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Abstract

We consider the problem of structure prediction for sparse LU factorization with partial
pivoting. In this context, it is well known that the column elimination tree plays an important
role for matrices satisfying an irreducibility condition, called the strong Hall property.

Our primary goal in this paper is to address the structure prediction problem for matrices
satisfying a weaker assumption, which is the Hall property. For this we consider the row merge
matrix, an upper bound that contains the nonzeros in L and U for all possible row permutations
that can later appear in the numerical factorization due to partial pivoting. We discuss the
row merge tree, a structure that represents information obtained from the row merge matrix;
that is, information on the dependencies among the columns in Gaussian elimination with
partial pivoting and on structural upper bounds of the factors L and U .

We present new theoretical results that show that the nonzero structure of the row merge
matrix can be described in terms of branches and subtrees of the row merge tree. These results
lead to an efficient algorithm for the computation of the row merge tree, that uses as input the
structure of A alone, and has a time complexity almost linear in the number of nonzeros in
A. We also investigate experimentally the usage of the row merge tree for structure prediction
purposes on a set of matrices that satisfy only the Hall property. We analyze in particular
the size of upper bounds of the structure of L and U , the reordering of the matrix based on a
postorder traversal and its impact on the factorization runtime. We show experimentally that
for some matrices, the row merge tree is a preferred alternative to the column elimination tree.
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1 Introduction

In this paper we consider the problem of structure prediction when solving a sparse system of
linear equations Ax = b by Gaussian elimination with partial pivoting, where A is an n × n,
nonsingular, nonsymmetric matrix and b is an n-vector.

The column elimination tree plays an important role in the structure prediction problem for
sparse LU factorization with partial pivoting, and is used by many solvers implementing this
factorization [1, 4, 5, 6, 14]. This tree predicts all the potential column dependencies during
Gaussian elimination. It allows upper bounds for the structure of L and U to be computed
efficiently. It can also be used to improve memory hierarchy usage when the matrix is permuted
according to a postorder traversal. The columns of the permuted matrix can be partitioned so
that each group of columns in L + U have similar structures.

It is well known that the dependencies among the columns can be overestimated by the column
elimination tree. However it has been shown that when the input matrix satisfies an irreducibility
condition, called the strong Hall property 1, the tree provides the tightest information obtainable
prior to the numerical factorization of A [16]: for each edge of the column elimination tree,
there exists a choice of numerical values of A such that this edge corresponds to a real column
dependency.

In [12], George and Ng proposed a structure which is the upper bound on the structure of
L and U predicted using the column elimination tree and the nonzero structure of A, when the
matrix A satisfies the strong Hall property. This structure, called the row merge matrix, contains
the nonzeros in L and U for all possible row permutations that can later appear in the numerical
factorization due to partial pivoting. The row merge matrix is also relevant in the structure
prediction of QR factorization computed by Householder transformations. Let H be the lower
trapezoidal matrix whose columns are the Householder vectors and let R be the upper triangular
matrix. When there is no accidental numerical cancellation, the bound for the structure of L
represents the structure of H and the bound for the structure of U represents the structure of R.

Again, when the matrix A satisfies the strong Hall property, the row merge matrix is the
tightest possible upper bound for Gaussian elimination with partial pivoting [16]. The connection
between the column elimination tree and the row merge matrix is made explicit when considering
the following. The column elimination tree is the elimination tree of AT A. Let LC be the Cholesky
factor of AT A. That is, AT A = LCLT

C . If A is strong Hall and has a nonzero diagonal, then the
upper triangular part of the row merge matrix has the same structure as LT

C . The tree itself can
be computed in time nearly linear in the number of nonzeros of A [15], without explicitly forming
the structure of AT A.

Our goal in this paper is to consider matrices satisfying a weaker condition, which is the Hall
property 2. These matrices can be permuted to a block upper triangular form using the Dulmage
Mendelsohn decomposition [2, 11, 24]. Each diagonal block satisfies the strong Hall property
and its corresponding column elimination tree can be used efficiently, as discussed above. For
most matrices, the decomposition contains a large block and several very small blocks on the
diagonal [9]. This is one of the main reasons why solvers like UMFPACK [4], SuperLU [5],
SuperLU MT (shared memory version of SuperLU) [6], and the parallel unsymmetric-pattern
multifrontal algorithm in [1] do not apply the Dulmage Mendelsohn decomposition. However

1A matrix with m rows and n columns has the strong Hall property if every set of k columns has nonzeros in at
least k + 1 rows, for all 1 ≤ k < n [3].

2A matrix with m rows and n columns has the Hall property if every set of k columns has nonzeros in at least
k rows, for all 0 ≤ k ≤ n [3].
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they still use the column elimination tree for structure prediction purposes. With respect to this,
it is known that in the Hall case, the upper triangular part of the row merge matrix and the
Cholesky factor LT

C of AT A can differ, and thus the usage of the column elimination tree can lead
to a different upper bound than the row merge matrix.

In this paper we focus on matrices that satisfy only the Hall property. We assume that A has
a zero-free diagonal, and that there are no accidental numerical cancellations during Gaussian
elimination.

We determine a tree structure that contains information on the dependencies among the
columns in Gaussian elimination and on the structural upper bounds. This information is obtained
from the structure of the row merge matrix. We refer to this tree as the row merge tree. We present
new theoretical results that relate the nonzero structure of rows in the lower triangular part of
the row merge matrix to branches of the row merge tree, and the nonzero structure of columns in
the upper triangular part of the row merge matrix to subtrees of the row merge tree, respectively.
These results lead to an efficient algorithm for computing the row merge tree. It uses as input the
structure of A alone, and has a time complexity almost linear in the number of nonzeros in A.

We also investigate experimentally the usage of the row merge tree for structure prediction
purposes on a set of matrices from a variety of application domains. These matrices satisfy only
the Hall property. To study the impact of the row merge tree on a real implementation of the
sparse LU factorization, we use the SuperLU solver [5] with different parameter settings, in which
we replace the column elimination tree with the row merge tree. We observe that for several
matrices, the row merge tree is a preferred alternative to the column elimination tree. For these
matrices, it decreases the size of the bounds of the factors L and U . When relaxation is used, that
is when a certain number of zero elements is introduced in the factors to obtain a more efficient
usage of the BLAS routines, it sometimes also decreases the runtime of the factorization. This is
mainly due to the fact that the the row merge tree reflects a block upper triangular form of the
matrix. Note that this form has fewer blocks on the diagonal, and does not satisfy the properties
of the blocks obtained from the Dulmage Mendelsohn decomposition. But it has the advantage
of being obtained efficiently as a byproduct of the row merge tree construction algorithm.

The bounds of the factors L and U can be useful in practice, and we describe here two
examples. In SuperLU MT [6], the column counts are used to allocate working storage. When
there is not enough storage, the code switches to a more dynamic memory allocation scheme.
In SuperLU [5], a parameter set by the user is used to estimate the number of nonzeros in the
factors L and U . The estimation is then used to allocate working storage in the solver. If during
the factorization, the real size of the factors becomes bigger than the estimated size, the working
storage is expanded as follows. A new working storage is allocated (that has twice the size of the
old storage), data is copied to the new storage, and the old storage is released. If they are smaller,
the upper bounds can be used to adjust the user parameter, or the size of the new working storage
allocated.

The paper is organized as follows. Section 2 briefly presents the row merge matrix and
background results related to it. In Section 3 we introduce the row merge tree and we use it
to characterize the structure of the upper bounds of L and U . This characterization helps us
derive a simple and efficient algorithm in Section 4 for its computation. In Section 5 we show that
permuting the columns of a matrix according to a postorder on its row merge tree represents an
equivalent ordering with respect to the amount of fill in the row merge matrix. Section 6 analyzes
experimentally the usage of the row merge tree, and finally, Section 7 concludes the paper.
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2 The row merge matrix

Let A be a sparse nonsymmetric n × n matrix which is to be factorized into LU using Gaussian
elimination with partial pivoting. We write this factorization as A = P1L1P2L2 . . . Pn−1Ln−1U ,
where Pi is an n × n elementary permutation matrix identifying the row interchanges at step i.
Li is an n × n elementary lower triangular matrix whose i-th column contains the multipliers at
step i. U is an n×n upper triangular matrix. L is the n×n matrix whose i-th column is the i-th
column of Li, so that L − I =

∑
i(Li − I). Denote by aij the (i, j) element of A. The bipartite

graph of A, denoted by H(A), has 2n vertices (for n rows and n columns of the matrix). There is
an edge (i, j) connecting row vertex i to column vertex j whenever aij is nonzero. A path from
vertex i0 to vertex ip in H is a sequence of vertices, denoted by P [i0 : ip] = {i0, i1, . . . , ip}, such
that all the vertices are distinct and there is an edge between every two consecutive vertices. The
length of this path is p. The intermediate vertices are all the vertices i1, . . . , ip−1. Whenever is
relevant to distinguish between row vertices and column vertices, we use primes on the names of
row vertices. For example, i is a column vertex and i′ is the row vertex with the same index. The
Hall property and the strong Hall property that we have defined for a matrix can be equivalently
defined for its bipartite graph.

The row merge matrix, denoted by A×, is a matrix that contains the nonzeros in L and U
for all possible row permutations which can later appear in the numerical factorization due to
partial pivoting. It represents an upper bound for the nonzero structure of L and U , and was
proposed by George and Ng [12]. To obtain it, at each step of the elimination an upper bound of
the structure of L and U is updated. Consider step i and all the rows that are candidate pivot
rows at that step. An upper bound of these rows is given by the union of their structures. Thus
the structure of each candidate pivot row is replaced by this union. The upper triangular part
of the row merge matrix is denoted as U×, and the lower triangular part as L×. The bipartite
graph of the row merge matrix is called the row merge graph, and is denoted as H×(A).

An example of construction of the row merge matrix is presented in Figure 1. Its bipartite
graph H(A) is displayed at the right of this matrix. At the first step of elimination, rows 1′ and 5′

are candidate pivot rows. The union of these two rows is formed, and it replaces the structure of
each one of these rows. The fill elements introduced are marked as circled numbers, to visualize
the step number that introduced them. This is repeated at each step of the process on the trailing
matrix.

An interesting issue to consider is how tight the bound provided by the row merge graph is
for the structure of L and U . When the matrix satisfies the strong Hall property, Gilbert and
Ng [16] showed that H×(A) represents a tight exact bound for the structure of L and U . That is,
having a strong Hall graph H, for a given edge (r′, c) in its row merge graph H×, there exists a
nonsingular matrix A (depending on r′ and c) with H(A) = H such that the element in position
(r′, c) of L + U is nonzero. When the matrix satisfies only the Hall property, it has been shown
that the corresponding row merge graph does not represent a tight upper bound on the structure
of L and U [17]. Recently, tight bounds were proposed in [18], and finding efficient algorithms for
their computation is the subject of future research.

In this paper we refer to fill elements as those elements which are zero in the original matrix
A and become nonzero in the row merge matrix A×. Similarly, we refer to fill edges as those edges
which don’t belong to the graph H(A) but do belong to the row merge graph H×(A). These fill
edges in the row merge graph H×(A) are related to paths in the bipartite graph H(A) by the
following definition and theorem.

Definition 1 (Gilbert and Ng [16]) A path P = {r′, c1, r
′
1, c2, r

′
2 . . . , ct, r

′
t, c} in H(A) is a fill
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Figure 1: Matrix example A, its row merge matrix A× and its bipartite graph H(A).

path for LU elimination with partial pivoting if either t = 0 or the following conditions are
satisfied:

1. ck ≤ min(r′, c) for all 1 ≤ k ≤ t.

2. Let cp be the largest ck. Then there is some q with p ≤ q ≤ t, cp ≤ r′q ≤ n, and the three
paths P [r′ : cp], P [cp : r′q], P [r′q : c] are also fill paths in H(A).

The next theorem due to Gilbert and Ng [16] gives a necessary and sufficient condition for fill
to occur in the row merge graph H×(A).

Theorem 1 (Gilbert and Ng [16]) Let r′ be a row vertex and c be a column vertex of H(A).
The edge (r′, c) is an edge of the row merge graph H×(A) if and only if there is a fill path joining

r′ and c in H(A).

For a fill element in position (r′, c), Definition 1 identifies the elimination step which introduced
it in the row merge matrix, along with the two candidate pivot rows whose union filled that
element. Figure 2 provides an illustration. In the fill path P = {r′, c1, . . . , ct, r

′
t, c}, cp represents

the elimination step at which the element (r′, c) is introduced in the row merge matrix. This
is due to the fact that r′q and r′ are candidate pivot rows, and the element in position (r′q, c) is
nonzero at this stage of elimination. Thus, during the union of the candidate pivot rows, the
element in position (r′, c) becomes nonzero in the row merge matrix. As the elements in positions
(r′, cp), (cp, r

′
q), and (r′q, c) can be fill elements from previous elimination steps, the definition is

applied recursively on each of these elements until it arrives at nonzero elements of the original
matrix.

It follows from Definition 1 that each column involved in the fill path (except the endpoint
column c) has at least one off-diagonal nonzero in its L× part. This is obvious from the conditions
cp ≤ r′, cp ≤ r′q, showing that at least the elements in positions (r′, cp) and (r′q, cp) are nonzeros.
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Figure 2: Illustration of Definition 1 for the fill path P [r′ : c] = P [r′, . . . cp, . . . r
′
q, . . . c]. The

elements in positions (r′, cp), (cp, r
′
q), and (r′q, c) are displayed in dark gray and the new element

(r′, c) introduced in the row merge matrix is represented in light gray. The nonzero diagonal is
displayed in black.

We illustrate this definition using our example matrix from Figure 1. Consider the fill element
in position (6′, 8) and its associated fill path P [6′ : 8] = {6′, 2, 7′, 4, 3′, 3, 1′, 1, 5′, 8}. In Figure 3 we
present a matrix containing only the nonzero elements and fill elements in the row merge matrix
leading to the introduction of the nonzero element u×

68
. To the right of this matrix we present

the fill path in the bipartite graph H(A). In Figure 4 we decompose the fill path P [6′ : 8] in
sub-fill paths, until we arrive at edges of H(A) corresponding to nonzero elements of the original
matrix A. At the root of the tree, as 4 is the column with the biggest index in that path, we can
decompose that path in the two paths P [6′ : 4], P [4 : 5′] and the nonzero element (5′, 8). The
decomposition in Definition 1 continues recursively on the first two paths. At the bottom of this
tree, the leaves are edges of H(A) corresponding to nonzeros of the original matrix A.
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Figure 3: Example of fill element u×
68

. On the left are nonzero elements and fill elements
in A× which lead to the introduction of u×

68
. On the right is the fill path P [6′ : 8] =

{6′, 2, 7′, 4, 3′, 3, 1′, 1, 5′, 8} in H(A), displayed also as a dotted line in the matrix A. The cor-
respondence between the fill elements introduced at different steps of construction of the row
merge matrix and subpaths of P [6′ : 8] is as follows. The fill element at step 1 corresponds to
P [3 : 5′]. The fill element at step 2 corresponds to P [6′ : 4]. The fill element at step 3 corresponds
to P [4 : 5′]. The fill element at step 4 corresponds to P [6′ : 8].
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P[4:5’]

Figure 4: Recursive decomposition of fill path P [6′ : 8] = {6′, 2, 7′, 4, 3′, 3, 1′, 1, 5′, 8} using Defini-
tion 1.

3 The row merge tree and its relation to the structure of the

factors L
× and U

×

In this section we give the definition of the row merge tree. Then we describe how fill elements in
the row merge graph are related to the row merge tree. We also present how the row and column
structures of the factors L× and U× can be characterized using this tree. The characterization
will help us derive a simple algorithm in Section 4 to compute the row merge tree.

The row merge tree of A is denoted as RMT (A). In this tree, node k is a direct descendant of
node j if node j is the parent of node k; node i is a descendant of node j (node j is an ancestor of
node i) if i < j and there is a path from i to j in this tree. The descendants (ancestors) of node
j will include j itself.

The structure of row k of A, denoted by A(k, :), is defined as:

A(k, :) := {j | akj 6= 0}.

The number of nonzeros in row k of A is denoted by |A(k, :)|. We use fk to represent the first
nonzero in row k of A (fk := min{j | akj 6= 0}). As the matrix is assumed to possess a zero-free
diagonal, fk will be less than or equal to k. The subtree of the row merge tree of A rooted at
node k and including all descendants of k in this tree is denoted as RMT [k]. The structure of
the kth row of L× is:

L×(k, :) := {j ≤ k | l×kj 6= 0}.

The structure of the kth column of U× is:

U×(:, k) := {j ≤ k | u×
jk 6= 0}.

The row merge tree can be defined from the structure of the row merge matrix A× as follows:

Definition 2 The row merge tree of an n × n matrix A (denoted RMT (A)) has n nodes, and j
is the parent of k in this tree if and only if j = min{r > k|u×

kr 6= 0} and |L×(:, k)| > 1.

By this definition, it is possible to obtain a forest, formed by a set of disjoint trees, but we still
call this structure a tree. If j is the root of a tree, then we set parent[j] = n+1. Figure 5 presents
the column elimination tree and the row merge tree of our example matrix from Figure 1.
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Figure 5: Row merge matrix A×, its column elimination tree COLT (A), and its row merge tree
RMT (A).

When the matrix satisfies the strong Hall property, then the condition |L×(:, k)| > 1 is always
fulfilled. Thus the column elimination tree is equivalent to the row merge tree. However, when
the matrix satisfies only the Hall property, the two trees can be different.

The next theorem shows a structural relation which exists between columns of L× (respectively
rows of U×) corresponding to nodes lying on a same path of the row merge tree.

Theorem 2 (Shen, Jiao, Yang [25]) If node j is an ancestor of node k in the row merge tree

of A, then L(j : n, k) ⊆ L(:, j) and U(k, j : n) ⊆ U(j, :).

3.1 Characterization of the structure of L
×

In this section we show that the structure of every row j of L× is represented by a branch of the
row merge tree RMT (A) that starts at fj and belongs to RMT [j], the subtree rooted at node
j. The same characterization of the structure of L×, but for matrices satisfying the strong Hall
property, was proposed in [13].

Lemma 1 Let i < k ≤ j be such that l×ji 6= 0 and l×jk 6= 0 and for every i < y < k, l×jy = 0. Then

k is the parent of i in the row merge tree of A.

Proof We prove by contradiction. Suppose that k is not the parent of i in RMT (A). Definition 1
applies with respect to the edges (j, j′), (j′, i), and (i, i′) of the bipartite graph H(A), and shows
that the edge (i′, j) is a fill edge of H(A). In other words, the element u×

ij is nonzero. Since the

ith column of L× and the ith row of U× have each at least one nonzero off-diagonal element, the
node i is not the root of a tree in RMT (A). Let q be the parent of i in RMT (A). That means
in particular that u×

iq is nonzero. We distinguish two cases: when q < k and when q > k.
First, consider the case when q < k. Consider step i of construction of the row merge matrix.

Note that elements u×
iq, l×ji are nonzero at this step. Thus j is a candidate pivot row, and element

l×jq becomes nonzero. But this contradicts our supposition that all the elements l×jy are zero, with
i < y < k.
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Second, consider the case when q > k. Element l×jk is nonzero, and Theorem 1 applies and
says that P [j′ : k] is a fill path in the bipartite graph H(A). Using Definition 1, we decompose
it into three fill paths P [j′ : cp], P [cp : r′], and P [r′ : k], where cp is the largest intermediate
column vertex. Consider the fill element l×jcp

that corresponds to the fill path P [j′ : cp]. By our

supposition all the elements l×jy are zero, with i < y < k. This shows that cp ≤ i. In other words,

the fill element l×jk is introduced either before or at step i of construction of the row merge matrix.

Consider now step i of construction of the row merge matrix. Note that elements l×jk, u×
iq are

already nonzero or become nonzero at this step. Row j is a candidate pivot row, and thus element
u×

ik becomes nonzero. Since k < q, q cannot be the parent of i in the row merge tree of matrix A.
And this contradicts our supposition. 2

Theorem 3 For i ≤ j, l×ji 6= 0 if and only if node i is an ancestor of node fj in the row merge

tree of A, where fj denotes the column index of the first nonzero entry in row j of A.

Proof If Part: Assume that node i is an ancestor of node fj, where fj is the column index of
the first nonzero entry in row j of A and i ≤ j.

If i = fj, then by the definition of fj, element aji is nonzero, and thus l×ji is also nonzero.

Otherwise, Theorem 2 applies and the following holds: L×(i : n, fj) ⊆ L×(:, i). As ajfj
is nonzero

and i ≤ j, then j ∈ L×(:, i), hence l×ji is nonzero.

Only If Part: Assume that l×ji 6= 0. Consider the nonzero structure of the jth row L×(j, :) =
{fj = k0, k1, . . . , kt = j}. Lemma 1 applies to each two consecutive nonzeros, and shows that
every node ki belongs to the path from fj to j in the row merge tree of A. This shows that i is
an ancestor of fj in the row merge tree of A. 2

In particular, Theorem 3 shows that, if some row of L× has two different nonzero elements
with column indices c1 and c2, then the nodes c1 and c2 will be in an ancestor-descendant relation
in this tree. That is, c1 is descendant of c2 if c1 < c2, or ancestor if c1 > c2.

Theorem 4 shows a structural relation which exists between a node j and its direct descendants
k1, . . . , kr in the row merge tree.

Theorem 4 Let {k1, . . . , kr} be the children of node j in RMT (A). Then the structure of column

j of L× is L×(:, j) := L×(:, k1) ∪ . . . ∪ L×(:, kr) ∪ A(j : n, j)\{k1, . . . , kr}.

Proof We prove by contradiction. Suppose there exists an m (m > j) such that l×mj is nonzero,

m /∈ L×(:, k) for each k ∈ {k1, . . . , kr} and m /∈ A(j : n, j).
As l×mj is nonzero, j is a node on the path from fm to m according to Theorem 3. If fm = j,

then amj 6= 0. This contradicts our initial supposition. Thus, fm < j. This means there is a
k ∈ {k1, . . . kr} which lies on the path from fm to j in the row merge tree RMT (A). That is,
l×mk 6= 0, resulting in a contradiction. This shows that:

L×(:, j) := L×(j : n, k1) ∪ . . . ∪ L×(j : n, kr) ∪ A(j : n, j)

It is easy to show that for every column k of L×, where k ∈ {k1, . . . , kr}, the row index of the
first off-diagonal nonzero is bigger or equal to j. Hence:

L×(:, j) := L×(:, k1) ∪ . . . ∪ L×(:, kr) ∪ A(j : n, j)\{k1, . . . , kr}

2

We will use this theorem later to compute the row merge tree. Note that this theorem can be
used to count the number of elements in columns of L×. This is because, as can be easily shown,
L×(:, k1) ∩ . . . ∩ L×(:, kr) = ∅.

9
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Figure 6: Paths describing the structure of the rows of L× for the example matrix in Figure 5.

3.2 Characterization of the structure of U
×

A characterization of the structure of U× is not known in the surveyed literature. The next
theorems will help define the structure of every column j of U×.

First we study relations between a fill element in position (r′, c), nodes on its associated fill
path P = {r′, c1, r

′
1, c2, r

′
2 . . . , ct, r

′
t, c}, and the row merge tree. When the fill element in position

(r′, c) belongs to L×, then node c is a descendant of node r in RMT (A). When it belongs to U×,
then node c can be in a different tree than node r. For example, consider the matrix in Figure 5.
The element u×

78
is nonzero in the row merge matrix, but 7 and 8 belong to different trees.

The next lemma shows that node r is an ancestor of all the intermediate column nodes c1, . . . , ct

in the fill path P [r′ : c]. In particular we will see in the proof that all the intermediate nodes
r1, c1, . . . , ct, rt belong to the same tree as node r.

Lemma 2 Let (r′, c) be a fill edge of the row merge graph H×(A) and let P [r′ : c] = {r′, c1, r
′
1, . . . ,

ct, r
′
t, c} be its associated fill path. The node r is an ancestor of each intermediate column node

c1, . . . ct of the fill path in the row merge tree RMT (A).

Proof Consider again Definition 1 for the fill path P [r′ : c]. Also consider Figure 2 which
illustrates this theorem. Let cp be the largest intermediate column node. Item 1 of Definition 1
indicates that cp ≤ r′. This means that l×rcp

is nonzero. Using the characterization of the structure

of a row of L× from Theorem 3, node cp is a descendant of node r in RMT (A).
Item 2 of Definition 1 indicates that there is some r′q such that cp ≤ r′q and the paths P [r′ :

cp], P [cp : r′q], and P [r′q : c] are also fill paths. Following the same reasoning as for r, we can
conclude that cp is a descendant of rq. As cp ≤ r and cp ≤ rq, we can deduce that cp, r, and rq

are on a same path, such that cp is a descendant of r and rq (if cp = rq or cp = r, then cp is a
descendant of itself).

10



We consider now each of the three paths P [r′ : cp], P [cp : r′q], and P [r′q : c]. We will show that
r is an ancestor of the intermediate column indices in each one of these paths. We assume that
the lengths of the paths are larger than 1. Otherwise, there is nothing to prove.

First, consider path P [r′ : cp] and let cp1
be the largest intermediate column index in this

path (cp1
≤ r). By Definition 1, P [r′ : cp1

] is a fill path (l×rcp1

is nonzero). Thus, node cp1
is a

descendant of node r. In particular, as l×rcp
is nonzero, we have that node cp1

is a descendant of
node cp in RMT (A).

Second, consider path P [cp : r′q]. Let cp2
be the largest intermediate column index in this

path. Using Definition 1, P [cp2
: r′q] is a fill path (cp2

≤ rq) and l×rqcp2

is nonzero. As l×rqcp
is also

nonzero, we can deduce that cp2
is a descendant of cp in RMT (A).

Third, consider path P [r′q : c]. Let cp3
be the largest intermediate column index on this path.

Following the same reasoning as for path P [cp : r′q], we conclude that l×rqcp3

is nonzero. We have

that l×rqcp
is nonzero. We deduce that cp3

is a descendant of cp.
In conclusion, cp1

, cp2
, and cp3

are descendants of cp in RMT (A). As cp is a descendant of r,
we obtain that cp1

, cp2
, and cp3

are descendants of r as well in RMT (A).
Using induction, we conclude that r is an ancestor of all the intermediate column indices

c1, . . . ct of the fill path P [r′ : c]. This completes the proof of the lemma. 2

Consider again the fill element at position (6′, 8) in the matrix example from Figure 3. Its
row merge tree is presented in Figure 5. A fill path is P [6′ : 8] = {6′, 2, 7′, 4, 3′, 3, 1′, 1, 5′, 8}. We
can observe that all the intermediate column indices 2, 4, 3, and 1 are descendants of the node 6
in the row merge tree. Note that node 8 belongs to a different tree.

We use this lemma in the next theorem, which presents a necessary and sufficient condition
for fill to occur in U× in relation with the row merge tree.

Theorem 5 For i < j, u×
ij 6= 0 if and only if there is a k such that akj 6= 0 and node i is an

ancestor of node fk in the row merge tree RMT (A), where fk denotes the column index of the

first nonzero entry in row k of A.

Proof If Part: Assume that i is an ancestor of some node fk, where fk is the column index of
the first nonzero entry in row k of A and akj is nonzero.

The elements akfk
and akj are nonzero. Definition 1 applies with respect to the edges (j, k′),

(k′, fk), and (fk, f
′
k). Thus, (j, f ′

k) is a fill edge of the row merge matrix of A, and element u×
fkj is

nonzero.
As i is the ancestor of fk (fk ≤ i < j), we can apply Theorem 2, and the following holds:

U×(fk, i : n) ⊆ U×(i, :). As u×
fkj is nonzero, then j ∈ U×(i, :). Hence u×

ij is nonzero.

Only If Part: Assume that u×
ij 6= 0. By Theorem 1, there exists a fill path P [i′ : j] =

{i′, c1, r
′
1, . . . , ct, r

′
t, j} in the graph H(A). Suppose t 6= 0. Otherwise the proof is trivial. Choose

k = r′t.
When decomposing recursively this fill path using Definition 1, the edge (k, j) will be consid-

ered at some point of the decomposition. That is, there exist nodes cp and r′q such that cp ≤ k
and P [r′q : cp], P [cp : k], and P [k : j] are fill paths. The first two paths can be fill paths or can
correspond to edges in H(A). The third path is an edge of H(A), corresponding to a nonzero
element in the original matrix (akj 6= 0).

Consider the second path P [cp : k], with cp ≤ k. The element l×cpk is nonzero, and thus cp is

an ancestor of fk. Lemma 2 on the path P [i′ : j] says that cp is a descendant of node i. Thus we
can conclude that node i is an ancestor of node fk. 2

11



The previous theorem shows that if akj is nonzero and fk is the first nonzero in row k, then
the structure of the jth column of U× includes all nodes on paths from fk to j or from fk to the
root of the tree including fk, whichever occurs first.

The next theorem shows that if an element u×
ij is nonzero, then i belongs to the subtree rooted

at j or it can belong to a different tree of root k, where k < j. This result will be used in Section 5
to show that permuting the columns of a matrix according to a postorder of its row merge tree is
an equivalent ordering with respect to the amount of fill in the row merge matrix.

Theorem 6 If u×
ij 6= 0, then i ∈ RMT [j] or i ∈ RMT [k], where k < j and k is the root of a tree

in RMT (A).

Proof We will prove by contradiction. Suppose that i ∈ RMT [k1], where parent[k1] = n+1 and
k1 > j > i. Let m1,m2 be ancestors of i in RMT [k1] such that parent(m1) = m2, m1 < j and
m2 > j. As u×

ij 6= 0 and m1 < j, Theorem 5 can be applied, so u×
m1j 6= 0. This is a contradiction,

because by the definition of the row merge tree, u×
m1m2

is the first nonzero element in row m1 of
U×. 2

We conclude that the structure of column j of U× can be formed by the following subtrees:
a subtree rooted at j; subtrees rooted at k1, . . . , kr, where parent[k1] = . . . = parent[kr] = n + 1
and k1 < j, . . . , kr < j.

In Figure 7 we present the structure of column 9 of our example matrix from Figure 5. This
structure is formed by a subtree rooted at 7, having as leaves nodes 2 and 3 (2 is the first nonzero
in column 7 and a79 is nonzero, a39 is nonzero) and a subtree rooted at 9 having as leaf node 8
(8 is the first nonzero in row 9 and a99 is nonzero).

9

8

7

6

4

5

3 2

Column 9

Figure 7: Subforest describing the structure of column 9 of the matrix example in Figure 5.

4 Computing the row merge tree

Algorithm 1 determines the row merge tree from the structure of A alone. That is, it computes
the parent vector that describes the structure of the row merge tree of A, and it uses a similar
approach as the algorithm for computing the symmetric elimination tree [22].
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Algorithm 1 uses two additional structures: fk (defined already in Section 3) denotes the
column index of the first nonzero element in row k of A; mk is the row index of the last nonzero
element in column k of L× and is initialized as follows:

mk := max{j such that ajk 6= 0 and j ≥ k}

At each iteration j, parent[j] is initialized with n + 1, that marks node j as a root node. The
element of maximum index in column j of L× is stored in mj . This value is necessary because
according to Definition 2 if column j of L× has only zero off-diagonal elements, then j does not
have a parent, i.e. it represents an independent tree in RMT (A). To compute this value, consider
the structure of column j of L× described in Section 3.1. Let k1, k2, . . . kr be the immediate
descendants of j in RMT (A). The structure of L×(:, j) is formed by the union of structures of
all columns L(j : n, k1), . . . , L(j : n, kr) and column A(j : n, j). Thus mj can be updated with
the maximum of mk1

, . . . ,mkr
corresponding to the immediate descendants of the node j in the

row merge tree.
At iteration j of Algorithm 1, the partial forest corresponding to the first j − 1 nodes was

formed. The goal of this iteration is to find each node t such that j is the index of the first nonzero
in row t of U× and |L×(:, t)| > 1. The t nodes have to be among the roots of the partially formed
forest for which mt > t.

Node t can be found as follows. Consider each k such that akj is nonzero. Let t be the root
of the tree containing fk in the partially formed forest. Theorem 5 applies and indicates that we
have u×

tj 6= 0. If mt > t, then j is the index of the first nonzero in row t of U× and thus j becomes
the parent of t. If mt = t, then t is the root of the tree in the row merge forest of A and j is not
necessarily the index of the first nonzero in row t of U×.

Algorithm 1 Compute the row merge tree.

for column j := 1 to n do
parent[j] := n + 1
for akj 6= 0 do

if fk = j then continue endif
find root t of the current tree containing node fk

if t 6= j and mt > t then
parent[t] := j
mj := max(mj,mt)

end if
end for

end for

The most expensive part of Algorithm 1 is the search of the root of a subtree. This search
can be improved using the union-set problem and techniques as path compression and weighted
union presented in [27]. Liu [20, 22] was the first one to exploit these techniques for sparse matrix
computations. The basic idea of these techniques is to maintain two forests. The first is the forest
of the required row merge tree (the array parent) and the second is a compact version of the first
which is used to provide the roots of the subtrees quickly. When path compression and balancing
are used, the complexity of Algorithm 1 to compute the row merge tree is O(mα(m,n)), where
m is the number of nonzero elements of the matrix A, n is the number of columns of the matrix
A, and α(m,n) is the inverse of Ackermann’s function [20, 22, 27] that grows very slowly with m
and n.

13



Consider again the row merge matrix example A× and its row merge tree RMT (A) in Figure 5.
We illustrate the construction of the row merge tree following in Figure 8 the result of each
iteration of Algorithm 1.

5 Postordering the row merge tree

To improve cache usage in the numerical factorization step, it is important to group together
columns with similar structures, referred to as supernodes. Supernodes allow the use of dense
matrix kernels during numerical factorization. Since the size of supernodes occurring in practice
is rather small, several methods are used to increase it.

In the symmetric case, columns with similar structures are made contiguous by permuting
the matrix according to a postorder on its elimination tree. This ordering is known to be an
equivalent ordering with respect to amount of fill and computation. In the nonsymmetric case,
supernodes can be enlarged by permuting the matrix according to a postorder on its column
elimination tree [5].

In this section we show that permuting the columns of a matrix according to a postorder on
its row merge tree represents an equivalent ordering with respect to the amount of fill in the row
merge graph. The permutation is applied to both rows and columns of A× to preserve the nonzero
diagonal. We will also show that the postordered matrix exhibits a block upper triangular form.

A postordered matrix satisfies the following condition: let x1 < . . . < xr be nodes in the
row merge tree of A such that parent(x1) = . . . = parent(xr) = x. Then ∀m, i such that m ∈
T [xi],m > xi−1.

Next, we give an algorithm that takes as input a matrix A× and its row merge tree and
returns a matrix satisfying the above property. This algorithm only helps to prove that the
postorder represents an equivalent ordering in terms of fill in the row merge matrix. For the ease
of implementation, one would code the postorder as a depth-first traversal of the row merge tree.

The trees in the row merge forest T1, . . . , Tr are input as parameters to this algorithm in
ascending order of their roots. The number of trees r in the row merge forest is also parameter
to this function. The vector root is used to determine the root of each subtree of the row merge
tree. The postordering is performed through permutations of two consecutive rows and columns
x and x + 1 of A×. This allows us to derive a simple proof to show that postordering the row
merge tree represents an equivalent ordering with respect to the fill in the row merge graph.

The algorithm iterates over the trees of the forest in descending order of their roots. At
each iteration, one tree is postordered as follows. Suppose that Algorithm 2 arrives at the ith
iteration, that is, at subtree Ti. First, the algorithm performs permutations such that all nodes in
this subtree have labeling bigger than that of the root of subtree Ti−1. This ensures that subtree
Ti contains all the nodes that should belong to it in the postordered RMT (A). But the subtree
itself is not yet postordered. Second, Algorithm 2 is called recursively on the subtrees associated
with the direct descendants of the root of Ti.

Theorem 7 The ordering obtained using Algorithm 2 represents an equivalent ordering with re-

spect to the amount of fill in the row merge graph.

Proof We will prove this by induction.
Initial phase The structure of the row merge matrix A× can be changed only during the inter-

changing of two consecutive rows/columns in Algorithm 2. Suppose that Algorithm 2 interchanges
rows/columns x and x + 1. Let P1 describe this permutation. This is illustrated in Figure 9. We
show that the amount of fill of the row merge matrix (P T

1 AP1)
× is the same as the amount of fill
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Figure 8: Execution of Algorithm 1 on the example matrix from Figure 1.
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Algorithm 2 Postordering the row merge tree.

postorder(T1, . . . , Tr, r)
root[T0] := 0
for i := r down-to 1 do

loop
if ∃x ∈ Ti such that x < root[Ti−1] then

let x be the biggest number with this property
interchange rows and columns (x, x + 1)
update parent[] to reflect the interchanges

else
break out of the loop

end if
end loop
r′ := number of direct descendants of Ti

if r′ 6= 0 then
let T ′

1, . . . T
′
r′ be direct descendants of Ti, root[T ′

1] < . . . < root[T ′
r′ ]

postorder(T ′
1, . . . , T

′
r′ , r

′)
end if

end for

of the permuted row merge matrix P T
1 A×P1. For this, we show that during the process of forming

the row merge matrix of A, at step x (x+1) the same candidate pivot rows, with the same partial
structure are present at step x + 1 (x) when forming the row merge matrix of P T

1 AP1.
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(a)

Figure 9: Illustration for Theorem 7.

Suppose that the row merge tree is formed of the trees T1, . . . , Tr, and consider that they
are in ascending order of their roots. Node x is the largest number in Tr which satisfies the
condition x < root[Tr−1]. Thus, node x + 1 does not belong to Tr. Using the characterization
of rows in L× from Section 3.1, we have that L×(x, 1 : x) ∩ L×(x + 1, 1 : x + 1) = ∅ and
L×(x + 1 : n, x) ∩L×(x + 1 : n, x + 1) = ∅. Thus, interchanging rows (columns) x and x + 1 does
not introduce new candidate pivot rows at steps where x or x + 1 are themselves candidate pivot
rows.

When interchanging rows x and x + 1, if element u×
x,x+1

is nonzero, then element l×x+1,x

becomes nonzero, and this element introduces row x + 1 as a new candidate pivot row at step
x of elimination. Thus we have to prove that u×

x,x+1
= 0 before interchanging x with x + 1 for

our theorem to be valid. Suppose that u×
x,x+1

is nonzero. Theorem 6 implies that x belongs to
either the subtree rooted at x + 1 or to a different tree of RMT (A) of root k < x + 1. Since
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root[Tr] > x + 1, neither of these conditions is fulfilled, and thus u×
x,x+1

= 0. We can conclude
that interchanging rows/columns x and x + 1 does not introduce new candidate pivot rows at
steps x, x + 1 of elimination.

Induction phase We suppose that Algorithm 2 performed a sequence of consecutive rows/columns
interchanges, described by Pm−1, such that the row merge matrix (P T

m−1APm−1)
× has the same

amount of fill as the row merge matrix P T
m−1A

×Pm−1. We consider that Algorithm 2 performs
the permutation of two consecutive rows/columns x and x+1. Let Pm be the permutation matrix
that describes all the permutations performed by Algorithm 2, including the last one. Using a
proof identical to the initial phase, we can show that the row merge matrix of (P T

mAPm)× has the
same amount of fill as the permuted row merge matrix P T

mA×Pm.
Let P be the permutation matrix that describes all the row interchanges performed by Algo-

rithm 2. We have proved that the row merge matrix of P T AP has the same amount of fill as the
permuted row merge matrix P T A×P . 2

To better understand the differences when postordering on the column elimination tree and
postordering on the row merge tree, we consider an example matrix in Figure 10. We assume that
the pivots used during the numerical factorization are the diagonal elements. The fill elements
introduced in L and U are marked as empty circles. We compute its column elimination tree,
its row merge tree and postorder according to each of these trees; we provide comments on the
outcome.

Figure 10 presents at the right the column elimination tree corresponding to the matrix at
the left. In the middle we show the matrix obtained after permuting it according to a postorder
on its column elimination tree. Note that even after postordering, this matrix does not have any
supernode. One method to increase the supernode size is to apply relaxation, which following
some rule, allows a certain number of zero elements in a supernode, and thus becomes a relaxed

supernode; in this way, the columns of L will not have exactly the same structure. Note that in
this simple example, if we consider three particular zero elements as nonzeros (denoted as artificial
nonzeros in Figure 10), it is possible to partition the matrix into four relaxed supernodes.
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Figure 10: Example matrix B (on the left) and its column elimination tree (on the right). Matrix
obtained from B (in the middle) after postordering on its column elimination tree, supernode
relaxation and partitioning.

Figure 11 illustrates the same matrix with its row merge tree. In the middle we present the
matrix obtained after a postorder traversal of this tree. Note that the matrix has a block upper
triangular form when using the row merge tree. Consider that the 4 particular zero elements
(denoted as artificial nonzeros in Figure 11) can be considered nonzero. It is possible to obtain 3
supernodes that are larger than the supernodes of matrix in Figure 10.
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Figure 11: Example matrix B (on the left) and its row merge matrix (on the right). Matrix
obtained from B (in the middle) after postordering on its row merge tree, supernode relaxation
and partitioning.

In general, let us consider the lower triangular part L× of the row merge matrix of the pos-
tordered matrix P T AP . For each nonzero element l×ij , Theorem 3 implies that i and j belong

to a same tree of RMT (P T AP ). Since the nodes are ordered according to a postorder of the
row merge tree, every nonzero element of L× belongs to a diagonal block, where the nodes of the
diagonal block correspond to a tree of RMT (P T AP ). This shows that the postordered matrix
exhibits a block upper triangular form.

6 Experimental results

In this section we analyze experimentally the usage of the row merge tree. For this, we consider
different approaches that can be employed for the structure prediction problem of the sparse LU
factorization with partial pivoting, and discuss their advantages and drawbacks on a set of real
world matrices.

The goal of our experiments is two-fold. First, we want to compare the size of the bounds
L×

rmt and U×
rmt obtained based on the row merge tree and the size of the bounds L×

colt and
U×

colt obtained based on the column elimination tree. These bounds represent upper bounds of
the nonzero structure of L and U . This comparison is also relevant for the QR factorization,
because the bounds L×

rmt and U×
rmt are equal to the structure of the factors from the orthogonal

factorization, when there is no coincidental numerical cancellation. Second, we want to study the
impact of using the row merge tree instead of the column elimination tree during the numerical
LU factorization. Two aspects are discussed. One aspect considers the size of the factors L and
U obtained in the two approaches. In particular, this allows us to evaluate the gap between
the estimated upper bounds and the real memory needs of the sparse LU factorization with
partial pivoting. Another aspect considers the impact of the row merge tree on the numerical
factorization.

We use matrices of medium and large sizes from a variety of application domains. These
matrices were obtained from the Harwell-Boeing Collection and from the ftp site maintained
by Tim Davis of the University of Florida. For all the tests we use Liu’s multiple minimum
degree algorithm [19] on the structure of AT A to preorder the columns of A. The runtimes
were obtained on a single processor of IBM SP RS/6000 distributed memory machine at NERSC
(National Energy Research Scientific Computing Center). Each processor is clocked at 375 Mhz
and has a peak performance of 1.5 GFlops. Each compute node of 16 processors has 16 to 64
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Maximum Maximum Fine
matching Compute Compute matching decomp.

Matrix Order |A| Sym. MC21 coletree rmtree BTF BTF

bayer04 20545 159082 0.02 0.069 0.020 0.020 0.069 0.014
hcircuit 105676 513072 0.20 0.042 0.071 0.089 0.015 0.069
hydr1 5308 23752 0.00 0.010 0.010 0.010 0.009 0.003
mahindas 1258 7682 0.00 0.000 0.000 0.000 0.001 0.001
rajat23 110355 555441 0.19 0.181 0.072 0.100 0.152 0.069
rajat26 51032 247528 0.26 0.038 0.031 0.038 0.030 0.028
tols4000 4000 8784 0.00 0.000 0.000 0.000 0.000 0.002
twotone 120750 1224224 0.03 12.340 0.138 0.187 10.812 0.124
west2021 2021 7353 0.00 0.000 0.000 0.000 0.000 0.001

Table 1: Benchmark matrices and their characteristics (the order, the number of nonzeros |A| and
the numeric symmetry Sym after maximum matching). Runtimes (in seconds) of the maximum
matching routine MC21, the column elimination tree algorithm, the row merge tree algorithm and
the Dulmage Mendelsohn decomposition (denoted as BTF and divided into time for maximum
matching and time for fine decomposition).

Gbytes of shared memory.
Consider an input matrix A. One approach to factorize it consists of applying the Dulmage

Mendelsohn decomposition to transform the matrix into a block upper triangular form such that
each diagonal block satisfies the strong Hall property. Thus the column elimination tree can be
used for structure prediction purposes. To evaluate this approach, we have used the algorithm
presented in [24] to compute the Dulmage Mendelsohn decomposition.

Another approach is to ignore the Dulmage Mendelsohn decomposition on the input matrix.
One computes the factorization of the matrix A, and still uses the column elimination tree as the
main tool for structure prediction. SuperLU [5] and its shared memory version SuperLU MT [6]
are based on this approach. Before the symbolic and numeric computation of the factors, the
column elimination tree of matrix A is computed, and the columns of matrix A are permuted
according to a postorder on this tree. In the shared memory version, the column elimination tree
is also used to guide the parallel execution, and its associated column counts are used to allocate
memory. UMFPACK4 [4] uses a slightly different approach. First, the matrix is preprocessed
to find a permutation of rows and columns that identifies singletons. An example of a matrix
obtained after the permutation is presented in Figure 12, in which the shaded blocks illustrate
portions of the matrix that can contain nonzero elements. That is, the permuted matrix has
first columns that have only zero elements below the diagonal, then rows that have only zero
elements in the upper triangular part. These singletons can be eliminated without causing any fill
in the remaining submatrix S. The column elimination tree is used then for structure prediction
purposes only on the remaining submatrix S. The parallel unsymmetric-pattern multifrontal
solver described in [1] also uses the column elimination tree for structure prediction purposes.
Before the computation of the factors, the tree and the associated bounds on the nonzero counts
for the columns of L and rows of U are used to detect supernodes. During the computation of
the factors, the tree is used to exploit parallelism.

We study the usage of the row merge tree as an alternative to the column elimination tree for
matrices that are not decomposed using the Dulmage Mendelsohn decomposition. When either
the row merge tree or the column elimination tree is used, in our experiments the rows are first
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Figure 12: Matrix obtained after the permutation for identifying singletons, as used in UMF-
PACK4. The shaded blocks illustrate portions of the matrix that can contain nonzero elements.

permuted such that the matrix has nonzeros on its main diagonal. We use the subroutine MC21A
for this step, available in the Harwell library and presented in [7, 8]. We use the algorithm
presented in [15] to compute the column elimination tree.

We consider matrices for which Dulmage Mendelsohn decomposition yields a nontrivial block
upper triangular form. These matrices and their characteristics are presented in the first four
columns of Table 1. The fifth column presents the time spent to find the row permutations
for a nonzero diagonal (during the maximum matching algorithm MC21A). The sixth and the
seventh columns present the times spent to compute the column elimination tree and to compute
the row merge tree, respectively. We can remark that the run time of the row merge tree is
slightly higher than that of the column elimination tree. This is due mainly to the computation
of the maximum element in each column of L×. This computation has to take into account
the row permutations from the maximum matching algorithm, while the column elimination tree
algorithm is independent of any row permutations.

The algorithm to compute the block triangular form of a matrix [24], referred to as BTF,
considers rectangular matrices and has three different phases. The first phase finds a maximum
matching in the bipartite graph H(A). The second phase, called coarse decomposition, decom-
poses the matrix in three submatrices Ah, As and Av such that Ah is underdetermined, As is
square and Av is overdetermined. The third phase, called fine decomposition, further decomposes
submatrices Ah, As and Av in block diagonal forms for Ah and Av and block upper triangular
form for As. The last two columns of Table 1 present the results obtained when applying this
algorithm on our test matrices. As we consider only square matrices in this paper, we present
only the time to compute a maximum matching and a fine decomposition. We can remark that,
in general, the maximum matching step takes a longer time than the fine decomposition step. For
some of the matrices, the difference can be very large.

Comparing results in Table 1, we can observe that the time to compute the row merge tree is
always smaller than the sum of the time to do a fine decomposition plus the time to compute the
column elimination tree.

6.1 Impact on structure estimation

We present a comparison between the row merge tree and the column elimination tree when
they are used to predict upper bounds of the structure of L and U . To compute the number of
nonzeros in the bounds L×

colt and U×
colt based on the column elimination tree, we use the algorithms

presented in [15]. To compute the number of nonzeros in L×
rmt and U×

rmt based on the row merge
tree, we employ the approach described in [17]. Timewise, this approach can be up to two times
slower than the algorithms used for the column elimination tree. But this can be improved by
using ideas from the algorithms presented in [15] and we plan to do it in the future.
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Based on Based on Percentage
column etree row merge tree modification

Matrix |Lcolt| |Ucolt| |Lrmt| |Urmt| for |L| for |U |

bayer04 BOUND 284267 669726 267376 616226 5.9 8.0
REAL 209988 377155 210197 377459 -0.1 0.0

hcircuit BOUND 3887842 10833620 3882549 9842235 0.1 9.1
REAL 2812358 2820809 2812358 2820811 0.0 0.0

hydr1 BOUND 31458 79986 30627 78972 2.6 1.3
REAL 29433 46253 29433 46253 0.0 0.0

mahindas BOUND 20112 50382 16027 40926 20.3 18.8
REAL 8111 14832 8111 14834 0.0 0.0

rajat23 BOUND 30939249 9513083 29046909 8679786 8.7 6.1
REAL 3064975 4094217 3064975 4094217 0.0 0.0

rajat26 BOUND 5555304 17732590 4836441 16718488 12.9 5.7
REAL 1466073 2424578 1466073 2424578 0.0 0.0

tols4000 BOUND 6061 11133 4276 8753 29.4 21.4
REAL 4224 8648 4224 8648 0.0 0.0

twotone BOUND 8529459 23629754 7247851 17901697 15.0 24.2
REAL 6227043 13276925 6229064 13283485 0.0 0.0

west2021 BOUND 8026 19422 8009 18310 0.2 5.7
REAL 6256 8955 6256 8971 0.0 0.0

Table 2: Impact of the row merge tree on structure estimation. In the lines BOUND, |Lcolt| and
|Ucolt| (|Lrmt| and |Urmt|) denote the size of the upper bounds computed based on the column
elimination tree (row merge tree). In the lines REAL, |Lcolt| and |Ucolt| (|Lrmt| and |Urmt|) denote
the factors computed based on the column elimination tree (row merge tree). Their percentage

modification is computed as |Lcolt|−|Lrmt|
|Lcolt|

∗ 100 and |Ucolt|−|Urmt|
|Ucolt|

∗ 100.
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Table 2 presents the upper bounds for the structure of L and U for the matrices in our test set.
The lines denoted BOUND report the upper bounds of the structure of L and U computed using
the column elimination tree (third and fourth columns) and the row merge tree (fifth and sixth
columns). We observe that for matrix tols4000, the reduction is as large as 29.4%. For twotone
matrix, which is a large, very sparse, and very unstructured matrix, it leads to 24% smaller upper
bounds. This shows that the row merge tree can effectively reduce the sizes of the upper bounds
of the structure of L and U in some cases.

We also compare the size of the bounds with the real size of the factors L and U . The lines
denoted REAL report the size of the factors L and U resulting from the LU factorization with
row interchanges. The size of the factors differs slightly when using the column elimination tree
(third and fourth columns) and when using the row merge tree (fifth and sixth columns). We
observe that the size of the factor L is better estimated than the size of the factor U . This is
consistent with the observation in [12]. For matrix rajat23, the bound for L severely overestimates
the size of the factor L. But for most of the matrices, the bound is less than two times larger
than the real size of the factors. For some matrices, as hydr1, tols4000, the bound is close to the
real size of the factors.

6.2 Impact on block triangular form decomposition

For the same subset of matrices used in Tables 2 and 4, we present in Table 3 several characteristics
of the blocks on the diagonal obtained after postordering the row merge tree (lines denoted
RMT) and after applying the Dulmage Mendelsohn decomposition (lines denoted BTF). Column
3 displays the order of the largest block. Column 4 shows the number of blocks of order 1. Column
5 presents the number of blocks of order between 2 and 10. The last two columns present the
number of the remaining blocks on the diagonal and the range of their orders, respectively.

Consider the results obtained by the Dulmage Mendelsohn decomposition. As already pre-
sented in the literature [9, 24], for most of the matrices the decomposition leads to a large block
on the diagonal. Most of the other blocks are of order 1. For few matrices, like lhr71, this
decomposition leads to several non trivial blocks on the diagonal.

Consider now the results obtained by postordering the row merge tree. For most of the
matrices, a large block is obtained on the diagonal. Except for six matrices, all the other blocks
are of order 1.

When comparing the results obtained by the row merge tree postordering and by the Dulmage
Mendelsohn decomposition in Table 3, as one would expect, Dulmage Mendelsohn decomposition
leads to a bigger number of blocks on the diagonal. Generally the largest diagonal block, intro-
duced by postordering the row merge tree, is bigger than the largest diagonal block produced by
the Dulmage Mendelsohn decomposition.

6.3 Impact on numerical factorization

To evaluate the impact of the row merge tree on the factorization runtime, we use the SuperLU
solver [5], which uses a supernodal left-looking approach. At each step of the factorization, a
column of the factors L and U is computed using the previously computed supernodes. The most
time consuming part in this computation is the update of the current column j by previous supern-
odes k in the operation A(i, j) := A(i, j)−L(i, k)×U(k, j). Since L is partitioned in supernodes,
each supernode k is represented as a dense matrix. This operation is usually performed through
a call to the dense matrix-vector multiplication routine DGEMV in Level 2 BLAS. In SuperLU,
when the size of the supernode k or the size of the vector U(k, j) is too small, scalar operations
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Order Number Number Number Order
Largest of blocks of blocks of other of other

Matrix Method Block of order 1 of order 2-10 blocks blocks

bayer04 RMT 15886 4123 241 0 0
BTF 13762 6349 19 9 34 - 49

hcircuit RMT 92184 35 1056 281 14 - 4927
BTF 92144 84 1054 281 14 - 4927

hydr1 RMT 4831 473 2 0 0
BTF 2370 968 2 3 17 - 1920

mahindas RMT 869 343 16 0 0
BTF 589 669 0 0 0

rajat23 RMT 105174 4550 105 2 57 - 222
BTF 103024 5888 126 37 15 - 216

rajat26 RMT 46680 3841 98 9 13 - 57
BTF 37284 4499 121 45 13 - 7672

tols4000 RMT 19 3910 18 0 0
BTF 18 3982 0 0 0

twotone RMT 114359 6375 6 0 0
BTF 105740 12750 380 0 0

west2021 RMT 1708 87 63 1 26
BTF 1500 521 0 0 0

Table 3: Results comparing the number and the order of the blocks on the diagonal obtained
when using the row merge tree (RMT) and when using the Dulmage Mendelsohn decomposition
(BTF).
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are employed. More generally, when the size of the supernodes involved in this operation is too
small, the performance of DGEMV can drop significantly. To ensure that DGEMV operation uses
data that fits in cache, SuperLU controls the maximum size of a supernode by a parameter, which
we set at 100. SuperLU uses partial pivoting with threshold and chooses in priority the diagonal
element. In our experiments we use a threshold of 1, that is at each step of factorization the
element of maximum magnitude in the current column of L is used as pivot. To increase the size
of supernodes, SuperLU merges together columns at the lower levels of the column elimination
tree, independently of their nonzero structure. A relaxation parameter r controls the merge as
follows. A node i is merged with its parent k if the subtree rooted at k has at most r nodes and
k is not a root node.

For our experiments, we have replaced the column elimination tree with the row merge tree
in SuperLU. First, we use no relaxation. We report in columns 2 and 6 of Table 4 the number of
supernodes (#snodes) obtained when using the column elimination tree and when using the row
merge tree. We can observe that for most of the matrices, the number of supernodes decreases
only slightly when using the row merge tree. We have also compared the number of flops and
the time spent in the factorization, and they are comparable in both approaches. Hence we do
not include these results in Table 4. Even for matrix twotone, for which we observe an important
decrease in the number of supernodes, there is no important decrease in the factorization time. To
better understand this behavior, we plot in the left figure of Table 5 the distribution of supernode
sizes for matrix twotone when using the row merge tree (denoted as twotoneRMT ) and when
using the column elimination tree (denoted as twotoneCOLT ). In both cases, the size of most
of the supernodes is one or two. When using the row merge tree, the number of supernodes of
size one is 62276 and the number of supernodes of size two is 6941. When using the column
elimination tree, the number of supernodes of size one is 64793 and the number of supernodes
of size two is 6433. With both approaches, the largest supernode is of size 36. For the sake of
clarity, in the right figure of Table 5 we plot only the supernodes of size 3 to 25. These plots
show that the usage of the row merge tree decreases significantly the number of supernodes of
size one while increasing mainly the number of supernodes of size two and three. Since SuperLU
uses scalar operations for supernodes of size smaller than 4, this change in the distribution of the
supernode sizes is not reflected in the usage of DGEMV routine. We can also observe that the
usage of the row merge tree increases significantly the number of supernodes of size 12. However,
the impact of this increase on the usage of DGEMV routine is annihilated by the decrease in the
number of supernodes of size 8.

Second, we use the relaxation option in SuperLU with a parameter of 5. Relaxation introduces
some artificial nonzeros (i.e., treating some zeros as nonzeros) in the factors and results in more
floating point operations being performed. However, the extra zeros also should lead to larger
supernodes, allowing for a more efficient usage of BLAS routines and thus to a smaller numeric
factorization time.

Indeed such an effect can be observed in some cases in Table 4. Columns 3 to 5 and 7 to 9
of this Table contain the size of supernodes (#snodes), the number of floating point operations
performed during the numerical factorization (#flops), and the time spent in the factorization
step when using the column elimination tree and when using the row merge tree. The number
of supernodes is always smaller when relaxation is used on the column elimination tree. This is
due to the fact that with the relaxation on the row merge tree, columns that belong to different
trees are not grouped together. Hence, relaxation is mainly performed on the large block on the
diagonal, and this tends to reduce the number of nonzeros that have to be stored in the relaxed
supernodes. Consequently, the row merge tree approach requires less floating point operations
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Based on Based on
column etree row merge tree

no relax. with relax. no relax. with relax.
#flops time #flops time

Matrix #snodes #snodes (106) (secs) #snodes #snodes (106) (secs)

bayer04 17827 11774 22.71 0.41 17745 13007 21.84 0.40
hcircuit 67383 49972 2250.71 10.56 67380 50022 2250.32 10.61
hydr1 4821 4233 0.67 0.06 4821 4472 0.66 0.05
mahindas 1177 813 0.64 0.02 1172 947 0.61 0.02
rajat23 77722 57146 1382.49 7.76 77719 60923 1115.41 6.48
rajat26 36347 26705 799.47 4.23 36311 28670 734.90 3.96
tols4000 3982 854 0.09 0.01 3982 3982 0.03 0.01
twotone 76969 53591 12421.62 86.02 75203 64644 12054.96 83.04
west2021 1887 1131 0.09 0.02 1863 1170 0.08 0.01

Table 4: Impact of the row merge tree on numerical factorization. #snodes denotes the number
of supernodes, #flops denotes the number of floating point operations performed during nu-
meric factorization, and time denotes the numeric factorization time. We present results without
relaxation (no relax.) and with relaxation (with relax.)

than the column elimination tree.
Similarly with larger supernodes, the use of the column elimination tree is expected to lead to

a better usage of BLAS routines and a smaller factorization time when compared to the use of the
row merge tree. However, the numerical results show that for the larger matrices, the row merge
tree approach requires less factorization time. For example for matrix rajat23, the use of the row
merge tree compared to the column elimination tree leads to 13% fewer number of nonzeros and
less memory usage, 19% fewer floating point operations and a 16% faster factorization. We think
that this is mainly due to the fact that the small blocks on the diagonal have a small contribution
to the numeric factorization time, and hence it is not useful to merge them.

6.4 Remarks

The preprocessing phase that UMFPACK uses to identify singletons provides a different approach
for the structure prediction of Hall matrices. In this approach, the permuted matrix has ordered
first columns of L that have only the diagonal element nonzero, second rows of U that have only the
diagonal element nonzero, and third the remaining columns and rows. The column elimination
tree is used for structure prediction purposes only on the remaining matrix. To compare this
approach to our approach, we restricted our attention to the following experiment. Consider S
the submatrix obtained by removing from A the columns of L and the rows of U that have only
the diagonal element nonzero. We analyzed the structure prediction of submatrix S using the
column elimination tree and then using the row merge tree. When analyzing the decomposition
in a block triangular form, for most of the matrices the row merge tree identifies few blocks on the
diagonal. One of the exceptions is matrix twotone, which has 381 blocks on the diagonal. When
analyzing the estimation of upper bounds for the structure of L and of U , the decrease obtained
by the usage of the row merge tree is generally not significant. When analyzing the supernodes,
the usage of the row merge tree tends to create slightly smaller number of supernodes. But
there are cases when the usage of the column elimination tree leads to a slightly smaller number
of supernodes. These experiments make us believe that the usage of the row merge tree is not
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Table 5: Size of supernodes for matrix twotone.

motivated in this case. A more thorough analysis is necessary for an overall comparison of the
usage of the row merge tree on the matrix A with the approach used in UMFPACK. But this is
beyond the scope of the paper.

We also studied the row merge tree for matrices that satisfy the strong Hall property and we
noticed that its usage does not introduce significant extra time. Moreover its structure is equal
to the structure of the column elimination tree for these matrices.

7 Conclusions

In this paper we have studied properties of the row merge tree and its role in the Gaussian
elimination with partial pivoting of matrices that satisfy only the Hall property. We have presented
new theoretical results that relate the nonzero structure of rows in the lower triangular part of
the row merge matrix to branches of the row merge tree, and the nonzero structure of columns in
the upper triangular part of the row merge matrix to subtrees of the row merge tree, respectively.
These results allowed us to develop an efficient algorithm for building the row merge tree, which
uses as input solely the structure of A. We have also analyzed the practical interest of the row
merge tree by studying experimentally its usage as an alternative to the usage of the column
elimination tree. We have used a set of 25 matrices that satisfy only the Hall property. To study
the impact of the row merge tree on the factorization time, we have used the SuperLU solver
with relaxation in which the row merge tree was used for structure prediction purposes. We
have observed that for 9 matrices in our test set, the use of the row merge tree provides a better
alternative than the column elimination tree. For these matrices, it leads to a decrease in the size
of the upper bounds of the factors L and U (up to 29.4% for the L factor for matrix tols4000 and
up to 24.2% for the U factor for matrix twotone). For the larger matrices, the row merge tree
approach leads to a decrease in the runtime of the factorization (up to 16% for matrix rajat23)
and a decrease in the memory usage during the factorization (up to 13% for matrix rajat23). We
think that this is due mainly to performing relaxation on the row merge tree, that reflects a block
upper triangular form of the input matrix. When no relaxation is used, we have observed that
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the usage of the row merge tree leads to a decrease in the number of supernodes. However, since
most of the supernodes are still of small size, it does not lead to a decrease of the factorization
time.

The structure of the column elimination tree is independent of any row permutation. On
the other hand, the row merge tree depends on the row permutation. This tree provides a more
precise estimation of the structure of L and U when the matrix has a zero free diagonal. Hence its
usage introduces a supplementary time to permute the matrix to a zero free diagonal form, and
this can present one major drawback. However, there are cases when it is interesting for different
reasons to permute the matrix to a zero free diagonal form. For example, a very used approach
consists in permuting large entries on the diagonal [10] to decrease pivoting during the numerical
factorization.

Other studies of the row merge tree structure can be found in [21] and [23]. Liu [21] uses the
row merge tree to propose a computational sequence of steps for performing Givens rotations.
The assumption taken in that paper is that the Cholesky factor of AT A has the same structure as
the orthogonal factor R, condition satisfied when the matrix has the strong Hall property (which
is a difference from the method presented in this paper, in that we assume only the Hall property).
Another difference is related to the structure of the tree. The leaves of the row merge tree in [21]
correspond to rows in the matrix, while the nodes correspond to columns in the matrix. The tree
structure studied here considers only the nodes corresponding to columns in the matrix.

Oliveira [23] presented a different method for building row merge trees for matrices satisfying
only the Hall property. The approach described in that paper is as follows. First the column
elimination tree is computed. Then the number of nonzeros in each column of L× is computed,
thus identifying columns with only zero elements. Then two post-processing steps are applied on
the column elimination tree in order to delete several edges, thus rendering this tree into the row
merge tree. In this paper we take a different approach in that we compute the structure of the
row merge tree in one step, using as input the structure of the original matrix A.

The row merge tree structure discussed in this paper can find usage in several solvers. Solvers
like the sequential and shared memory versions of SuperLU can consider the use of the row merge
tree instead of the column elimination tree for postordering and guiding the parallel execution.
Solvers like S+ and S* [26] use the structure of L× and U× during the numerical factorization,
thus allowing operations on possibly zero entries. These solvers already use the row merge tree,
but its structure is computed after computing the row merge graph. No postordering step is
applied. Computing first the row merge tree, applying a postordering step, and finally computing
the structure of the row merge graph can lead to increase in BLAS usage and decrease in time
for the symbolic factorization step of this solver.
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