. We consider that a data access that misses both
L1 and L2 cache incurs a latency amem between 35 and 139 cycles [14]. Each processor has two
floating-point units, each of which can execute one compound floating-point multiply-add (FMA)
operation per cycle. Hence POWER3 can execute up to four floating-point operations per cycle.
In addition, POWERS3 can commit two loads/stores per cycle, and so the L; access latency ag is
divided by two in our estimations.

We used several medium to large size matrices from different application domains. The char-
acteristics of the matrices are given in Table 1, which includes the matrix order, the number of
nonzeros in the input matrix A, the number of nonzeros in the factors L and U, and the number of
floating-point operations performed by SuperLU_DIST in the numeric factorization. The matrices
are available from the University of Florida Sparse Matrix collection [5]. Matrices AF23560, BBMAT,
FIDAPM11 and INv-EXTR1 come from fluid flow and CFD problems. Matrix EcL32 is a device simu-
lation problem. Matrix sTomacH is issued from a 3D electro-physical model. Matrices G77Ac200sc
and MARK3JAC140sc are from economic models.

Matrix Order n | nnz(A) | nnz(L+U) | Flops | nnz(A)/n | Sym
x10% | x10°
AF23560 23560 484256 11.5 5.02 20.6 | 1.00
BBMAT 38744 | 1771722 35.6 | 25.34 45.7 | 0.53
ECL32 51993 380415 41.9 | 60.66 7.3 | 0.92
FIDAPM11 22294 623554 26.7 | 26.81 28.0 | 1.00
G7JAC200sC 59310 717620 37.3 | 53.72 12.1 | 0.03
INV-EXTR1 30412 | 1793881 28.9 | 28.73 59.0 | 0.97
MARK3JAC140sc | 64089 376395 21.5 | 16.92 5.9 | 0.07
STOMACH 213360 | 3021648 140.6 | 145.18 14.2 | 0.85

Table 1: Benchmark matrices and their characteristics: the order n, the number of nonzeros of the
input matrix nnz(A), the number of nonzeros in the factors nnz(L+U), the number of floating point
operations in the factorization, the sparsity of the matrix measured as nnz(A)/n and the structural
symmetry Sym.

The goal of our experiments is three-fold. First, we want to compare our estimation of the
sequential runtime with that of SuperLU_DIST. This would validate the accuracy of our model

10

in counting the number of loads, stores and cache misses incurred throughout the factorization.
Second, we want to compare the model predicted parallel runtime with the parallel runtime of
SuperLU_DIST with varying number of processors. And third, we use our model to analyze the
performance characteristics of SuperLU_DIST.

Our model uses several parameters that have to be tuned on the target machine for which the
simulation is performed, such as the block size used in DGEMM. When there is no documentation, we
determined their values as follows. The computing kernels were executed on the target architecture
and the PAPI [4] results for loads, stores and cache misses were collected. Then we choose the
parameters that provide a good fit for our estimation of the number of loads, stores and cache
misses.

In the parameter tuning phase, we have to estimate the size of the blocks M B, NB and KB
used in the superscalar matrix multiplication algorithm presented in Section 3. In our experiments
we have used M B = 32, NB = 48 and KB = 48. We also have to estimate the number of registers
used for loop unrolling. For the DGEMM routine, we have tried several values and we have found that
a 4 by 2 unrolling matches well our estimation of number of loads. Note that this happens to be also
the unrolling level used on the IBM POWER2 [1]. In fact, both processors have two floating-point
units, and while POWERS3 has a floating-point pipe of three or four cycles long, POWER2 has a
shorter floating-point pipe of two or three cycles. For both processors, a 4 by 2 unrolling ensures
that the two floating point units are well utilized.

To estimate the number of cache misses, our simulation can consider different policies for replacing
lines in cache. For L1 cache, POWERS replaces lines using a round-robin policy within a congruence
class. The congruence class is defined by the 128-way associativity of the L1 cache. For L2 cache, real
addresses are directly mapped to the cache. In our simulation, we assume cache is fully associative,
and we use round-robin for L1 cache and least recently used policy for L2 cache.

Figure 2 presents the number of loads and stores obtained by our performance model, and
compares with the PAPI results of loads and stores obtained for SuperLU_DIST. Our model estimates
well the number of loads for all the matrices, but does not do so well with the number of stores—the
estimation can be smaller than PAPI numbers (up to 51% for matrix MarRk3JAC140sc). We also
observed such underestimation when tuning our DGEMM model for the POWERS3 architecture. We
think that the overhead incurred by a call to DGEMM is nontrivial and is not taken into account by
our model. This overhead affects the overall number of stores. But since the number of stores is
generally 3 or 4 times smaller than the number of loads, the underestimation of number of stores
does not have much impact on the overall estimation.

Figure 3 presents the results of cache misses comparing our estimation, the analytic lower and
upper bounds, and the PAPI results. The lower and upper bounds do not depend on the cache size,
and are the same for L1 and L2 cache. For the sake of clarity, we do not include the upper bound
in the plot of the L2 results. The lower bound underestimates severely the number of L1 misses (by
two orders of magnitude). It also underestimates the number of misses in L2 cache, very often by
one order of magnitude. For L1 cache, the upper bound is usually twice the number of PAPI misses.
But as expected, it overestimates severely the number of L2 cache misses. These results show that
it is difficult to derive analytic bounds for the number of misses for sparse factorizations.

Our estimation predicts well the number of cache misses, both for L1 and L2 caches. One
exception is matrix MARK3JAC140sc, which is one of the most unsymmetric matrix in our test set. For
this matrix, our estimation tends to overestimate the number of cache misses. For the L1 cache, we
underestimate up to 17% for matrix AF23560 and overestimates up to 47% for matrix MARK3JAC140SC,
when compared to the PAPI L1 cache miss results. For the L2 cache, for five matrices our estimation
underestimates the number of L2 cache misses (up to 33% for matrix Fipapm11). For the other three
matrices, our estimation overestimates the number of L2 cache misses (less than 1% for Ar23560 and
G7IAC200sC, 72% for matrix MARK3JAC140sC).

In the plot depicting the L2 cache misses we also include the number of TLB misses. Note that
SuperLU_DIST incurs large number of TLB misses. For AF23560, the number of TLB misses is
larger than the number of L2 misses. For BBMAT, the number of TLB misses is half the number of
L2 misses, and for the other matrices it is less than half. This indicates that using the minimum

11

< 10% Number of loads on IBM Power3

7 T T T T T —
R rAPI
6l |[__]estimation 4
sl i
8
8 4r]
o
e
o
o 3r bl
=
2l i
1F H g
0 [l I 1 I\ 1 I \H 1
1 2 3 3 5 6 7 8
matrix number
% 10° Number of stores on IBM Power3
12 T T T T T
H rAPI
estimation
101~ b
8 |-] .
(%]
o
=]
% gl]
]
o
c
a4k i
o I]
0 .\’_‘ I Il \H Il Il Il Il
1 2 3 3 5 6 7 8

matrix number

Figure 2: Number of loads/stores obtained by our estimation and by PAPI measurements.

12

L1 Misses on IBM Power3
T T T T
I F-Pi L

[Lower bnd L1
[Estimation L1

lOg [upperbnd L1

108

107

10°

10°

10*

10°

102

10

10° 3 3 5 6 7 8
ww

no of misses

matrix number

2
L2 and TLB Misses on IBM Power3

I F-Pi L2
I PAPI TLB
[Lower bnd L2

[Estimation L2

10’
10°
10
10°
10?
10t

0
10 2 3 3 5 6

matrix number

>

no of misses
=
o
o
LB LL L LALLM AR

Figure 3: Number of cache misses (in logarithmic scale) obtained by our estimation (Estimation L1
and Estimation L2), by PAPI measurements (PAPI L1 and PAPI L2), and the analytical lower and
upper bounds (Lower bnd L1, Lower bnd L2, and Upper bnd L1). The last plot also includes the
number of TLB misses obtained from PAPI (PAPI TLB).

value of the memory access latency would lead to an underestimation of the runtime.

. x 10%° Performance estimation
T T T T

—+— Measured
_ x _ Estimation a min
mem

o .. Estimation o max
mem

no of cycles
S
T

matrix number

Figure 4: Uniprocessor performance in number of cycles.

Figure 4 presents the performance results in number of cycles. The lower bound is obtained by
using the minimum value of memory access latency for amem (35 cycles) in Equation (13), which
assumes a TLB hit. The upper bound is obtained by taking the maximum value for aem (139
cycles), which assumes a TLB miss. Both bounds are smaller than the measured runtime. The
upper bound can underestimate the runtime with up to 32% for BBMAT. The underestimation is
larger for the lower bound (57% for MmARk33AaC140sc and 47% for G71Ac200sc.)

For parallel runtime estimation, we first need to determine the two parameters a and (used in
the communication cost model. To this end, we ran the point-to-point pingpong micro-benchmark
available at the NERSC web site [13] to callibrate the times needed to transfer messages of various
sizes that appeared throughout the factorization. The latency value « is 8.0 microseconds. The
bandwidth values used for 3 are tabulated in Table 2. This approach is an improvement over our
previous work, where we used a single bandwidth value independent of the message size.

Message size (Bytes) | 10 | 102 | 103 | 10* | 10° | 10° | 107
Bandwidth (MB/s) | 1| 10 | 81| 278 | 274 | 437 | 430

Table 2: Bandwidth values used in the model, which depends on the message size.

Figures 5 and 6 compare the runtimes in number of cycles obtained by our simulation and by
SuperLU_DIST with increasing number of processors. We also present in Table 3 the SuperLU_DIST
runtimes in seconds. Our simulation predicts well the actual performance of SuperLU_DIST.

Our performance model examines the amount of computation on the critical path. In Algo-
rithm 2, the computation performed in steps (2), (3.1) and (1.2) lies on the critical path. That is,
the computation of a block row of U, the update and the factorization of block column k + 1 of
L lie on the critical path. Since the algorithm implemented in SuperLU_DIST uses a look-ahead
technique, the computation corresponding to step (3.2) (update of the trailing matrix at step k) is
overlapped with the communication involved in steps (a.3) and (a.4) (send/receive of block column
k41 of L). Hence at each step of the algorithm, we add the computation corresponding to step
(3.2) to the critical path if it is more important than the communication involved in steps (a.3)
and (a.4). In Figures 5 and 6 we include the plots of the amount of computation on the critical

14

35

no of cycles
~

[
@

0.5

35

25

no of cycles
N

0.5

no of cycles

Figure 5: Runtimes in number of cycles for the first six matrices in our test set.

% 10° AF23560

T
—+— Measured
— % —Estimation
© -+ Computation on CP
L o 4
© o
I I I 1 @ 0
1 4 8 16 32 64
no of processors
%10 ECL32
T
—+— Measured
— % — Estimation
L © - Computation on CP ||

1 4 8 16 32 64
no of processors
x 10° G7JAC200SC
T T T T
—+— Measured
— % —Estimation
© -+ Computation on CP

no of processors

25

15

no of cycles

0.5

18

no of cycles
o o = - -
> ® = N IS o

o
IS

0.2

25

15

no of cycles

05

x 10 BBMAT

T
—+— Measured
— * — Estimation

© -+ Computation on CP

no of processors
X 10° FIDAPM11
T T T T
—+— Measured
— » — Estimation
[O - Computation on CP ||

1 4 8 16 32 64
no of processors
x 10 INV-EXTRL
T T T T
—+— Measured
— * — Estimation
© -+ Computation on CP

no of processors

“Measured”

represents the number of cycles obtained from running SuperLU_DIST. “Estimation” represents the
number of cycles obtained by our simulator. “Computation on CP” represents the number of cycles
due to computation that lies on the critical path.

15

o 10 MARK3JAC140SC I 10° STOMACH

T T T T T T T
—+— Measured —+— Measured
— % — Estimation — » — Estimation
350 © -~ Computation on CP || 7L] © -~ Computation on CP ||

no of cycles
~
T

no of cycles

%
o - - X P
I
4

Q ; o o o
8 16 32 64
no of processors no of processors

Figure 6: Runtimes in number of cycles for the last two matrices in our test set. “Measured”
represents the number of cycles obtained from running SuperLU_DIST. “Estimation” represents the
number of cycles obtained by our simulator. “Computation on CP” represents the number of cycles
due to computation that lies on the critical path.

path. The difference between the estimated runtime and the computation on the critical path corre-
sponds to the amount of communication lying on the critical path. These plots show that on small
number of processors, the computation is overlapped with the communication and the computation
dominates the critical path. With increasing number of processors, the critical path is dominated
by communication. This is because there are more messages of smaller size, and the time spent
in communication is larger. Note that for AF23560, c71Aac200sc and MARK3JAC140sc our simulation
overestimates the runtime on 64 processors. We believe this is due to the loss of accuracy associated
with the communication cost model.

We also examined load balance LB throughout the parallel factorization. We define the load
L to be the computation involved in the entire factorization. We then compute the load lying
on the critical path Lop by adding at each step the load of the most loaded processor. More
precisely, consider l,; being the load of processor p at step ¢ (i.e., the computation in number of
cycles performed by this processor at step i, which takes into account the number of loads/stores
and cache misses as in Equation (13)). Then, Lep = Zfil max]_ ;. The load balance factor
is computed as LB = %. In other words, LB is the load of heaviest processors lying on the
critical path divided by the average load per processor. The closer is this factor to 1, the better
balanced is the workload. Table 3 shows that the workload distribution is good on a small number
of processors. But it can degrade quickly for some matrices, such as Ar23560, leading to quick
performance degradation.

7 Conclusions

We developed a simulation-based performance model to analyze a parallel sparse LU factorization
algorithm on modern cached-based, high-end parallel architectures. Our model characterizes the
algorithmic behavior by taking into account the underlying processor speed, memory system perfor-
mance, as well as the interconnect speed. The simulation-based model differs from our previously
developed analytical model [7] in that it actually simulates the execution of the parallel algorithm.
When comparing the predicted runtime with the results of SuperLU_DIST, we noticed that the old
analytical model failed to predict accurately the parallel execution time with increasing number of
pProcessors.

16

\ \ P:1\P:4\P:8\P:16\P:32\P:64

AF23560 time 9.11 4.08 3.11 2.69 2.68 3.14
LB 1.00 1.39 1.98 2.74 4.50 7.03
BBMAT time | 64.13 | 19.31 | 11.90 7.80 6.00 5.64
LB 1.00 1.23 1.48 1.72 2.38 3.26
ECL32 time 97.6 | 27.24 | 15.81 9.93 7.24 6.76
LB 1.00 1.12 1.32 1.52 1.92 2.39
FIDAPM11 time | 49.83 | 14.08 8.26 5.19 3.77 3.44
LB 1.00 1.17 1.40 1.65 2.22 2.92
G73AC200sC time | 169.47 | 44.32 | 24.31 15.03 10.68 9.87
LB 1.00 1.13 1.32 1.47 1.78 2.20
INV-EXTR1 time | 77.45 | 18.14 | 10.54 6.50 4.84 4.23
LB 1.00 1.16 1.37 1.59 2.08 2.63
MARK3JAC140sc | time 95.82 | 25.02 | 14.70 9.88 7.94 8.17
LB 1.00 1.23 1.40 1.60 1.92 2.36
STOMACH time | 205.33 | 63.96 | 40.26 28.47 24.19 24.10
LB 1.00 1.18 1.44 1.73 2.46 3.46

Table 3: Runtimes (in seconds) and load distribution (LB) for right-looking factorization on 2D grid
of processors

Unlike Level 2 sparse BLAS operations, such as sparse matrix-vector multiply or sparse triangular
solution, where performance is usually solely dominated by memory system performance, the sparse
factorization algorithms usually contain a mixture of Level 2 and Level 3 BLAS routines. Depending
on the sparsity of the matrix, which changes at different stages of factorization, the kernels can be
either memory-bound or flops-bound. We have taken into account this feature in our analysis, and
our new model is more accurate in predicting performance.

Another improvement over the previous work is to use different bandwidth values to model
interconnect communication speed for different message sizes. This is very important for sparse
factorization algorithms, because throughout factorization, the message sizes can differ by several
orders of magnitudes.

We have validated our model using SuperLU_DIST on an IBM POWERS3 parallel machine, and
showed that the simulated runtime is close to the measured runtime. In the future, we plan to
validate the model on different parallel architectures. After this validation phase, we will be able to
use the model realistically for predicting code performance on newly designed architectures and for
new matrices.

Furthermore, our model reveals that the loss of parallel efficiency on a large number of processors
is due to load imbalance and communication cost. This points to possible future work to improve the
code. For example, we can use better matrix distribution scheme to reduce load imbalance. We can
use a higher level of look-ahead scheme to increase the overlap of communication with computation.

Finally, our modeling methodology can be adapted to study performance of other types of sparse
factorizations, such as Cholesky or QR. This remains future work.

17

References

[1] R. C. Agarwal, F. G. Gustavson and M. Zubair Exploiting functional parallelism of POWER2
to design high-performance numerical algorithms. IBM J. Res. Develop., 38(5):563-576, 1994.

[2] S. Andersson, R. Bell, J. Hague, H. Holthoff, P. Mayes, J. Nakano, D. Shieh, and J. Tuccillo.
RS/6000 Scientific and Technical Computing: POWERS3 Introduction and Tuning Guide. Inter-
national Business Machines, October 1998. http://www.redbooks.ibm.com.

[3] C. Ashcraft. The fan-both family of column-based distributed Cholesky factorization algorithms.
In Alan George, John R. Gilbert, and Joseph W. H. Liu, editors, Graph Theory and Sparse Matrix
Computation, pages 159-191. Springer Verlag, 1994.

[4] S. Browne, J. Dongarra, N. Garner, G. Ho, P. Mucci. A Portable Programming Interface for
Performance Evaluation on Modern Processors. The International Journal of High Performance
Computing Applications, 14(3):189-204, 2000.

[5] T. Davis University of Florida Sparse Matrix Collection. NA Digest, vol. 92, no. 42, October
16, 1994, NA Digest, vol. 96, no. 28, July 23, 1996, and NA Digest, vol. 97, no. 23, June 7, 1997
http://www.cise.ufl.edu/research/sparse/matrices

[6] J. K. Dongarra, R. A. van de Geijn, and D. W. Walker. Scalability Issues Affecting the Design of
a Dense Linear Algebra Library. Journal of Parallel and Distributed Computing, 22(3):523-537,
1994.

[7] L. Grigori and X. S. Li. Performance Analysis of Parallel Right-Looking Sparse LU Factorization
on Two-Dimensional Grid of Processors. Proceedings of PARA’04 Workshop on State-of-the-art
in Scientific Computing, LNCS 3732, pp 768-777, 2006.

[8] A. Gupta, G. Karypis, and V. Kumar. Highly Scalable Parallel Algorithms for Sparse Matrix
Factorization. IEEE Transactions on Parallel and Distributed Systems, 8(5):502-520, 1997.

[9] B. Kagstrom, P. Ling, and C. Van Loan. GEMM-Based Level 3 BLAS: High-performance
Model Implementations and Performance Evaluation Benchmark. ACM Trans. Math. Software,
24(3):268-302, 1998.

[10] B. Kagstrom, P. Ling, and C. Van Loan. GEMM-Based Level 3 BLAS: Portability and Opti-
mization Issues . ACM Trans. Math. Software, 24(3):303-316, 1998.

[11] X. S. Liand J. W. Demmel. SuperLU_DIST: A scalable distributed-memory sparse direct solver
for unsymmetric linear systems. ACM Trans. Mathematical Software, 29(2):110-140, June 2003.

[12] R. Schreiber. Scalability of sparse direct solvers. In Alan George, John R. Gilbert, and Joseph
W. H. Liu, editors, Graph Theory and Sparse Matriz Computation, pages 191-211. Springer
Verlag, 1994.

[13] D. Skinner. IBM SP Parallel Scaling Overview.
http://www.nersc.gov/news/reports/technical /seaborg_scaling

[14] R. Vuduc, S. Kamil, J. Hsu, R. Nishtala, J. W. Demmel, Katherine A. Yellick. Automatic Per-
formance Tuning and Analysis of Sparse Triangular Solve. ICS 2002: Workshop on Performance
Optimizations via High-Level Languages and Libraries, June 2002.

[15] R. C. Whaley, A. Petitet and J. K. Dongarra. Automated Empirical Optimization of Software
and the ATLAS Project. Parallel Computing, 27(1-2):3-25, 2001.

18

