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Low-Rank Matrix Approximation:

Problem Statement:
Given: mxn matrix A, and O <k < min(m,n) = n.
Goal: Compute a rank-k approximation to A.

Fast low-rank matrix approximation is key to efficiency of superfast
direct solvers for integral equations and many large sparse linear
systems.

Indispensable tool in mining large data sets.

Randomized algorithms compute accurate truncated SVD.

Minimum work and communication/Exceptionally high success rate.




Low-Rank Matrix Approximations: Current Approaches

Modified Gram-Schmidt with column pivoting.

(not reliable)
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Rank-Revealing QR factorization.

(Buaranteed but limited reliability)

Partial SVD.
(limited reliability)

The Lanczos Algorithm.

(too much communication)

Truncated SVD

(Best quality, but too slow)




Low-Rank Matrix Approximations: Current Approaches

Modified Gram-Schmidt with column pivoting.
(not reliable)
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® Rank-Revealing QR/LU factorization.
(Actually better than random sampling. Talks in April)

Partial SVD.
(limited reliability)

The Lanczos Algorithm.

(too much communication)

Truncated SVD

(Best quality, but too slow)




Low-Rank Matrix Approximations: Goals

Highly Efficient

Minimum communication

As accurate/reliable as Truncated SVD



Golden Standard: Truncated SVD

Given mxn matrix with n <m, the SVD of A is

01
A=UZVT = - Up) (vr - vt

The rank-k truncated SVD is

01
Ak — UkaVkT — (u'l . uk)< ", ) (Ul . 'l?k.)T
Ok

Theorem [Can't beat 4] (Eckart & Young, 1936)
Minrank(B)sk |A — B " 2 = "A — Ay ” 2 = Ok41
Min el A= Bl = A== | Y o
\ j=k+1




Low-rank Approximations: Strong Rank-Revealing QR

Theorem [Limited Warranty] (Gu & Eisenstat, 1994)
Given mxn matrix with n < m, there exists a permutation I1,

R R gj
ATl = Q ( H 12) with 1 < ’/Gj(R“)S\/1+4k(n—k)

R,
j=1,- k.
Factorization can be computed in O(mnk) operations. @
Basis for some popular low-rank matrix approximation schemes. @
Permutation can be arbitrary, excessive communication possible. @



Low-rank Approximations: Strong Rank-Revealing QR

Theorem [Limited Warranty] (Gu & Eisenstat, 1994)
Given mxn matrix with n < m, there exists a permutation I1,

R gj
ATl = Q ( 11 12) with 1 < ’/Gj(R“)S\/1+4k(n—k)
j=1, k.
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Low-Rank Approximations: Randomized Sampling

Algorithm RandSamO
Input: mxn matrix A, int k, p.

Draw a random nx(k+p)
matrix €.

Compute QR =A Q
and SVD:QTA = IV T

Truncate SVD: . o
Up 23 Vs

PPN &
Output: B = (QU)%,7,
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Low-Rank Approximation: Randomized Sampling

Algorithm RandSamO Easy to implement.
Very efficient computation. @

Input: mxn matrix A, int k, p. Minimum communication.

Draw a random nx(k+p)
matrix €.

Compute QR=A Q

and SVD: QTA — 57T
T teSVD: 5 & T
runcate 0,5, 7
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Low-Rank Approximation: Randomized Sampling

Algorithm RandSamO Easy to implement.
Very efficient computation. @

Input: mxn matrix A, int k, p. Minimum communication.

Draw a random nx(k+p) Thm [(Remarkable) Limited

matrix Q2. Warranty]
Compute QR = A Q (Halko/Martinsson/Tropp, 2011)
andSVD: T4 = SVT la- B, =000 » 0.

Truncate SVD: ﬁk fkf}kT
with failure probability 5p™
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Low-Rank Approximation: Randomized Sampling

Algorithm RandSamO Easy to implement
Very efficient computation. @
Input: mxn matrix A, intk, p. Minimum communication.
agtvrv ag';a”dom nx(k+p) Thm [(Remarkable) Limited
ix Q.
Warranty]

Compute QR =A Q

and SVD: QTA = iona
Truncate SVD: 7, § 7 la—-B|, =00, > o,

(Halko/Martinsson/Tropp, 2011)

with failure probability 5p™

~ ~T

Output: B = (QU)%,7,

4 lines of code

40 pages of analysis
13



Low-Rank Approximation: Randomized Sampling

Algorithm RandSamO Easy to implement
Very efficient computation. @
Input: mxn matrix A, intk, p. Minimum communication.
agtvrv ag';a”dom nx(k+p) Thm [(Remarkable) Limited
ix Q.
Warranty]

Compute QR =A Q

andSVD: T4 =( XVT
Truncate SVD:  §j, § T |4A—Bl, =00 » o,

(Halko/Martinsson/Tropp, 2011)

with failure probability 5p™

~ ~T

Output: B = (QU)%,7,

(Forp =13, 5p P = 1.6%1014)
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Is 1014 small enough failure chance?

Chance of DNA match = 10"
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For the Truly Motivated, Bound in Full Glory

|4 =B, <ow. + |7 —PA],

THEOREM 10.8 (Deviation bounds for the spectral error). Frame the hypotheses
of Theorem 10.5. Assume further that p > 4. For all u,t > 1,

I(I—Py)A]
evk+p 5\ 1/2 evk+p
2 2
< (14t VIR o + 0 LT )| D
—u /2.

with failure probability at most 5t P + e
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Low-Rank Matrix Approximations: Randomized Sampling

Algorithm RandSamO
Input: mxn matrix A, int k, p.

Draw a random nx(k+p)
matrix €.

Compute QR =A Q

and SVD: QTA —UsyT
T te SVD: 77 & T
runcate UkaV

Output:

Earlier work by Rokhlin/Tygert (2008)

Many variations.

Randomized rank-revealing QR
(Demmel/Dumitriu/Holtz, 2008; Toledo, 2010)
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Low-Rank Approximation: Randomized Sampling

Algorithm RandSamO

Input: mxn matrix A, int Kk, p.

Draw a random nx(k+p)
matrix €2.

Compute QR =A Q
andSVD: QTA =
Truncate SVD: ﬁk ka

Approximation errors

|

|

|

|

|

|

|

|

|

|

|

J I
el
i A

Order of magnitude

50

Algorithm can work far better than
theory predicts.
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Improved Randomized Sampling

Algorithm RandSam1

_ _ P becomes p + ¢
Input: mxn matrix A, int k, p, C.

Smallest modification of any

Draw a random nx(k+p+c) algorithm.

matrix Q2.
Compute QR =A Q

and SVD: QTA —UsyT
Truncate SVD: U‘k kakT

Output:

Only change from RandSamO:

v
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Improved Randomized Sampling

Algorithm RandSam1

Input: mxn matrix A, int k, p, C.

Draw a random nx(k+p-+c)
matrix €.

Compute QR =A Q
andSVD:  QTA =0 VT
Truncate SVD: 7, 5 VT

B = (00,7
Outout: (QUIEV,

Only change from RandSamO:
p becomes p +c¢C

Smallest modification of any @
algorithm.

c allows a drastically different
error bound, controls accuracy.

p remains in control of failure chance.
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Improved Randomized Sampling

A =2000x2000 random matrix with
geometrically decaying singular values. Accuracy increases with ¢
p - 10, k - 20- 01 - 45, 020 - 2 . |
107 ;‘
1 04 ~u e -
10° . \\ ~ ~.
. _""-.,.\." 10° N\ T .
“._‘. e
o’ \\. 0 —— Eigenvalue Error x\\
10 \\\ » —— Eigenvalue Error Bound
", 10" —— Excess 2-norm Error N .
., \
10° s 14 \
".__‘ 10 .
0l '\‘\ \
i \""-.\\; T R R R
10*30 0 0 % o %0 6 10 & @ 10
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Randomized Power Method (l)

J}R needs done carefully for

Algorithm RandSam?2

Input: mxn matrix A, int Kk, p, ¢, Q.

Draw a random nx(k+p+c) matrix €2
Compute QR of (AA)IA Q

and SVD:
Truncate SVDQTA = J SVT
U ZiVie
Output:
B = (QUk)Esz

numerical accuracy.

Algorithm is old one when q = O;
but q = 1 far more accurate.

Should converge faster when singular
" values do not decay very fast.

Thm [Limited Warranty]
(Halko/Martinsson/Tropp, 2011)

”A — B "2 = 0(0}41) > 0ppy
with failure probability 5p™
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Randomized Power Method (l)

Algorithm RandSam?2

Input: mxn matrix A, int Kk, p, ¢, Q.

J}R needs done carefully for
numerical accuracy.

Algorithm is old one when q = O;
but q = 1 far more accurate.

Should converge faster when singular

Draw a random nx(k+p+c) matrix €2 values do not decay very fast.

Compute QR of (AAHIAQ

and SVD:
Truncate SVQT A = givT
U ZiVie
Output:

B = (Q Uk)fkﬁ

Traditional Subspace Iteration
with random start matrix

Thm [Limited Warranty]
(Halko/Martinsson/Tropp, 2011)

"A — B " 5 = O(O'k+1) = O
with failure probability 5p™

Bounds both stronger and
weaker than those for traditional
Subspace Iteration




New Error Bound Analysis

THEOREM 5.8. Let A = UXV7T be the SVD of A, and 0 < p < £ — k. Further let QBy be a rank-k
approximation computed by Algorithm 2.2. Given any 0 < A < 1, define

eVl [ 2 T 2
CA_p+1(K) (\/n—€+p+\/2+\/210gg).

We must have for j =1,---,k,

gj

o 4q+2
1+C% (—e;’f“)
j

oj (QBx)) >

?

and

n 4q
Oyp__
| (I-QQ") Allr < ||A—QBklr < ( > 032.) +kCR0?_ .1 ( ¢ p+1) |

j=k+1 Ok

4q
gy
| (I - QQT) All2 < |4 — QB2 < \/ai+1 +kCRo? ., ( g pﬂ) .

Ok
with exception probability at most A.
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Fast Randomized Algorithm with

Subsampled random Fourier Transform:
P Tstruct ~ mn log(g) + €2n

HALKO, MARTINSSON, AND TROPP

ALGORITHM 4.5: FAST RANDOMIZED RANGE FINDER

Given an m X n matriz A, and an integer £, this scheme computes an m X £
orthonormal matriz Q whose range approzimates the range of A.

1 Draw an n x £ SRFT test matrix €, as defined by (4.6).

2 Form the m X £ matrix Y = AQ using a (subsampled) FFT.

3 Construct an m x £ matrix () whose columns form an orthonormal
basis for the range of Y, e.g., using the QR factorization Y = QR.
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Numerical Experiment (I): Computing truncated SVD
Comparison between randomized algorithm and svds
A = (log |x; — y;|) is4000x4000 matrix,

x;,y; disjoint 2D points
Numbers of Matriz- Vector Multiplies

[ —
Il
 —

Tolerance (=1 | q=4 ] svis

070 T 59 9xT0 ] 500
0% 1180 | 5x 06| 987 | 600
07101100 | 506|993 | 600
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Numerical Experiment (ll):
Fast Structured Matrix Preconditioners:

T Davis' SPD Sparse Matrix A = Bottom Schur Cpmp}ement of dimen§i0n 3300.
CG takes 878 iterations for 10-'? residual

Numbers of PCG Iterations

Maximum off-diagonal rank k | p=10| p=20 | p=40

2
10
l

[ U Y
0 | 6 | 6
64 | 61 | 6l

nz = 7660826 x10°
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Numerical Experiment (lll): Eigenface

Comparison with truncated SVD for 200 classifications

20
40
60
80
100

20406080 20406080 20406080 20406080 20406080

20
40
60
80
100

20406080 20406080

2 20
of . A w0
2t K
80 80

100 100

20406080 20406080 20406080 20406080 20406080

Comparison of Numbers of Incorrect Matches

Rank k { p=10 | p=20 | p=40 | Truncated SVD
10 206 |8 U
il no%o| B 2
il 00 | 18 I7
{0 N1 17 | I 16
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Numerical Experiment (IV): QRCP vs. Randomized Algorithm

4000 ;

(pi/2)*«(—N:N) /N;

ones (2%xN+1, 1) ;
log((abs(sin(exx—x"'*xe"'))));
B(~isfinite(B)) = 0;
B=B(1:N/2,N/2+1:end) ;

WO X 2
11l

P 30;

w randn(N+N/2+1,p) ;

BW = BxW;

[QW, RW]l=qgr(Bw, 9) ;

[UW, SW, VW] = svd(B'xQW, 9) ;
srnd = diag(SWw) ;

[QB,RB,P] = qgr(B,0);
sqr = svd(RB(1:p,:));
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Numerical Experiment (IV): QRCP vs. Randomized Algorithm

Approx Svalues by Random Alg, QRCP

Rnd Svalues
— < — QR Svalues

-
o
LB L0 1L 0 L L L L R e A

vl vl v vd vl vl v nd vl sl sl
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Numerical Experiment (IV): QRCP vs. Randomized Algorithm

Svalues Diffs by Random Alg, QRCP
T T T
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Numerical Experiment (IV): QRCP vs. Randomized Algorithm

s Svalues Errors by Random Alg
10

107 =
107° =
10“0;—
10—11;_

10—12 L

10—13 L

107"
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Current Work On Randomized Algorithms

« Randomized Gaussian elimination with complete
pivoting

« Randomized spectrum-revealing LU, QR, Cholesky
factorizations

(vs. CUR/CX decompositions,
pivoted Cholesky factorizations,
randomized low-rank matrix approximations)

o Big Data applications.



