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Low-Rank Matrix Approximation:  

 

 

"  Fast low-rank matrix approximation is key to efficiency of superfast 
direct solvers for integral equations and many large sparse linear 
systems.  

 
"  Indispensable tool in mining large data sets. 
  
"  Randomized algorithms compute accurate truncated SVD. 
 
"  Minimum work and communication/Exceptionally high success rate.  
 

          

     

 
Problem Statement: 

Given: mxn matrix A, and 0 <k < min(m,n) = n. 
Goal:  Compute a rank-k approximation to A.  
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Low-Rank Matrix Approximations: Current Approaches  
Modified Gram-Schmidt with column pivoting. 

(not reliable) 

 

Rank-Revealing QR factorization.  
(guaranteed but limited reliability) 

 

Partial SVD. 
(limited reliability) 

 

The Lanczos Algorithm. 
(too much communication) 

 

Truncated SVD 
  (Best quality, but too slow) 

 
 

 M
ore 

reliable 
 

 Low
er  cost 
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Low-Rank Matrix Approximations: Current Approaches  
Modified Gram-Schmidt with column pivoting. 

(not reliable) 

 

Rank-Revealing QR/LU factorization.  
(Actually better than random sampling. Talks in April) 

 

Partial SVD. 
(limited reliability) 

 

The Lanczos Algorithm. 
(too much communication) 

 

Truncated SVD 
  (Best quality, but too slow) 
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Low-Rank Matrix Approximations: Goals 
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Highly Efficient 

 

Minimum communication 

 

As accurate/reliable as Truncated SVD 



Golden Standard: Truncated SVD 
 

Given mxn matrix with n ≤ m, the SVD of A is  
 
 
 

The rank-k truncated SVD is  
 
 

Theorem [Can’t beat    ] (Eckart & Young, 1936)  

 

7 



Low-rank Approximations: Strong Rank-Revealing QR 
 

Theorem [Limited Warranty] (Gu & Eisenstat, 1994) 
Given mxn matrix with n ≤ m, there exists a permutation Π,  

 
  

 
 
"  Factorization can be computed in O(mnk) operations. 
 
"  Basis for some popular low-rank matrix approximation schemes. 
 
"  Permutation can be arbitrary, excessive communication possible. 
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Algorithm RandSam0 

"  Input: mxn matrix A, int k, p. 
 

1.  Draw a random nx(k+p)    
matrix Ω. 

2.  Compute QR = A Ω 
3.  and SVD: 
4.  Truncate SVD:  

 

"  Output:  
     

  

Low-Rank Approximations: Randomized Sampling 
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"  Easy to implement. 
"  Very efficient computation. 
"  Minimum communication. 
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"  Easy to implement. 
"  Very efficient computation. 
"  Minimum communication. 
 
Thm [(Remarkable) Limited Warranty] 

 (Halko/Martinsson/Tropp, 2011) 

 
       
         with failure probability 5p-p 

  
4 lines of code  

40 pages of analysis 
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Thm [(Remarkable) Limited  
         Warranty] 
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         with failure probability 5p-p 

  
(For p = 13, 5p-p = 1.6*10-14) 



Is 10-14 small enough failure chance? 
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Chance of DNA match = 10-14                                      



Is 10-14 small enough failure chance? 
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Chance of DNA match = 10-14                                      DNA Can fail
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For the Truly Motivated, Bound in Full Glory 

17 



Algorithm RandSam0 

"  Input: mxn matrix A, int k, p. 
 

1.  Draw a random nx(k+p)    
matrix Ω. 

2.  Compute QR = A Ω 
3.  and SVD: 
4.  Truncate SVD:  

 

"  Output:  
     

  

 
"  Earlier work by Rokhlin/Tygert (2008) 

 

"  Many variations. 

 

"  Randomized rank-revealing QR 
(Demmel/Dumitriu/Holtz, 2008; Toledo, 2010) 

 

Low-Rank Matrix Approximations: Randomized Sampling 
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Algorithm RandSam0 

"  Input: mxn matrix A, int k, p. 
 

1.  Draw a random nx(k+p)    
matrix Ω. 

2.  Compute QR = A Ω 
3.  and SVD: 
4.  Truncate SVD:  

 

"  Output:  
     

  

 
 
 
 
 
 
 
 
 
"  Algorithm can work far better than 

theory predicts. 
 
 

Low-Rank Approximation: Randomized Sampling 
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Algorithm RandSam1 

"  Input: mxn matrix A, int k, p, c. 
 

1.  Draw a random nx(k+p+c)    
matrix Ω. 

2.  Compute QR = A Ω 
3.  and SVD: 
4.  Truncate SVD:  

 

"  Output:  
     

  

Improved Randomized Sampling 

   Only change from RandSam0:  
    p becomes p + c 
 
   Smallest modification of any  
   algorithm.  
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Algorithm RandSam1 

"  Input: mxn matrix A, int k, p, c. 
 

1.  Draw a random nx(k+p+c)    
matrix Ω. 

2.  Compute QR = A Ω 
3.  and SVD: 
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              Improved Randomized Sampling 

   Only change from RandSam0:  
   p becomes p + c 
 
   Smallest modification of any   
   algorithm.  
 
   c allows a drastically different  
   error bound, controls accuracy.    
 
   p remains in control of failure chance. 
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                     Improved Randomized Sampling 
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Accuracy increases with c 
A = 2000x2000 random matrix with  
geometrically decaying singular values. 
 
p = 10, k = 20. σ1 = 45, σ20 = 2 



Algorithm RandSam2 

"  Input: mxn matrix A, int k, p, c, q. 
 

1.  Draw a random nx(k+p+c) matrix Ω. 
2.  Compute QR of  (AAT)q A Ω 
3.  and SVD: 
4.  Truncate SVD:  

 

"  Output:  
     

  

Randomized Power Method (I) 
 
QR needs done carefully for 
     numerical accuracy. 
 
  Algorithm is old one when q = 0; 
  but q = 1 far more accurate. 
 
  Should converge faster when singular 
   values do not decay very fast. 
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Thm [Limited Warranty] 
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Thm [Limited Warranty] 
 (Halko/Martinsson/Tropp, 2011) 

 
       
         with failure probability 5p-p 

 

Traditional Subspace Iteration 
with random start matrix 

Bounds both stronger and 
weaker than those for traditional 

Subspace Iteration 



New Error Bound Analysis 
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                          Fast Randomized Algorithm with 
Subsampled random Fourier Transform:   
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Numerical Experiment (I): Computing truncated SVD  
Comparison between randomized algorithm and svds
      

                                                          is 4000x4000 matrix, 
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Numerical Experiment (II):  
Fast Structured Matrix Preconditioners:        

                                                          

28 

T. Davis' SPD Sparse Matrix A = Bottom Schur Complement of dimension 3300.
CG takes 878 iterations for 10-12 residual



Numerical Experiment (III): Eigenface 
Comparison with truncated SVD for 200 classifications
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Numerical Experiment (IV): QRCP vs. Randomized Algorithm 
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Numerical Experiment (IV): QRCP vs. Randomized Algorithm 
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Numerical Experiment (IV): QRCP vs. Randomized Algorithm 
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Numerical Experiment (IV): QRCP vs. Randomized Algorithm 
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Current Work On Randomized Algorithms 

!  Randomized Gaussian elimination with complete 
pivoting 

 
!  Randomized spectrum-revealing LU, QR, Cholesky 

factorizations  
   (vs. CUR/CX decompositions,  
          pivoted Cholesky factorizations,  
          randomized low-rank matrix approximations) 
 
!  Big Data applications. 


