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Abstract. In this paper we consider two structure prediction problems of interest in Gaussian
elimination with partial pivoting of sparse matrices. First, we consider the problem of determining the
nonzero structure of the factors L and U during the factorization. We present an exact prediction of
the structure that identifies some numeric cancellations appearing during Gaussian elimination. The
numeric cancellations are related to submatrices of the input matrix A that are structurally singular,
that is, singular due to the arrangements of their nonzeros, and independent of their numerical values.
Second, we consider the problem of estimating upper bounds for the structure of L and U prior to
the numerical factorization. We present tight exact bounds for the nonzero structure of L and U
of Gaussian elimination with partial pivoting PA = LU under the assumption that the matrix A
satisfies a combinatorial property, namely, the Hall property, and that the nonzero values in A are
algebraically independent of each other. This complements existing work showing that a structure
called the row merge graph represents a tight bound for the nonzero structure of L and U under a
stronger combinatorial assumption, namely, the strong Hall property. We also show that the row
merge graph represents a tight symbolic bound for matrices satisfying only the Hall property.
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1. Introduction. In this paper we consider the problem of structure prediction
when solving a linear system Ax = b by Gaussian elimination with partial pivoting,
where A is an n × n sparse, nonsingular, and nonsymmetric matrix and b is an n-
vector. This elimination, also called LU factorization, involves explicit factorization
of the matrix A into the product of L and U , where L is a unit lower triangular matrix
and U is an upper triangular matrix.

One of the main characteristics of the sparse LU factorization is the notion of fill.
“Fill” denotes a nonzero entry in the factors that was a zero in matrix A. When Gaus-
sian elimination without pivoting is used, the nonzero structure of the factors can be
computed without referring to the numerical values of the matrix and is determined
before performing the numerical computation of the factors themselves. Knowledge
of this structure is used to allocate memory, set up data structures, schedule parallel
tasks, and save time [16] by avoiding operations on zeros. When pivoting is used for
numerical stability [13], the structure of L and U depends not only on the structure
of A but also on the row interchanges. As the row interchanges are determined while
doing the numerical factorization, the computation of the structure of the factors has
to be interleaved with the computation of the numerical values of the factors. Prior
to the numerical factorization, only upper bounds of the structure of L and U can be
determined.
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We discuss in this paper two structure prediction problems. The first problem
considers the computation of the nonzero structure of the factors during Gaussian
elimination with row interchanges. The second problem is to obtain tight bounds of
the structure of L and U prior to the numerical factorization. For both problems, we
study relations between the combinatorial properties of the nonzero structure of the
matrix A and the LU factorization.

Two kinds of structure prediction and two combinatorial properties of the input
matrix are usually considered for these problems. The two structure predictions are
called symbolic and exact [11]. Symbolic structure prediction assumes that the addi-
tion or subtraction of two nonzero results always yields a nonzero result. It ignores
possible numeric cancellations occurring during the LU factorization. Exact structure
prediction assumes that the nonzero values in A are algebraically independent from
each other; in other words, it assumes that any computed zero is due to combinatorial
properties of the nonzero structure. The two combinatorial properties of the input
matrix are called the strong Hall property and the Hall property. The strong Hall
property is an irreducibility condition. The Hall property is a weaker combinatorial
assumption and is related to matrices with full-column rank. We will define these two
properties in more detail later in the paper. A matrix that satisfies the Hall property
can be decomposed using the Dulmage–Mendelsohn decomposition [2, 17, 18] into a
block upper triangular form such that every block on the diagonal satisfies the strong
Hall property. However, in practice this decomposition is not always used, and hence
it is interesting to understand the structure prediction for matrices satisfying either
the strong Hall property or the Hall property.

Much of the research has been aimed at predicting the structure and bounds of
the factors L and U as tightly as possible [9, 10, 11, 12, 20]. The existing results
for determining the nonzero structure of L and U during Gaussian elimination with
partial pivoting PA = LU are symbolic [20]. Under several additional conditions,
this structure prediction is exact [11]. But in general it ignores possible numeric
cancellations during the factorization for matrices satisfying the strong Hall property
or only the Hall property. For the problem of predicting bounds for the structure of L
and U prior to the numerical factorization, the existing results in the literature assume
that A satisfies the strong Hall property. The results assume the LU factorization with
partial pivoting is seen as

A = P1L1P2L2 . . . Pn−1Ln−1U,

where Pi is an n×n elementary permutation matrix identifying the row interchanges
at step i. Li is an n×n elementary lower triangular matrix whose ith column contains
the multipliers at step i. U is an n×n upper triangular matrix. L̃ is the n×n matrix
whose ith column is the ith column of Li so that L̃ − I =

∑
i (Li − I). Note that

this L̃ is not the same as the factor L obtained from the factorization PA = LU .
Both matrices are unit lower triangular, and they contain the same nonzero values
but in different positions. The factor L has its rows in the order described by the
entire row permutations. The factor L̃ has the rows of its ith column in the order
described by only the first i row interchanges. George and Ng [9] predict an upper
bound of the nonzero structure of L̃ and U , called the row merge graph, that contains
the nonzeros in L̃ and U for all possible row permutations which can later appear
in the numerical factorization due to pivoting. Gilbert and Ng [11] showed that this
is a tight exact bound for a square matrix with nonzero diagonal which satisfies the
strong Hall property.
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In this paper we provide answers to several open questions related to the two
structure prediction problems considered here. For the first problem, we identify the
exact structure prediction of L and U during LU factorization with partial pivoting.
For the second problem, we describe the exact bounds of the factors obtained from the
factorization PA = LU , when the matrix A satisfies only the Hall property. These
exact bounds are not symbolic bounds. Then we show that the row merge graph
represents symbolic bounds for the structure of L̃ and U .

The exact structure prediction is based on the following approach: all of the
elements of the factors L and U can be computed using the determinants of two
submatrices of the input matrix A (see, for example, Gantmacher [8]). Consider, for
example, the element in position (i, j) of U , where i and j are two indices with i ≤ j.
Let Ai−1 be the submatrix of A formed by the first (i − 1) columns and the first
(i − 1) rows of A. Let K be the i × i submatrix of A that includes the first i rows,
the first i − 1 columns, and column j of A. Then the value in position (i, j) of the
factor U is given by the quotient of the determinant of K and the determinant of
Ai−1. A similar relation exists for the elements of L. Our new results identify when
the submatrix K is structurally singular, that is, singular due to the arrangements
of its nonzeros, and independent of the numerical values. In exact arithmetic, the
determinant of K is zero, and hence the element in position (i, j) corresponds to a
numeric cancellation. This numeric cancellation is identified in our new results on
exact structure prediction. However, in a backward stable factorization A+ E = L̂Û ,
the computed factors L̂ and Û are not necessarily close to the exact A = LU factors,
even though the norm of E is small. In particular, a zero in L or U may, in principle,
be large in L̂ or Û , so rounding it to zero may cause backward instability.

The rest of the paper is organized as follows. In section 2 we present background
and several new results used throughout the paper. In section 3 we consider the
problem of determining the nonzero structure of the factors L and U during Gaussian
elimination with partial pivoting. We present new results that give an exact charac-
terization of the fill occurring in the LU factorization. We show how the theoretical
results can be used in an algorithm for computing fill-ins.

In sections 4 and 5 we consider the problem of predicting bounds for the structure
of L and U prior to the numerical factorization. In section 4 we present an exact
analysis for matrices that satisfy the Hall property. We present tight exact bounds
for the nonzero structure of L and U of Gaussian elimination with partial pivoting
PA = LU . In section 5 we present a symbolic analysis, and we show that the row
merge graph is a lower symbolic bound for the factors L̃ and U of the factorization
A = P1L1P2L2 . . . Pn−1Ln−1U . In other words, for every edge of the row merge graph
of a Hall matrix, there is a permutation such that this edge corresponds to a symbolic
nonzero in L̃ or U . By a simple counterexample, we will show that the row merge
graph is not a tight bound for the factors L and U in the exact sense. These results are
of practical interest since the row merge graph is used by several solvers implementing
the sparse LU factorization with partial pivoting. In solvers like the sequential and
shared memory versions of SuperLU [5, 6], the row merge graph is used to estimate
the memory needs prior to the LU factorization. In solvers proposed in [9, 21], the
numerical computation of the factors L and U is performed on the row merge graph,
and some operations involve zero elements. Finally, section 6 presents concluding
remarks.

2. Graphs of matrices and their properties. In this section we provide the
necessary notions to study the structure prediction of the sparse LU factorization
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with partial pivoting. We give definitions, previously published results, and two new
results (Lemmas 2.6 and 2.7) that are needed by our subsequent proofs.

Let A be a sparse n × n matrix. Aij denotes the element at row i and column j
of A. We refer to the determinant of matrix A as det(A). We denote the submatrix
of A formed by elements of row indices from i to j and column indices from d to e
as A(i: j, d: e). When the indices are not consecutive, we use the following notation:
A([i: j, k], d: e) denotes the submatrix of A formed by elements of row indices from i
to j and k and column indices from d to e. We refer to the submatrix A(1: i, 1: i) as
the principal minor of order i of A.

Two graphs are used to predict the nonzero structure of the factors L and U from
the structure of A. The first graph is the directed graph of A and is denoted by G(A).
This graph has n vertices and an edge 〈i, j〉 for each nonzero element Aij . We say
that the edge 〈i, j〉 is incident on the vertices i and j.

The second graph is the bipartite graph of A, denoted by H(A). This graph is
undirected and has n row vertices, n column vertices, and an edge 〈i′, j〉 if and only if
the element Aij is nonzero. Note that whenever possible, we use prime to distinguish
between row vertices and column vertices in a bipartite graph. Also we use i, j, k, d,
and e to denote a vertex of H for which it is known if it is a column or a row vertex.
That is, i′ stands for a row vertex and i for a column vertex. We use v and w to
denote a generic vertex of H , that is, a vertex that can be a row vertex or a column
vertex.

A path is a sequence of distinct vertices Q = (v0, v1, . . . , vq−1, vq) such that for
each two consecutive vertices vi, vi+1 there is an edge from vi to vi+1. The length of
this path is q. The vertices v1, . . . , vq−1 are called intermediate vertices.

Let H be a bipartite graph with m row vertices and n column vertices. A matching
M on H is a set of edges, no two of which are incident on the same vertex. A vertex
is covered or matched by M if it is an end point of an edge of M . A matching is
called column-complete if it has n edges, row-complete if it has m edges, and perfect
if m = n and it is both row- and column-complete. Given a graph H and a column
vertex i, we denote by H − i the subgraph of H induced by all of the row vertices and
all of the column vertices except i.

The next lemma identifies a matching in the bipartite graph H of A such that if
the edges of M become the diagonal elements, the values chosen make the permuted
matrix strongly diagonally dominant. It will be used in section 4 to prove our results
on exact structure prediction for Hall matrices.

Lemma 2.1 (Gilbert and Ng [11]). Suppose the bipartite graph H has a perfect
matching M . Let A be a matrix with H(A) = H such that Aij > n for 〈i′, j〉 ∈ M
and 0 < Aij < 1 for 〈i′, j〉 /∈ M . If A is factored by Gaussian elimination with partial
pivoting, then the edges of M will be the pivots.

If M is a matching on H , an alternating path with respect to M is a path on which
every second edge is an element of M . A c-alternating path is a path that follows
matching edges from rows to columns. An r-alternating path is a path that follows
matching edges from columns to rows. Suppose the last vertex of one c-alternating
path is the first vertex of another c-alternating path. The path obtained by their
concatenation is also a c-alternating path. The same result holds for r-alternating
paths. Suppose Q is an alternating path from an unmatched vertex v to a different
vertex w. If the last vertex w on Q is unmatched or the last edge on Q belongs to M ,
then a new matching M1 can be obtained from M by alternating along path Q. The
set of edges of M1 is given by M ⊕Q = (M ∪ Q) − (M ∩ Q). If w is matched by M ,
then v is matched and w is unmatched by M1 and |M1| = |M |. If w is unmatched
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by M , then both v and w are matched by M1, |M1| = |M | + 1, and Q is called an
augmenting path with respect to M .

2.1. Hall and strong Hall graphs. We briefly review the Hall and the strong
Hall properties and related results. For a detailed description of Hall and strong Hall
matrices and their properties, the reader is directed to [2, 3, 11].

A bipartite graph with m rows and n columns has the Hall property if every set
of k column vertices is adjacent to at least k row vertices, for all 1 ≤ k ≤ n. The
next theorem and corollary relate the Hall property to column-complete matchings
and matrices with full-column rank. In Corollary 2.3 [11] it is shown that if H is Hall
and given a matrix A with H = H(A), then the set of ways to fill in its values to
make it singular has measure zero. Hence almost all matrices A with H = H(A) have
full-column rank.

Theorem 2.2 (Hall’s theorem). A bipartite graph has a column-complete match-
ing if and only if it has the Hall property.

Corollary 2.3 (Gilbert and Ng [11]). If a matrix A has full-column rank, then
H(A) is Hall. Conversely, if H is Hall, then almost all matrices A with H = H(A)
have full-column rank.

Known results in structure prediction were obtained under an additional assump-
tion, called the strong Hall property. A bipartite graph with m rows and n ≤ m
columns satisfies the strong Hall property if

(i) m = n > 1 and every set of k column vertices is adjacent to more than k row
vertices, for all 1 ≤ k < n, or

(ii) m > n and every set of k column vertices is adjacent to more than k row
vertices, for all 1 ≤ k ≤ n.

Lemma 2.4 (Gilbert and Ng [11]). If H is strong Hall and has more nonzero
rows than columns and M is any column-complete matching on H, then from every
row or column vertex v of H there is a c-alternating path to some unmatched row
vertex i′ (which depends on v and M).

The next theorem relates alternating paths and matchings in strong Hall graphs.
This theorem was used in several structure prediction results, in the context of sparse
LU factorization by Gilbert and Ng in [11], as well as in the sparsity analysis of QR
factorization by Coleman, Edenbrandt, and Gilbert in [4] and Hare et al. in [15]. In
this paper we will use it in Lemma 2.6 to derive a new result on alternating paths
and matchings in strong Hall graphs.

Theorem 2.5 (alternating paths, Gilbert [12]). Let H be a strong Hall graph
with at least two rows, let i be a column vertex of H, and let v be any row or column
vertex of H such that a path exists from i to v. Then H has a column-complete
matching for which there exists a c-alternating path from i to v (or, equivalently, an
r-alternating path from v to i).

The next lemma is new. Given a path in a bipartite graph H between a column
vertex and a row vertex or between two row vertices, the lemma shows that there is an
alternating path with respect to a column-complete matching of H which excludes a
row vertex at the extremity of the path. We will use it in sections 3 and 4 to estimate
the nonzero structure of the factors L and U .

Lemma 2.6. Let H be a strong Hall graph with more nonzero rows than columns,
let v be a row or column vertex of H, and let i′ be any row vertex of H such that
a path exists from v to i′. Then H has a column-complete matching which excludes
vertex i′ and for which there exists a c-alternating path from v to i′.

Proof. We distinguish two different cases.
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v
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Fig. 2.1. Case 1 of Lemma 2.6. In the upper graph, the solid edges are the matching M ; path
P is the horizontal path from v to i′; path Q is the light dotted line from i′ to k′. In the lower graph,
the solid edges are the matching M1. The path obtained by concatenating P[v: d′] and Q[d′: i′] is
c-alternating with respect to M1.

Case 1 (v is a column vertex). By hypothesis, there is a path from v to i′. As
H is strong Hall, the alternating path Theorem 2.5 applies and says that H has a
column-complete matching M for which there exists a c-alternating path P from v
to i′. If i′ is not covered by M , then M is the column-complete matching searched.
Otherwise, Lemma 2.4 implies that there is an unmatched row vertex k′ and a c-
alternating path Q from i′ to k′. Now obtain matching M1 from M by alternating
along path Q, where i′ is unmatched in M1.

If P and Q have no vertices in common (except row vertex i′), then P is still
c-alternating from v to i′ with respect to M1. If the only vertex in common for P and
Q (except row vertex i′) is column vertex v, then let e′ be the row vertex matched by
M to v that belongs to the path Q. The path formed by 〈v, e′〉 followed by Q[e′: i′] is
c-alternating with respect to M1.

If P and Q have intermediate vertices in common, let d′ be the first (row) vertex
of P (starting from v) which belongs to Q. The path obtained by the concatenation
of P [v: d′] and Q[d′: i′] is c-alternating with respect to M1, and this ends the proof for
this case. This case is illustrated in Figure 2.1.

Case 2 (v is a row vertex). We denote the row vertex v as v′. By hypothesis,
there is a path from v′ to i′. Suppose v′ 	= i′; otherwise there is nothing to prove.
Let d be the first column vertex on this path, that is, the next vertex after v′. H is
a strong Hall graph that has a path from column vertex d to row vertex i′. The first
case of this theorem, that we have just proved, says that there is a column-complete
matching M that excludes vertex i′ and for which there exists a c-alternating path P
from d to i′. We distinguish four cases.

Case 2.1 (v′ is not matched by M). Let e′ be the row vertex matched by M to
the column vertex d. We obtain a new matching M1 by unmatching row vertex e′

and matching row vertex v′ to row vertex d. The path formed by 〈v′, d〉 followed by
P is c-alternating from v′ to i′ with respect to M1. Note that M1 excludes row vertex
i′, and this is the path searched.

Case 2.2 (v′ is matched by M to the column vertex d). The path obtained by
〈v′, d〉 followed by P is c-alternating from v′ to i′ with respect to the matching M ,
and the matching M excludes row vertex i′.

Case 2.3 (v′ is matched by M and belongs to the path P). Then P [v′: i′] is a
c-alternating path with respect to the matching M .
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k

d

v’

i’

j’

Fig. 2.2. Case 2.4 of Lemma 2.6. The solid edges are the matching M ; path P is the horizontal
path from i′ to d; path R is the light dotted line from v′ to j′. Here, P and R have at least one
common vertex. Vertex k is the last vertex on P (starting from d) that belongs to R. The path
obtained by concatenating R[v′: k] and P[k: i′] is c-alternating with respect to M , and M excludes
row vertex i′.

Case 2.4 (v′ is matched by M to a different column vertex than d and does not
belong to the path P). Lemma 2.4 applies and says that there is an unmatched row
vertex j′ and a c-alternating path R from v′ to j′.

If P and R have no vertices in common, then obtain matching M1 from M by
alternating along path R. As v′ is matched in M , then v′ is unmatched in M1 and j′

is matched in M1. From here we proceed as in Case 2.1, and we obtain a matching
that excludes vertex i′ and with respect to which there is a c-alternating path from
v′ to i′.

If P and R have at least one vertex in common, then let k be the last vertex of
P (starting from d) which belongs to R. Note that k has to be a column vertex. The
path obtained by concatenating R[v′: k] and P [k: i′] is c-alternating with respect to
M , M excludes the row vertex i′, and this ends the proof. This case is illustrated in
Figure 2.2.

2.2. Hall sets and their properties. For a bipartite graph H with m row
vertices and n ≤ m column vertices, a set of k column vertices, 1 ≤ k ≤ n, forms a
Hall set if these columns are adjacent to exactly k rows [15].

Under the assumption that A satisfies the Hall property, the union of two Hall
sets is a Hall set, so there exists a unique Hall set of maximum cardinality in any
given set of columns. The set of maximum cardinality might be empty. Let Cj be
the Hall set of maximum cardinality in the first j columns; we define C0 = ∅. Let Rj

be the set of all row indices covered by the columns of Cj ; thus Cj and Rj have the
same cardinality. Note that if we assume all diagonal entries of A are nonzero, then
Rj = {i′ : 1 ≤ i ≤ j and i ∈ Cj}.

The Hall sets of maximum cardinality are useful to partition a Hall graph into
two subgraphs: one that satisfies the Hall property and another one that satisfies the
strong Hall property. Let H be a bipartite graph with m row vertices and n < m
column vertices that satisfies the Hall property. Let C be the Hall set of maximum
cardinality in H , and let R be the set of row vertices covered by column vertices of C.
The first subgraph H̃ is induced by all of the row vertices in R and all of the column
vertices in C. This subgraph satisfies the Hall property. The second subgraph Ĥ is
induced by all of the row vertices except those in R and all of the column vertices
except those in C. This subgraph is strong Hall because its Hall set of maximum
cardinality is empty.

In a similar way, we can partition the edges of a column-complete matching M
of H into edges belonging to the graph H̃ and edges belonging to the graph Ĥ. This
is expressed in a more general way in the following lemma.
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Lemma 2.7. Let A be an m × n Hall matrix, m ≥ n. Let C be a Hall set of
cardinality p in A, where p ≤ n, and let R be the set of all row indices covered by
the columns of C. Suppose M is a column-complete matching in the bipartite graph
H(A). Then each column vertex j of C is matched by M to a row vertex i′ of R.

Proof. The proof is immediate.

3. Nonzero structure of L and U during Gaussian elimination with
partial pivoting. Let A be an n×n nonsingular matrix. In this section we consider
the problem of determining the nonzero structure of the factors L and U during
Gaussian elimination with partial pivoting. In the first part of this section we consider
the LU factorization without pivoting. We first present a brief overview of several well-
known results described in the literature. Then we describe why these results ignore
numeric cancellations related to submatrices of A that are structurally singular. In
section 3.1 we present new results that identify some numeric cancellation occurring
during Gaussian elimination and caused by submatrices of A that are structurally
singular. In section 3.2 we describe how the new results can be used in the Gaussian
elimination with partial pivoting. We also present an algorithm that uses the new
results to compute the nonzero structure of the factors L and U .

The main result in the structure prediction of Gaussian elimination without piv-
oting is the fill path Lemma 3.1. This lemma relates paths in the directed graph
G(A) and the nonzero elements that appear in the factors L and U , represented in
the so-called filled graph G+(A).

Lemma 3.1 (fill path (Rose and Tarjan [20])). Let G be a directed or undirected
graph whose vertices are the integers 1 through n, and let G+ be its filled graph. Then
〈i, j〉 is an edge of G+ if and only if there is a path in G from i to j whose intermediate
vertices are all smaller than min(i, j).

The filled graph G+(A) represents a symbolic bound for the factors L and U ; that
is, it ignores possible numeric cancellation during the factorization. The next lemma
represents an example of conditions under which this structure prediction is exact, by
taking into account the values of the nonzeros in the matrix. In this lemma, a square
Hall submatrix of A denotes a square submatrix of A which satisfies the Hall property
and which is formed by a subset of rows and columns of A that can be different and
noncontiguous.

Lemma 3.2 (Gilbert and Ng [11]). Suppose A is square and nonsingular and
has a triangular factorization A = LU without pivoting. Suppose also that all of the
diagonal elements of A, except possibly the last one, are nonzero and that every square
Hall submatrix of A is nonsingular. Then G(L + U) = G+(A); that is, every nonzero
predicted by the filled graph of A is actually nonzero in the factorization.

We are interested in fill when the diagonal may contain zeros (perhaps due to
pivoting), but Lemma 3.2 does not hold in this case. An example showing this was
given by Brayton, Gustavson, and Willoughby [1]. We give a slightly different example
in Figure 3.1, where we display a matrix A, its bipartite graph H(A), and its directed
graph G(A). Note that H(A) satisfies the strong Hall property. Since there is a path
from 5 to 4 through lower numbered vertices in G(A), the edge 〈5, 4〉 belongs to the
filled graph G+(A), but L54 = 0 regardless of the nonzero values of A. That is because
after the first step of elimination, the elements in column positions 2 and 4 of the rows
2 and 5 are linearly dependent. At the second step of elimination the element L54 is
zeroed.

A simpler way of understanding this numeric cancellation is to consider the two
submatrices A([1: 3, 5], 1: 4) and A(1: 3, 1: 3) and their determinants that determine
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A H(A) G(A)
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Fig. 3.1. Example showing that the fill path Lemma 3.2 does not predict exactly the nonzero
structure of L and U when factorizing without pivoting the strong Hall matrix A. Details are given
in the text following Lemma 3.1.

H(A(1:3,1:3))A H(A([1:3,5],1:4))
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Fig. 3.2. Example for Theorem 3.4 (1 → 2). Consider the strong Hall matrix A and the
matrix B = A([1: 3, 5], 1: 4) displayed in patterned gray. The Hall set of maximum cardinality of
H(A([1: 3, 5], 1: 3)) is C35 = {3} and R35 = {3′}. Suppose element L54 is nonzero. The perfect
matching Mk of matrix Ak = A(1: 3, 1: 3) is formed by the edges 〈1′, 2〉, 〈2′, 1〉, and 〈3′, 3〉. The
perfect matching MB of B is formed by the edges 〈1′, 4〉, 〈2′, 1〉, 〈3′, 3〉, and 〈5′, 2〉. Form a path by
starting at 5′ and by following one edge in MB and one edge in Mk. This yields the path (5′, 2, 1′, 4).

the value of L54. The submatrix A([1: 3, 5], 1: 4) (displayed in light gray in Figure 3.1)
has three columns (2, 3, and 4) with nonzero elements in only two rows (1 and 3).
This submatrix does not satisfy the Hall property, and its determinant is zero. This
is the approach we use to identify some numeric cancellations in the LU factorization.

The following lemma describes the above observation. Assuming that the LU
factorization exists, this lemma relates the value of an element of the factors L and
U to the singularity of a submatrix of A.

Lemma 3.3 (Gilbert and Ng [11]). Suppose A is square and nonsingular and
has a triangular factorization A = LU without pivoting. Let i be a row index and j
a column index of A, and let B be the submatrix of A consisting of rows 1 through
min(i, j)−1 and i, and columns 1 through min(i, j)−1 and j. Then (L+U)ij is zero
if and only if B is singular.

3.1. New results. Theorem 3.4 is the first new result of this section and pro-
vides necessary and sufficient conditions, in terms of paths in the bipartite graph
H(A) for a fill element to occur in exact arithmetic during Gaussian elimination. It
is illustrated in Figures 3.2 and 3.3. Consider the nonzero structure of L. Suppose
that the factorization exists until the step j − 1 of factorization; that is, the principal
minor of order j − 1 is nonzero. The theorem uses the fact that Lij is nonzero if and
only if the determinant of the submatrix A([1: j − 1, i], 1: j) is nonzero.
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Fig. 3.3. Example for Theorem 3.4 (3 → 1). Consider the strong Hall matrix A as in Figure 3.2,
the matrix B = A([1: 3, 5], 1: 4), C35 = {3}, and R35 = {3′}. Consider the path Q = (5′, 1, 1′, 4) that
has no vertex in C35 ∪ R35. The graph H(A([1: 3, 5], 1: 3)) is partitioned into two subgraphs. The
subgraph induced by column vertex 3 and row vertex 3′ satisfies the Hall property, and it has a perfect

matching M̃ = {〈3′, 3〉}. The subgraph induced by column vertices {1, 2} and row vertices {1′, 2′, 5′}
satisfies the strong Hall property and has a column-complete matching M̂ = {〈1′, 2〉, 〈2′, 1〉} for

which there is a c-alternating path R = (1′, 2, 5′). The matching M is formed by the edges of M̃

and M̂ and is presented by solid edges in the graph H(A([1: 3, 5], 1: 3)). The matching obtained by
alternating along path R is a perfect matching of H(B) and is presented at the right of the figure.

Theorem 3.4. Let A be an n × n nonsingular matrix that has a triangular
factorization A = LU . Suppose that every square Hall submatrix of A is nonsingular.
Let i be a row of A, j be a column of A, and k = min(i, j) − 1. Let Mk be a
perfect matching of A(1: k, 1: k). Let Cki be the Hall set of maximum cardinality in
H(A([1: k, i], 1: k)) and Rki be the set of all row indices covered by columns of Cki.
Then the following three statements are equivalent:

1. (L + U)ij is nonzero.
2. There is an r-alternating path in the bipartite graph H(A) from row vertex i′

to column vertex j with respect to the matching Mk.
3. There is a path in the bipartite graph H(A) from i′ to j whose intermediate

vertices are smaller than or equal to k and that has no vertex in Cki ∪ Rki.
Proof. Let Ak be the leading (k × k) principal submatrix of A and det(Ak) be its

determinant. As we suppose the factorization exists, det(Ak) is nonzero. This implies
that Ak satisfies the Hall property and has a perfect matching Mk. The match-
ing Mk also represents a column-complete matching in the graph H(A([1: k, i], 1: k)).
Lemma 2.7 applies with respect to the graph H(A([1: k, i], 1: k)) and the Hall set Cki

and says that each row vertex of Rki has to be matched by Mk to one of the column
vertices in Cki. Since i′ is not a row vertex matched by Mk, then i′ /∈ Rki.

Let B be the submatrix of A consisting of columns 1 through k and j and rows
1 through k and row i. Suppose edge 〈i′, j〉 does not belong to H(A); otherwise the
proof is trivial. We will prove now that the three statements are equivalent.

1 → 2. As (L+U)ij is nonzero by hypothesis, then Lemma 3.3 applies and shows
that B is a nonsingular matrix. Hence its bipartite graph H(B) satisfies the Hall
property, and there is a perfect matching MB in H(B).

Consider now the row vertex i′ in the bipartite graph H(A). Recall we assume
that edge 〈i′, j〉 does not belong to H(A). Row vertex i′ is matched by MB to column
vertex j0. Since i′ /∈ Rki, we can deduce that j0 /∈ Cki. Column vertex j0 is matched
by Mk to some row vertex i′0, where i′0 	= i′ since i′ is not matched by Mk. Also we
have that i′0 /∈ Rki. Row vertex i′0 is matched by MB to some column vertex j1, where
j1 	= j0 since j0 is matched in MB to i′. If j1 = j, then we stop. Otherwise, we continue
our reasoning. For each row vertex we consider its matched column vertex by MB;
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then for each column vertex we consider its matched row vertex by Mk. Continuing
inductively, we arrive at vertex j. The vertices followed during our reasoning are
vertices i′, j0, i′0, j1, i

′
1, . . . , i

′
t, j. Edge 〈i′, j0〉 and edges 〈i′q, jq+1〉 are edges of H(B)

which belong to the perfect matching MB. Edge 〈i′t, j〉 and edges 〈jq, i
′
q〉 are edges of

H(Ak) which belong to the perfect matching Mk. This yields a path in H(A) from
row vertex i′ to column vertex j that is r-alternating with respect to the matching Mk.

2 → 3. Consider the r-alternating path (i′, j0, i′0, j1, i′1, . . . , i′t, j) from i′ to j with
respect to the matching Mk. All of the intermediate vertices on this path are smaller
than or equal to k. Because i′ /∈ Rki, we can deduce that j0 /∈ Cki. Continuing
inductively, we can deduce that this path does not include any vertex in Cki ∪ Rki.

3 → 1. Let d′ be the last row vertex on Q, that is, the vertex just before j on Q.
We partition the graph H(A([1: k, i], 1: k)) into two subgraphs. The first subgraph,
induced by the row vertices in Rki and the column vertices in Cki, satisfies the Hall
property and has a perfect matching M̃ . The second subgraph, induced by the row
vertices 1, . . . k′ and i′, except row vertices in Rki, and the column vertices 1 through
k, except column vertices in Cki, is strong Hall. Lemma 2.6 says that there is a
column-complete matching M̂ which excludes row vertex i′ and for which there exists
a c-alternating path R from d′ to i′.

Let the matching M be formed by the edges of M̂ and the edges of M̃ . This
matching represents a column-complete matching in H(A([1: k, i], 1: k)). We now show
that the graph H(B) satisfies the Hall property. Recall that column vertex j and row
vertex i′ are not matched by the matching M . Consider path R from d′ to i′ that is
c-alternating with respect to matching M . Obtain a new matching M ⊕ R from M
by alternating along path R. As i′ is not matched in M and d′ is matched in M , then
i′ is matched in M ⊕ R and d′ is not matched in M ⊕ R. Add to matching M ⊕ R
the edge 〈d′, j〉.

Thus we obtain a perfect matching in H(B); that is, H(B) satisfies the Hall
property. By hypothesis, every square Hall submatrix of A is nonsingular, and thus
B is nonsingular and its determinant is nonzero. Therefore (L+U)ij is nonzero.

The next theorem uses Hall sets of maximum cardinality associated with subsets
of columns of A to restrict paths corresponding to nonzero elements of L and U . In this
paper we use this theorem in section 4 to determine upper bounds for the factorization
PA = LU , where the matrix A satisfies only the Hall property. Note that for a matrix
satisfying the strong Hall property, the Hall set of maximum cardinality of a subset
of columns is always empty. Thus Theorem 3.5 is relevant to matrices satisfying only
the Hall property. This theorem can also be useful in the algorithm described in
section 3.2. The Hall sets involved can be computed prior to the factorization using
an algorithm as, for example, the one proposed in [15].

Theorem 3.5. Let A be an n×n nonsingular matrix that is factored by Gaussian
elimination as A = LU . Suppose that (L+U)ij is nonzero. Let k = min(i, j)−1, and
let Ck be the Hall set of maximum cardinality in the first k columns and Rk be the set
of all row indices covered by columns of Ck. Then there is a path in the bipartite graph
H(A) from row vertex i′ to column vertex j whose intermediate vertices are smaller
than or equal to k and that has no vertex in Ck ∪ Rk.

Proof. Let Cki be the Hall set of maximum cardinality in H(A([1: k, i], 1: k)) and
Rki be the set of all row indices covered by columns of Cki. It can be easily shown
that Ck ⊆ Cki and Rk ⊆ Rki. The third statement of Theorem 3.4 implies that this
theorem holds.

Note that Theorem 3.5 provides only a necessary condition for fill to occur during
the elimination. Figure 3.4 (as well as Theorem 3.4) shows that the condition is
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Fig. 3.4. Example showing that the converse of Theorem 3.5 is not true.

not sufficient. Consider the Hall matrix A in Figure 3.4. The Hall set of maximum
cardinality is C3 = {3}, and it covers the row index R3 = {3′}. The Hall set of
maximum cardinality in H(A([1: 3, 5], 1: 3)) is C35 = {2, 3}, and it covers the row
indices R35 = {1′, 3′}. There is a path (5′, 1, 1′, 4) in H(A) that has no vertex in C3.
However, the element L54 = 0 because of numeric cancellation.

3.2. Computing the nonzero structure of the factors L and U during
Gaussian elimination with partial pivoting. In this section we present an algo-
rithm that uses the results of the previous section to compute the nonzero structure of
the factors L and U during the LU factorization with partial pivoting. The algorithm
computes one column of L and one row of U at a time.

First, we present Theorem 3.6 that describes explicitly how Theorem 3.4 can be
used during the LU factorization with partial pivoting of a matrix A. This theorem
supposes that the first j − 1 steps of the LU factorization exist, and it gives the
necessary results to compute the structure of column j of L and of row j of U at the
jth step of factorization.

Theorem 3.6. Let A be an n × n nonsingular matrix that is to be decom-
posed using LU factorization with partial pivoting. Suppose that the first j − 1 steps
of LU factorization with partial pivoting of A exist and have been executed. Let
PJ−1 = Pj−1Pj−2 . . . P1 be the permutations performed during the first j − 1 steps
of elimination, and let Mj−1 be a perfect matching of (PJ−1A)(1: j − 1, 1: j − 1).
Suppose that every square Hall submatrix of A is nonsingular. At the jth step of de-
composition, the element Lij is nonzero if and only if there is a c-alternating path in
the bipartite graph H(PJ−1A) from column vertex j to row vertex i′ with respect to the
matching Mj−1. The element Uji is nonzero if and only if there is an r-alternating
path in the bipartite graph H(A) from row vertex j′ to column vertex i with respect to
the matching Mj−1.

Proof. The proof is similar to the proof of Theorem 3.4.
Algorithm 1 uses Theorem 3.6 and sketches the factorization PA = LU , where

P = Pn−1 . . . P1 and each Pj reflects the permutation of two rows at step j of factor-
ization. At each step j, the structure of column j of L is determined, and then its
numerical values are computed. The element of maximum magnitude in column j of
L is chosen as the pivot. Let Lkj be this element. The algorithm interchanges rows
k and j of L and rows k and j of A. Then the structure of row j of U is determined,
followed by the computation of its numerical values.

The structure of column j of L is computed by finding all of the c-alternating
paths with respect to Mj−1 from column vertex j to some row vertex i′. This can be
achieved in a similar way to the augmenting path technique, used in finding maximum
matchings in bipartite graphs and described, for example, in [7]. This technique
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ensures that each edge of the bipartite graph of A is traversed at most once. The
structure of row i of U is computed in a similar way. Since the jth diagonal element
corresponds to a nonzero, Theorem 3.4 ensures that there is a c-alternating path Q
from column vertex j to row vertex j′ with respect to the matching Mj−1. During
the computation of the structure of column j of L, we store for each row vertex i′

the column vertex just before i′ on a c-alternating path with respect to Mj−1 from j
to i′. This allows us to retrace Q. The algorithm computes a new matching Mj by
alternating along path Q.

The overall complexity of computing the structure of L and the structure of U in
Algorithm 1 is hence bounded by O(n · nnz(A)), where n is the order and nnz(A) is
the number of nonzeros of matrix A.

Algorithm 1. LU factorization with partial pivoting, aware of some cancellations
M0 = ∅
for j := 1 to n do

if j < n then
1. Compute structure of L(j: n, j). This is formed by all row vertices i′ ≥ j
such that there is a c-alternating path in H(A) with respect to Mj−1 from
column vertex j to row vertex i′.
2. Compute numerical values of L(j: n, j).
3. Find k such that |Lkj | = max |L(j: n, j)|. Let v = Lkj .
4. Interchange L(j, : ) with L(k, : ) and A(j, : ) with A(k, : ). Let Q[j: j′] be the
c-alternating path in H(A) with respect to Mj−1 that corresponds to Ljj .
5. Scale: L(: , j) = L(: , j)/v.

end if
6. Compute structure of U(j, j+1: n). This is formed by all column vertices i ≥ j
such that there is an r-alternating path in H(A) from row vertex j′ to column
vertex i with respect to the matching Mj−1.
7. Compute numerical values of U(j, j + 1: n). Let Ujj = v.
if j = 1 then

M1 = Q
else

Mj = Mj−1 ⊕Q
end if

end for

Several aspects need to be investigated and remain as open questions. The first
important aspect is related to the practical interest of using this algorithm, which
depends on the utility of identifying numeric cancellations and on the number of
numeric cancellations that appear in real world applications. The second aspect is
related to the complexity of Algorithm 1, which is equivalent to the complexity of one
of the first algorithms for computing the structure of the factors L and U , denoted as
the FILL2 algorithm in [20]. The algorithms proposed more recently for computing
fill-ins [10] are faster in practice than FILL2. Since we expect Algorithm 1 to have
a similar run time to FILL2, further investigation is required to make it competitive
with respect to the new algorithms.

4. Tight exact bounds for the structure prediction of PA = LU , when
A satisfies only the Hall property. Let A be an n × n matrix that satisfies the
Hall property. Suppose A is factored by Gaussian elimination with row interchanges
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as PA = LU . In this section we discuss the problem of predicting bounds for the
factors L and U prior to the numerical factorization. We consider exact results; that
is, the upper bounds do not include elements that correspond to numeric cancellations
due to submatrices of A structurally singular.

The next three theorems give tight exact bounds for the nonzero structure of the
factors L and U . Theorem 4.1 gives upper bounds for the structure of L and U in
terms of paths in the bipartite graph H(A). Theorems 4.2 and 4.3 show that this
bound is the tightest possible for Gaussian elimination with row interchanges of a
matrix that satisfies the Hall property. That is, for every predicted element of the
upper bound, there is a permutation and a choice of the values of matrix A such that
this element corresponds to a nonzero in the factors L or U .

Theorem 4.1. Let A be an n×n nonsingular matrix that is factored by Gaussian
elimination with row interchanges as PA = LU . Let i be an index, j be a column
index, and q = min(i, j) − 1. Let Cq be the Hall set of maximum cardinality in the
first q columns and Rq be the set of all row indices covered by columns of Cq. If Lij

is nonzero, then there is a path in the bipartite graph H(A) from row vertex k′ to
column vertex j whose intermediate column vertices are all in {1, . . . , q} and that has
no vertex in Cq ∪Rq, where k is the row of A that corresponds to row i of PA. If Uij

is nonzero, then there is a path in the bipartite graph H(A) from column vertex i to
column vertex j whose intermediate column vertices are all in {1, . . . , q} and that has
no vertex in Cq ∪ Rq.

Proof of Case 1 (i ≥ j (structure of L)). Due to Theorem 3.5, there is a path Q in
H(A) from row vertex k′ to column vertex j whose intermediate column vertices are
all in {1, . . . , j − 1} and that has no vertex in Cj−1 ∪Rj−1. This is the path searched
in the theorem.

Proof of Case 2 (i < j (structure of U)). According to Theorem 3.5, there is a
path Q in H(A) from row vertex k′ to column vertex j whose intermediate column
vertices are all in {1, . . . , i − 1} and that has no vertex in Ci−1 ∪ Ri−1.

By hypothesis, the factorization exists; thus the ith diagonal element of PA is
nonzero. Theorem 3.5 applies with respect to this element and says that there is a
path R in H(A) from column vertex i to row vertex k′ whose intermediate column
vertices are all in {1, . . . , i − 1} and that has no vertex in Ci−1 ∪ Ri−1.

Using the path R and the path Q, we can form a path in H(A) from column vertex
i to column vertex j whose intermediate column vertices are all in {1, . . . , i − 1} and
that has no vertex in Ci−1 ∪ Ri−1. This is the path searched in the theorem.

The next two theorems show that the upper bound defined in Theorem 4.1 for
the structure of L and U is tight. First, Theorem 4.2 shows that the bound for the
structure of L is tight, and it is illustrated in Figure 4.1. Second, Theorem 4.3 shows
that the bound for U is tight, and it is illustrated in Figure 4.2.

The bound for L depends on the row permutations of A. It considers every row
i of the original matrix A. The bound identifies all column indices j that correspond
to elements of row i that can become potentially nonzeros during the factorization
through permutations. The bound for U is independent of row permutations of A.
It identifies potential nonzeros Uij using paths that relate column vertex i to column
vertex j in the bipartite graph of A. None of the results assumes that the input matrix
A has a zero-free diagonal.

Theorem 4.2. Let H be the structure of a square Hall matrix. Let j be a column
vertex, Cj−1 be the Hall set of maximum cardinality in the first j − 1 columns, Rj−1

be the set of row indices covered by columns in Cj−1, and i′ be any row vertex not
in Rj−1. Suppose that H contains a path from i′ to j whose intermediate column
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Fig. 4.1. Example for Theorem 4.2 showing the construction that makes element L75 nonzero
for the Hall matrix A at the top left. The last row vertex on the path (7′, 4, 2′, 1, 5′, 5) between i′ = 7′
and j = 5 satisfying the conditions in Theorem 4.2 is e′ = 5′. The graph Hj−1, presented at the top
right, is the subgraph of H induced by column vertices 1 through j−1 = 4 and all of the row vertices.
The solid edges represent a column-complete matching Mj−1 that excludes row vertex 7′ and with
respect to which there is a c-alternating path R = (5′, 1, 2′, 2, 7′) from 5′ to 7′. At the bottom right,
K is the submatrix of PA with columns 1 through j = 5 and the rows in corresponding positions after
four steps of pivoting. The fifth row of K is k′ = i′ = 7′. In H(K) there is a maximum matching
Mj−1 ⊕R represented by solid edges at the bottom right. Thus the element L75 is nonzero.

vertices are all in {1, . . . , j−1} and which has no vertex in Cj−1∪Rj−1. There exists
a nonsingular matrix A with H(A) = H and a permutation matrix P such that if A
is factored by Gaussian elimination with row interchanges as PA = LU , then row i
of A is permuted in some row position k of PA, k ≥ j and Lkj 	= 0.

Proof. By hypothesis, there is a path in H from i′ to j whose intermediate column
vertices are all at most j. Consider Hj−1 the subgraph of H induced by all row vertices
and all column vertices from 1 to j − 1. The graph H satisfies the Hall property, and
hence Hj−1 also satisfies the Hall property. We obtain a column-complete matching
Mj−1 in this graph which will induce the pivoting order for the first j − 1 steps of
elimination. We partition the graph Hj−1 into two subgraphs. The first subgraph
H̃j−1 satisfies the Hall property and is induced by all of the row vertices in Rj−1 and
all of the column vertices in Cj−1. Let M̃j−1 be a perfect matching in this subgraph.
The second subgraph Ĥj−1 satisfies the strong Hall property and is induced by all of
the row vertices except row vertices in Rj−1 and all of the column vertices 1 through
j − 1 except column vertices in Cj−1. Let M̂j−1 be a column-complete matching in
this subgraph.

We distinguish two cases to determine M̂j−1, depending on if 〈i′, j〉 is an edge
of H(A) or not. First, assume that 〈i′, j〉 is an edge of H(A). Lemma 2.4 says that
for any column-complete matching M of Ĥj−1 there is a c-alternating path R from
i′ to some unmatched row vertex. We denote by M̂j−1 the matching obtained from
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Fig. 4.2. Example for Theorem 4.3 showing the construction that makes element U45 nonzero
for the Hall matrix A at the top left. The Hall set of maximum cardinality in the first three columns is
C3 = {3}, R3 = {3′}. Consider the path Q = (5, 5′, 1, 2′, 4) satisfying the conditions in Theorem 4.3

(k′ = 5′ and e′ = 2′). The graph Ĥ4, presented at the top right, is the subgraph of H induced by
column vertices 1 through i = 4 and all of the row vertices. The solid edges represent a column

complete-matching M4 that is formed by the edge 〈2′, 4〉, the matching M̂3 (formed by the edges

〈5′, 1〉, 〈7′, 2〉, 〈2′, 4〉), and the matching M̃3 (formed by the edge 〈3′, 3〉). This matching determines

the pivoting order for the first four steps of elimination. With respect to the matching M̂3 there is
a c-alternating path R = (5′, 1, 2′). Consider the matrix K = A([5′, 7′, 3′, 2′][1: 3, 5]) presented at
the bottom left and its graph presented at the bottom right. The perfect matching M is presented by
solid edges in the graph H(K). Since K satisfies the Hall property and the minor of order-3 of PA
is nonzero, then the element U45 is nonzero.

M by alternating along path R. With this choice, row vertex i′ is not covered by the
matching M̂j−1. Second, assume that 〈i′, j〉 is not an edge of H(A). Let e′ be the last
row vertex on the path between i′ and j, that is, the vertex just before j. Therefore
Lemma 2.6 applies and says that there is a column-complete matching M̂j−1 which
excludes vertex i′ and for which there exists a c-alternating path R from e′ to i′.

Let the column-complete matching Mj−1 be formed by the edges of M̂j−1 and
the edges of M̃j−1. We choose the values of A such that every square submatrix of
A that is Hall, including A itself, is nonsingular. We can say that this is possible by
using an argument as the one described in [11] (the determinant of a Hall submatrix
is a polynomial in its nonzero values, not identically zero, since the Hall property
implies a perfect matching). We choose the values of the nonzeros of A corresponding
to edges of Mj−1 to be larger than n and the values of the other nonzeros of A to
be between 0 and 1. With this choice, Lemma 2.1 says that the first j − 1 steps of
elimination of A pivot on nonzeros corresponding to edges of Mj−1. Let P be the
permutation matrix that describes these row interchanges.

Note that with our choice of Mj−1, row vertex i′ is not covered by the matching
Mj−1. Thus, after the first j−1 steps of elimination, row i of A was moved to a row in
position k of PA, where k ≥ j. We prove that this choice makes Lkj nonzero. If 〈i′, j〉
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is an edge of H(A), then Lkj is nonzero. Otherwise, let K be the j× j submatrix of A
that includes the first j columns and the rows 1 to j − 1 in corresponding positions of
PA and row i of A (that is, row k of PA). Thus the columns of K are those numbered
1 through j in H(A). The first j − 1 columns are matched by Mj−1, while the last
column j is not matched by Mj−1. The first j − 1 rows of K are those matched to
columns 1 through j − 1 of H(A) by Mj−1. The last row of K is row number i of A.

To show that Lkj is nonzero, we still need to show that K satisfies the Hall prop-
erty. Recall that column vertex j and row vertex i′ are not matched by the matching
Mj−1 in H(K). Consider path R from e′ to i′ that is c-alternating with respect to
matching Mj−1. Obtain a new matching Mj−1 ⊕R from Mj−1 by alternating along
path R. As i′ is not matched in Mj−1 and e′ is matched in Mj−1, then i′ is matched
in Mj−1⊕R and e′ is not matched in Mj−1⊕R. Add to matching Mj−1⊕R the edge
〈e′, j〉, and thus we get a perfect matching in H(K); that is, H(K) satisfies the Hall
property. By our choice of values, every submatrix that satisfies the Hall property is
nonsingular. Therefore element Lkj is nonzero.

Theorem 4.3. Let H be the structure of a square Hall matrix. Let i and j
be two column vertices, i < j, let Ci−1 be the Hall set of maximum cardinality in
the first i − 1 columns, and let Ri−1 be the row vertices covered by columns in Ci−1.
Suppose that H contains a path from j to i whose intermediate column vertices are
all in {1, . . . , i−1} and that has no vertex in Ci−1 ∪Ri−1. There exists a nonsingular
matrix A with H(A) = H and a permutation matrix P such that if A is factored by
Gaussian elimination with row interchanges as PA = LU , then Uij is nonzero.

Proof. By hypothesis, there is a path Q in H(A) from column vertex j to column
vertex i whose intermediate column vertices are all at most i − 1. Let k′ be the first
row vertex on Q, that is, the vertex just after j on Q. Let e′ be the last row vertex
on Q, that is, the vertex just before i on Q. Note that e′ can be equal to k′.

Let Ĥi−1 be the strong Hall subgraph of H induced by all of the row vertices
except row vertices in Ri−1 and all of the column vertices 1 through i − 1 except
column vertices in Ci−1. Lemma 2.6 says that there is a column-complete matching
M̂i−1 which excludes e′ and for which there exists a c-alternating path R from k′ to
e′. (If k′ = e′, then R is empty.) Let H̃i−1 be the subgraph of H(A) induced by all
of the row vertices in Ri−1 and all of the column vertices in Ci−1. The graph H̃i−1

satisfies the Hall property, and Lemma 2.6 says that there is a perfect matching M̃i−1

in H̃i−1.
Consider Hi the subgraph of H induced by all of the row vertices and all of the

column vertices 1 through i. The matching Mi formed by the edge 〈e′, i〉, all of the
edges of M̂i−1, and all of the edges of M̃i−1 is a column-complete matching in Hi . We
choose the values of A such that every square submatrix of A that is Hall, including
A itself, is nonsingular. We set the values of the nonzeros of A corresponding to edges
of Mi to be larger than n and the values of the other nonzeros of A to be between
0 and 1. With this choice the first i steps of elimination of A pivot on nonzeros
corresponding to edges of Mi (Lemma 2.1). Let P be the permutation matrix that
describes these row interchanges.

We prove that this pivoting choice makes Uij nonzero. Let K be the submatrix
PA(1: i, [1: i − 1, j]). To show that Uij is nonzero, we need to show that the graph
H(K) satisfies the Hall property. For this, consider again the matching M̂i−1 and
the c-alternating path R from k′ to e′. Consider the path formed by the edge 〈j, k′〉
followed by R, and consider the matching M obtained by alternating along this path.
Since k′ is matched by M̂i−1 and j is unmatched by M̂i−1, then both k′ and j are
matched by M , and its cardinality is |M̂i−1|+1. We add to matching M the edges of
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M̃i−1. Thus M is a perfect matching in H(K); that is, this matrix satisfies the Hall
property, and its determinant is nonzero. This shows that Uij is nonzero.

We make one final note on the similarities between the exact structure prediction
presented in this section and the sparsity analysis of the QR factorization for square
matrices satisfying the Hall property. The structure prediction for the QR factoriza-
tion of matrices satisfying only the Hall property was studied by Hare et al. in [15] and
Pothen in [19]. It can be easily shown that the structure of Q represents a tight exact
bound for the structure of L of the factorization PA = LU and that the structure of
R is a tight exact bound for the structure of U obtained from Gaussian elimination
with row interchanges.

5. The row merge graph and structure prediction for A = P1L1 . . .
Pn−1Ln−1U . Let A be an n×n matrix with nonzero diagonal that satisfies the Hall
property. Suppose A is factored by Gaussian elimination with row interchanges as
A = P1L1P2L2 . . . Pn−1Ln−1U and L̃ is the union of the Li. An upper bound for the
nonzero structure of L̃ and U was proposed by George and Ng [9]. This upper bound,
called the row merge graph, contains the nonzeros in the factors for all possible row
permutations that can later appear in the numerical factorization due to pivoting.
In this section we discuss the row merge graph as an upper bound for the nonzero
structure of the factors L̃ and U when the matrix A satisfies only the Hall property.
Thus we extend the work of Gilbert and Ng who showed in [11] that the row merge
graph is a tight upper bound for Gaussian elimination with row permutations of strong
Hall matrices.

First, we consider an exact analysis; that is, we assume only that the nonzero
values in A are algebraically independent of each other. By a simple counterexample
we show that for matrices satisfying only the Hall property, the row merge graph is
not a tight bound for the factors L̃ and U in the exact sense. This means that the
row merge graph predicts as nonzero elements of L̃ and U that during the actual
factorization are zeroed. Second, we relax the condition on the numerical values of
the nonzeros of A by considering a symbolic analysis. This is a weaker analysis than
the exact analysis performed in section 4, since we ignore the possibility of numeric
cancellation during the factorization. With this assumption, we show that the row
merge graph is a tight bound for the factors L̃ and U . In other words, for every edge
of the row merge graph of a Hall matrix, there is a permutation such that this edge
corresponds to a symbolic nonzero in the factors L̃ or U .

5.1. Existing results. The row merge graph was proposed by George and Ng [9]
as an upper bound for the nonzero structure of L̃ and U and is obtained as follows:
at each step of elimination an upper bound of the structure of L̃ and U is computed.
Consider step i and all of the rows that are candidates to pivoting at this step. An
upper bound of their structure is given by the union of their structures. Thus the
structure of each row candidate to pivoting is replaced by this union. The bipartite
graph that contains all of the edges of the upper bound of L̃ and U is called the row
merge graph, denoted by H×(A). The matrix containing a nonzero element for each
edge of H×(A) is referred to as the row merge matrix of A, denoted as A×. Several
results in the literature use a directed version of the row merge graph, denoted as
G×(A) or G×(H). This graph has n vertices and an edge for each nonzero of A×.
The next theorem proves the claim that the row merge graph is an upper bound for
the structure of L̃ and U .

Theorem 5.1 (George and Ng [9]). Let A be a nonsingular square matrix with
nonzero diagonal. Suppose Gaussian elimination with row interchanges is performed
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Fig. 5.1. Example matrix A showing that the row merge graph is not an exact tight bound. The
nonzero elements of A are denoted by x, and the fill elements of the factors L̃ and U (corresponding
to edges of G+(PA)) are denoted by o.

as A = P1L1 . . . Pn−1Ln−1U , and let L̃ be the union of the Li. Then

G(L + U) ⊆ G×(A).

When the matrix satisfies the strong Hall property, Gilbert and Ng [11] showed that
this graph represents a tight exact bound for the structure of L̃ and U . That is,
having a strong Hall graph H , for every edge 〈i′, j〉 in its row merge graph H×, there
exists a nonsingular matrix A (depending on i′ and j) with H(A) = H such that the
element in position (i, j) of L+U is nonzero. Nothing is known for the case when the
matrix satisfies only the Hall property, and this question is the subject of this section.

5.2. The row merge graph and counterexample for tight exact bounds.
In Figure 5.1 we give a counterexample showing that the row merge graph is not tight
in the exact sense. The edge 〈4′, 3〉 is an edge of the row merge graph H×(A). We
present a permutation that makes the entry in position (4, 3) nonzero in the factor L̃.
At the first step of elimination we pivot on the element at position (2, 1), while at the
next steps of elimination we pivot on the diagonal. Let P be the matrix describing
these permutations. The directed graph G(PA) has a path (4, 1, 3); therefore the
element in position (4, 3) fills in. Then the 〈4, 3〉 entry in G+(PA) is nonzero, but
L̃43 = 0, regardless of the nonzero values of A. Note that there is no choice of pivot
at the first step of elimination that fills the element at position (4, 3). We conclude
that there is no permutation that makes the element L̃43 nonzero.

5.3. The row merge graph as a tight symbolic bound. We now discuss
a symbolic analysis; that is, we ignore the possibility of numeric cancellation during
the factorization. With this assumption, we show that the row merge graph is a tight
bound for the factors L̃ and U .

An example of the construction of the row merge matrix is presented in Figure 5.2.
At the first step of elimination, rows 1, 4, and 5 are candidates to pivoting. The union
of their structure is formed, and it replaces the structure of each one of these rows.
This is repeated at each step on the trailing matrix.

Row merge fill elements refer to elements that are zero in the original matrix A
but are nonzero in the row merge matrix A×. Similarly, row merge fill edges refer to
those edges that don’t belong to H(A) but belong to the row merge graph H×(A).
The row merge fill edges in the row merge graph H×(A) are related to paths in the
bipartite graph H(A) by Definition 5.2 and Theorem 5.3.

Definition 5.2 (Gilbert and Ng [11]). A path Q = (i′, j1, i′1, j2, i
′
2, . . . , jt, i

′
t, j)

in H(A) is a row merge fill path for LU elimination with partial pivoting if either
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Fig. 5.2. Example to illustrate the construction of a row merge matrix A×, Theorems 5.4
and 5.5. The nonzero elements of A are denoted by x, and the row merge fill elements are denoted
by o.

t = 0 or the following conditions are satisfied:
1. jk < j and jk ≤ i′ for all 1 ≤ k ≤ t.
2. Let jp be the largest jk. Then there is some q with p ≤ q ≤ t, jp ≤ i′q ≤ n, and

the three paths Q[i′: jp], Q[jp: i′q], and Q[i′q: j] are also row merge fill paths in
H(A).

The next theorem due to Gilbert and Ng gives a necessary and sufficient condition
for fill to occur in the row merge graph H×(A).

Theorem 5.3 (Gilbert and Ng [11]). For two vertices i′, j of the bipartite graph
H(A), the edge 〈i′, j〉 is an edge of H×(A) if and only if there is a row merge fill path
joining i′ and j in H(A).

We present two algorithms that use Definition 5.2 to decompose a row merge
fill path in paths and edges of the bipartite graph H(A). Algorithm 2 decomposes
the row merge fill path Q[i′: j] in subpaths by recursively applying Definition 5.2.
The recursivity is stopped when a path is reduced to an edge. Its aim is to record
for each intermediate column vertex jp its corresponding row vertex of the middle
path Q[jp: i′q] (that is, MC[jp] = i′q). Note that the vertices belonging to Q[i′: j] are
distinct, and hence each intermediate vertex belongs to one and only one middle path.

Algorithm 2. Decomposition in subpaths
Input Q = (i′, j1, i′1, . . . , jt, i

′
t, j)

Output MC array updated
if t �= 0 then

1. decompose Q[i′: j] in Q[i′: jp], Q[jp: i′q], and Q[i′q: j] such that jp is the largest jk,
where 1 ≤ k ≤ t and jp ≤ i′q ≤ n and the three paths are also row merge fill paths
(Definition 5.2).
2. MC[jp] = i′q.
3. decompose each of the three paths (which is not an edge) in sub-fill paths.

end if

Algorithm 3 decomposes the row merge fill path Q[i′: j] in an alternating sequence
of edges and middle paths that we refer to as ASEM . It is easy to check that
this algorithm returns the sequence ASEM = {〈i′, k1〉,Q[k1: MC[k1]], 〈MC[k1], k2〉,
Q[k2: MC[k2]], . . . , Q[ku: MC[ku]], 〈MC[ku], j〉}, where u ≤ t and k1 = j1.

Consider an edge of the row merge graph 〈i′, j〉 and its associated row merge
fill path Q = (i′, j1, i′1, . . . , jt, i

′
t, j). We define a pivoting strategy relative to this

path. At each elimination step k, if column vertex k is an intermediate vertex of
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Algorithm 3. Decomposition in alternating sequence of edges and middle paths
Input Q = (i′, j1, i′1, . . . , jt, i

′
t, j)

Output alternating sequence ASEM
if t �= 0 then

1. decompose Q[i′: j] in Q[i′: jp], Q[jp: i′q] and Q[i′q : j] such that jp is the largest jk,
jp ≤ i′q ≤ n, and the three paths are also row merge fill paths (Definition 5.2).
2. decompose Q[i′: jp] in an alternating sequence and assign it to ASEM .
3. add the middle sub-fill path Q[jp: i′q ] at the end of the sequence ASEM .
4. decompose Q[i′q : j] in an alternating sequence and add it at the end of the sequence
ASEM .
5. return the sequence ASEM .

else
6. return the edge 〈i′, j〉.

end if

the path Q[i′: j], then we pivot on the element in position (MC[k], k), and Pk is the
elementary permutation matrix that describes this pivoting. If column vertex k is not
an intermediate vertex of Q[i′: j], then we pivot on the diagonal element; that is, the
elementary permutation matrix Pk is the identity. We call this strategy of pivoting
the middle correspondent pivoting strategy with respect to the path Q[i′: j]. In the
next theorem we prove that such a strategy is valid; that is, the LU factorization
exists in a symbolic sense.

Lemma 5.4. Let A be a square matrix with nonzero diagonal that satisfies the
Hall property. Let 〈i′, j〉 be an edge of the row merge graph H×(A) and Q[i′: j] be its
corresponding fill path in H(A). Let P = Pn−1 . . . P2P1 be the permutation matrix
describing the middle correspondent pivoting strategy relative to Q[i′: j]. Gaussian
elimination A = P1L1 . . . Pn−1Ln−1U exists in the symbolic sense.

Proof. If the fill path Q[i′: j] corresponds to an edge of H(A), then we choose P
to be the identity matrix. As we assume the matrix A has a nonzero diagonal, the
Gaussian elimination exists in the symbolic sense. In the rest of the proof, we assume
that 〈i′, j〉 is not an edge of H(A).

As the case j = 1 is trivial, we will assume that j > 1. We will prove this by
induction. At the first step of elimination, if row vertex 1′ and column vertex 1 do
not belong to Q[i′: j], then we pivot on the element in position (1, 1). If the column
vertex 1 belongs to Q[i′: j], then consider the fill path Q[1: k′], where k′ = MC[1] and
k′ ≥ 1. We can see that Q[1: k′] is an edge of H(A), and thus we can pivot on the
element Ak1. Note that according to Definition 5.2, we cannot have that row vertex
1′ belongs to Q[i′: j] and column vertex 1 does not belong to Q[i′: j].

Consider the kth step of elimination, where k < n. Suppose that at each elim-
ination step prior to k, the middle correspondent pivoting strategy was valid; that
is, the diagonal elements of the permuted matrix are nonzero. We show that at this
step k we can apply the same pivoting strategy. Let PK−1 be the permutation matrix
that describes the first k − 1 row interchanges, that is, PK−1 = Pk−1 . . . P1. Let Ak

be the k × k principal submatrix of PK−1A that includes the first k columns and the
rows in corresponding positions of PK−1A. The columns of Ak are those numbered 1
through k in H(A); the rows of Ak are those given by the permutation matrix PK−1.
We add to the matrix Ak all of the diagonal elements, except the last one, nonzero
by our hypothesis. In the directed graph G(Ak) we will number the vertices from 1
to k.
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First, we will prove that the kth diagonal element of the permuted matrix PK−1A
is nonzero. This corresponds to the last diagonal element of Ak. If k′ is not an inter-
mediate row vertex of the path Q[i′: j], then during the first k−1 steps of elimination
row k was not permuted, and the last diagonal element of Ak is nonzero by our hypoth-
esis. If k′ is an intermediate row vertex on the path Q[i′: j], then row k was permuted
during the first k − 1 steps of elimination. We denoted by d the row that at the kth
step of elimination is in position k of matrix Ak. We now trace the pivoting process
to discover where row d comes from. Let k1 be the middle correspondent vertex of k′

(MC[k1] = k′, k1 ≤ k′). If k1 = k, then d′ = k′. Otherwise, according to our pivoting
choice, the element in position (k′, k1) was used as the pivot at step k1, and thus row k
was interchanged with the row in position k1. At this point, either row vertex k′

1 does
not belong to Q[i′: j], and then d = k1, or else it belongs, and then row k1 was used
as the pivot in some column k2, where it was interchanged with some row k2 < k1.
Extending the induction, we arrive at a row vertex k′

q = d′, which is not an interme-
diate row vertex of Q[i′: j]. The vertices in H(A) followed while tracing the pivoting
process form the path (k, k′, k1, k

′
1, k2, k

′
2, . . . , kq, d

′). On this path, the edge 〈k′, k1〉
and the edges 〈k′

p, k
′
p+1〉, with 1 ≤ p < q, correspond to diagonal elements of Ak.

Hence this path can be transformed into the path (k, k1, . . . , kq, k) in G(Ak). As k >
k1 > · · · > kq, according to Theorem 3.1 this path is a fill path in the directed graph
G(Ak), and the kth diagonal element of PK−1A corresponds to a symbolic nonzero.

Second, we show that at elimination step k we can apply the middle correspondent
pivoting strategy. We distinguish two cases.

Case 1 (column vertex k is not an intermediate column vertex of Q[i′: j]). We
have just proved that the kth diagonal element of PK−1A is an edge of the filled graph
G+(Ak). We use as the pivot the diagonal element.

Case 2 (column vertex k is an intermediate column vertex of Q[i′: j]). Let e′ be
the middle path correspondent vertex of k, that is, MC[k] = e′ and k ≤ e′. Let
Q[e′: k] be the fill path between e′ and k which is a subpath of our initial path Q[i′: j].

If e′ = k′ (that is, MC[k] = k′), then row k′ was not involved in any row per-
mutation. We use as the pivot the diagonal element. If e′ > k, then let K be the
(k + 1)× (k + 1) submatrix of PK−1A that includes the first k columns and the rows
in corresponding positions of PK−1A and column e and row e′ of PK−1A. We add
to matrix K the first k diagonal elements, which correspond to symbolic nonzeros by
our hypothesis. The vertices of the directed graph G(K) are the vertices 1 through k
and vertex e.

In the following, we want to show that 〈e, k〉 is an edge of the directed graph
G+(K). If path Q[e′: k] is simply an edge, then 〈e, k〉 is an edge of G+(K). Other-
wise, we decompose path Q[e′: k] into an alternating sequence of edges and middle
paths using Algorithm 3. The following sequence is obtained: {〈e′, e1〉, Q[e1: MC[e1]],
〈MC[e1], e2〉, Q[e2: MC[e2]],. . . ,Q[eq: MC[eq]], 〈MC[eq], k〉}. We can rewrite the se-
quence as a directed path from vertex e to vertex k of G(K): (e, e1, e2, . . . , eq, k).
The intermediate vertices on this path are less than both e and k, because of the
row merge fill paths Definition 5.2. Therefore 〈e, k〉 is an edge of G+(K), and thus it
corresponds to a symbolic nonzero. This shows that we can choose as the pivot the
element in position (e, k) at this step of elimination, and this ends our proof.

The next theorem shows that the row merge graph represents a tight bound for
the nonzero structure of L̃ and U , in the symbolic sense. It is illustrated in Figures 5.3,
5.4, 5.5, and 5.6.

Theorem 5.5. Let A be a square matrix with nonzero diagonal that satisfies
the Hall property. Let 〈i′, j〉 be an edge of the row merge graph H×(A). There is a
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Fig. 5.3. Example illustrating Theorem 5.5 and showing that L97 is nonzero for the
row merge matrix presented in Figure 5.2. Consider the row merge fill path Q[9′: 7] =
(9′, 6, 10′, 2, 4′, 1, 5′, 4, 7′, 7). This path is displayed by solid edges in the bipartite graph H(A). Fig-
ure 5.4 presents the decomposition of path Q[9′: 7] by Algorithms 2 and 3. First, Algorithm 2
decomposes Q[9′: 7] and obtains the following middle paths: Q[6: 10′],Q[2: 5′],Q[4′: 1],Q[4: 7′]. This
decomposition gives us the pivoting strategy, illustrated in the permuted matrix at the top left of Fig-
ure 5.3. Second, the fill path Q[9′: 7] is decomposed in an alternating sequence of edges and middle
paths using Algorithm 3. This allows us to obtain the path (9, 6, 2, 4, 7) which is a fill path in the
directed graph of the permuted matrix PA.

(7’,7)

(10’,2) (5’,4)

(6,10’)

(4,7’)

(9’,6)

(7’,7)

(10’,2) (5’,4)

(6,10’)

(4,7’)

(2,4’) (4’,1) (1,5’)

Q[9’:7]

Q[10’:7]

Q[10’:4]

Q[2:5’]

Q[9’:7]

Q[10’:7]

Q[10’:4]

Q[2:5’]

(9’,6)

Fig. 5.4. Example of the application of Algorithm 2 (left) and Algorithm 3 (right) on the path
Q[9′: 7] = (9′, 6, 10′, 2, 4′, 1, 5′, 4, 7′, 7) from Figure 5.3.

permutation P = P1P2 . . . Pn−1 such that if A is factored by Gaussian elimination as
A = P1L1 . . . Pn−1Ln−1U , with L̃ being the union of Li, then (L + U)ij 	= 0, in the
symbolic sense.

Proof. According to Theorem 5.3 there is a row merge fill path in H(A) from
row vertex i′ to column vertex j. Let Q[i′: j] be formed by the vertices (i′, j1, i′1, . . . ,
jt, i

′
t, j). Assume that t 	= 0. At each step of elimination we pivot following the

middle correspondent pivoting strategy with respect to the path Q[i′: j], as described
in Lemma 5.4.

Assume now that we are at the jth step of elimination. Let PJ−1 be the permu-
tation matrix that describes the first j − 1 row interchanges. Let K be the principal
submatrix of PJ−1A that includes the first j columns and column i and the rows in
corresponding positions of PA (that is, if i′ ≤ j, then K is a j×j matrix; otherwise K
is a (j + 1)× (j + 1) matrix). In matrix K we add diagonal elements, with 1 ≤ i ≤ j,
which are nonzero by our hypothesis. When i > j, we also add diagonal element (i′, i)
(row i was not permuted). The vertices of the directed graph G(K) are numbered 1
through j and i.
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Fig. 5.5. Example illustrating Theorem 5.5 and showing that U89 is nonzero for the row merge
matrix presented in Figure 5.2. The row merge fill path Q[8′: 9] = (8′, 8, 10′, 4, 7′, 5, 5′, 1, 1′, 3, 9′, 9)
is displayed by solid edges in the bipartite graph H(A). Figure 5.6 presents the decomposition of
path Q[8′: 9] by Algorithms 2 and 3. First, the path Q[8′: 9] is decomposed using Algorithm 2,
and the following middle paths are obtained: Q[8: 10′],Q[4: 7′],Q[5: 5′],Q[9′: 3], and Q[1: 1′]. This
decomposition gives us the pivoting strategy, illustrated in the permuted matrix at the top left of
Figure 5.5. Algorithm 3 decomposes the fill path Q[8′: 9] in an alternating sequence of edges and
middle paths. This allows us to obtain the path (8, 4, 5, 1, 3, 9) which is a fill path in the directed
graph of the permuted matrix PA.

(10’,4) (7’,5)(4,7’)

(8’,8) (8,10’)

(5,5’)

(1,1’) (1’,3)

(3,9’) (9’,9)

(5’,1)

Q[8’:9]

Q[10’:9]

Q[10’:5]

Q[5’:3]

Q[5’:9]

Fig. 5.6. Example of the application of Algorithms 2 and 3 on the path Q[8′: 9] =
(8′, 8, 10′, 4, 7′, 5, 5′, 1, 1′, 3, 9′, 9) from Figure 5.5. Both algorithms return the same result.

Case 1 (i > j (structure of L̃)). The proof is similar to the proof of Lemma 5.4,
in which a middle path becomes an edge of the filled graph of A, and we omit the
details here.

Case 2 (i < j (structure of U)). Consider row merge fill path Q[i′: j] = (i′, j1, i′1,
. . . , jt, i

′
t, j). We distinguish two cases. If column vertex i is not a vertex of path

Q[i′: j], then row i of A is not permuted during our pivoting strategy, and the proof
is similar to the L̃ case. If column vertex i is a vertex of path Q[i′: j], Definition 5.2
decomposes this path in the following three paths: Q[i′: i], Q[i: k′], and Q[k′: j] such
that i < k′ ≤ n, and the three paths are also row merge fill paths in H×(A). Our
pivoting strategy interchanges rows i and k of A at the ith step of elimination. We use
Algorithm 3 to decompose the path Q[k′: j] in an alternating sequence of edges and
middle paths. This sequence is transformed into a path from i to j in the graph G(K)
which has all of the intermediate column vertices smaller than i. This corresponds to
an edge in the filled graph G+(K). Thus the element Uij corresponds to a symbolic
nonzero, and this ends our proof.
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We make one note about the structure prediction of A = P1L1 . . . Pn−1Ln−1 U .
The tight bound of U obtained for the structure prediction of PA = LU (Theorem 4.3)
also represents a tight bound for U obtained in A = P1L1 . . . Pn−1Ln−1 U . But there
does not seem to be a simple way to express tight exact bounds for L̃, where L̃ is the
union of the Li obtained from A = P1L1 . . . Pn−1Ln−1U .

6. Concluding remarks. In this paper we have discussed two aspects of interest
in the structure prediction problem of sparse LU factorization with partial pivoting
of a matrix A. The first aspect considers the computation of the nonzero structure
of the factors during Gaussian elimination with row interchanges. We have presented
new results that provide an exact structure prediction for matrices that satisfy the
strong Hall property or only the Hall property. We then have used the theoretical
results to derive an algorithm for computing fill-ins. The second aspect is to estimate
tight bounds of the structure of L and U prior to the numerical factorization. We
have introduced tight exact bounds for the nonzero structure of L and U of Gaussian
elimination with partial pivoting PA = LU , under the assumption that the matrix A
satisfies the Hall property. We have also shown that the row merge graph represents
a tight symbolic bound for the structure of the factors L̃ and U obtained from the
factorization A = P1L1 . . . Pn−1Ln−1U .

The practical usage of the exact structure prediction presented in this paper re-
mains an open problem. Several aspects are of interest. One important question is to
understand if rounding to zero elements that correspond to numeric cancellation in
exact arithmetic leads to instability in the Gaussian elimination. A different aspect is
to analyze on real world matrices how many numeric cancellations, that Theorem 3.4
identifies, occur during Gaussian elimination. Another aspect is to compare exper-
imentally the bounds presented in this paper with the bounds provided by the row
merge graph, knowing that the latter can be efficiently computed [14].
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