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ABSTRACT
In this paper, we propose a density-based method to se-
lect discriminant local features in images or videos. We
first introduce a new fast density estimation technique us-
ing a simple grid index structure and specific queries based
on the energy of the gaussian function. This method en-
ables the nonparametric density estimation of target fea-
tures with very large sets of source features. We then apply
it to the selection of discriminant local features: the prin-
ciple is to keep only the features having the lowest density
in a feature database constructed from a large collection
of representative objects (images or videos). Experiments
are reported to evaluate the density estimation technique in
terms of both quality and speed. The density-based selec-
tion of discriminant local features is evaluated in a complete
video content-based copy detection framework using Harris
interest points.

1. INTRODUCTION
In our previous work [8], we proposed an efficient similarity
search technique to retrieve multidimensional distorted fea-
tures in very large databases. Instead of using a usual search
paradigm such as range query or K-nearest neighbors query,
we introduced a new approximate search paradigm using
distortion-based probabilistic queries. Given a query X,
the principle of the search is to retrieve all the features of
the database contained in a region Vα of the feature space
satisfying: Z

Vα

p∆S (Z −X) dZ ≥ α (1)

where p∆S (.) is the probability density function of the dis-
tortion ∆S = S − Sd, i.e the difference vector between an
original feature S and a distorted feature Sd (typically ob-
tained after transformation of an image).
In this paper, we propose to apply this technique to approx-
imate density estimation in large databases. By replacing
the probability density function p∆S by a gaussian function,

The Content-Based Copy Detection system used for the experiments of this
paper is being pattented by INA, which has all commercial rights.

our method is indeed well suited to select only the features
of the database having a significant contribution to a den-
sity estimation function based on a gaussian kernel.
The other and main contribution of this paper consists in a
new interest points selection strategy. Instead of maximiz-
ing an operator using only the local information content,
the method selects the points according to the density of
their local features in a representative source database. The
idea is to detect rare local features that should be more dis-
criminant and thus useful in an indexing perspective. Our
proposed nonparametric density estimation technique be-
ing very fast, it enables the density estimation in very large
source datasets even in a real-time video context as discussed
in the experiments.
The paper is organized as follows: Section 2 discusses the is-
sues of fast nonparametric density estimation and describes
our method. Section 3 presents its application to the se-
lection of relevant interest points in images and video clips.
Experiments are reported in section 4.

2. FAST NONPARAMETRIC DENSITY ES-
TIMATION

2.1 Issues
Nonparametric density estimation is an attractive technique
in many computer vision applications since it does not re-
quire any assumption on the forms of the underlying prob-
ability density function. Furthermore, practical computer
vision problems often involve high dimensional multimodal
densities which can not be simply represented. A nonpara-
metric technique which is quite general is the kernel density
estimation technique [17]. In this technique the underlying
probability density function is estimated as:

bf(X) =

NX
i=1

αiK(X −Xi)

where K is a kernel function (typically a Gaussian) centered
at the data points Xi (i = 1, ..., N) and αi are weighting
coefficients (typically uniform weights are used, i.e., αi =
1/N). The use of such an approach requires a way to ef-

ficiently evaluate the estimate bf(X) at any new point X.
In general, given N original data samples (sources) and M
points at which the density must be evaluated (targets),
the complexity is O(NM) evaluations of the kernel func-
tion, multiplications and additions. For many applications
in computer vision, where both real-time operation and gen-
erality of the classifier are desired, this complexity can be



a significant barrier to the use of these density estimation
techniques. Several methods, however, allow to speed up the
process. When both the number of targets and the number
of sources are high, the fast Gauss transform [4] and the dual
tree [3] are known to be the most efficient techniques. In this
paper, we are more interested in estimating very quickly the
density of one single target feature faced with a very large
source dataset in order to deal with in line image retrieval
or real-time video context. In this case, the most commonly
used techniques are range query searching algorithms per-
formed in indexing structures such as grids, classic kd-trees
[3] or also an Anchor hierarchy [14].
When using a gaussian kernel and uniform weights, the den-

sity function bf(X) can be simply expressed as:

bf(X) =
1

N

1

(2πσ)
D
2

NX
i=1

e
||X−Xi||2

2σ2 (2)

where σ is the bandwidth of the estimation and D the di-
mension of the feature space. The technique proposed in
this paper is only dedicated to this simplified density esti-
mation problem although it could be easily extended to non
uniform weights.

2.2 Proposed technique
2.2.1 Principle
Given a target vector X where the density has to be esti-
mated, the principle of our technique is to consider only the
Nα features Xi of the source database contained in a region
Vα(X) of the feature space satisfying:

1

(2πσ)
D
2

Z

Vα(X)

e
||X−Z||2

2σ2 dZ ≥ α (3)

We refer to this search paradigm as an α-query. The density

estimation function bfα(X) is then computed only on the
Nα selected source features (i.e the features Xi belonging
to Vα(X)):

bfα(X) =
1

N

1

(2πσ)
D
2

NαX
i=1

e
||X−Xi||2

2σ2 (4)

Intuitively, our technique guaranties that α percent of the
energy of the gaussian function will be included in the es-
timation. In practice, Vα is a set of bounding regions de-
pending on the space-partition on which the index structure
is based (see section 2.2.2). The main difference with usual
fast estimation techniques based on KD-trees or grid par-
titions [3], is that the pruning of the bounding regions is
not based on distance computations. In these methods, a
bounding box is pruned from the priority queue if the ker-
nel value between the closest point of the bounding region
and the target vector is under a certain threshold. The used
algorithms are mainly range query searching algorithms [3].
In our method, the pruning of the data chunks is not based
on geometrical rules but on a global criterion making equal
to α the percentage of the energy of the gaussian function
recovered by the selected bounding regions. The underly-
ing heuristic is that most of the features having a significant
contribution to the density estimation function (Equ. 2) be-
long to the selected regions. As Vα is determined such as
it minimizes the number of bounding regions, this approach

allows to have significantly less data chunks to process. We
showed in [9], that the number of visited data chunks in a
20 dimensional grid partition was 100 times lower when us-
ing an α-query instead of a range query, both recovering the
same percentage of the energy of the gaussian function (see
Fig. 1 for an illustration).

Figure 1: Difference between a probabilistic query
and a range query

2.2.2 Indexing structure and density estimation al-
gorithm

The indexing structure we use to process our α-queries is
described in [8]. The space-partition is a simple grid in-
duced by the regular split of a Hilbert space-filling curve
as illustrated on Figure 2. It results in a set of 2p non
overlapping and hyper-rectangular bounding regions, called
p-blocks, which are well-suited to compute quickly the inte-
gral of the gaussian function. The depth p of the partition
is equal to the number of bits of the Hilbert derived keys
used to access the data pages corresponding to each block.
The density estimation algorithm is composed of two steps:
a filtering step that selects the relevant p-blocks and a re-
finement step that exhaustively processes all the features
belonging to the selected blocks. Thanks to the separability
property, the integral of the gaussian function on a p-block
b can be easily computed as:

1

(2πσ)
D
2

Z

b

e
||X−Z||2

2σ2 dZ =
1

(2πσ)
D
2

DY
j=1

Z vi
j

ui
j

e
(xj−zj)

2

2σ2 dzj

where ui
j and vi

j are the lower and upper bounds of the p-

block b along the jth axis, xj and zj are the jth component
of respectively the target feature X and any vector Z.

Figure 2: Space partition induced by the Hilbert
space-filling curve at different depths p = 3, 4, 5



For a p-depth partitioned space and a target feature X,
inequality (3), may be satisfied by finding a set Bα of p-
blocks such as:

1

(2πσ)
D
2

card(Bα)X
i=1

Z

bi

e
||X−Z||2

2σ2 dZ ≥ α bi ⊂ Bα,∀i (5)

where card(Bα) ≤ 2p is the number of blocks in Bα. In
practice, card(Bα) should be minimum to limit the cost of
the search. We refer to this particular solution as Bmin

α .
Its computation is not trivial because sorting the 2p blocks
according to their weights is not affordable. Nevertheless,
it is possible to quickly identify the set B(τ) containing all
the blocks for which the integral of the gaussian function is
greater than a fixed threshold τ :

B(τ) =

(n
bi

o
/

1

(2πσ)
D
2

Z

bi

e
||X−Z||2

2σ2 dZ > τ

)

The total energy of the gaussian function contained in B(τ)
is given by:

PΣ(τ) =
1

(2πσ)
D
2

card(B(τ))X
i=1

Z

bi

e
||X−Z||2

2σ2 dZ

B(τ) and PΣ(τ) are computed thanks to a simple hierarchi-
cal algorithm based on the iterative increase of the partition
depth (from p1 = 1 to pp = p). At each iteration, only
the blocks for which the integral of the gaussian function is
higher than τ are kept in a priority queue. Since card(B(τ))
decreases with τ , finding Bmin

α is equivalent to finding τmin

verifying:
¡

PΣ(τmin) ≥ α
∀τ > τmin, PΣ(τmin) < α

(6)

As PΣ(τ) also decreases with τ , τmin can be easily approxi-
mated by a method inspired by Newton-Raphson technique
(the hierarchical algorithm is applied several times). The
partition depth p is of major importance since it directly
influences the total estimation time ts:

ts(p) = tf (p) + tr(p)

The time of the filtering step tf (p) is strictly increasing with
p because the number of p-blocks in Bmin

α and thus the com-
putation time increase with p. The refinement time tr(p) is
decreasing because the selectivity of the filtering step in-
creases, i.e the number of features belonging to the selected
blocks decreases with p. The search time ts(p) has generally
only one minimum at pmin which can be set at the start of
the system in order to obtain the best average response time.
In practice, pmin depends particularly on the database size
and varies from p = 9 to p = 23 when the database size
grows from 5, 000 features to 1× 108 features.

Once Bmin
α has been determined, the physical address of

the features belonging to each block is read in an index ta-
ble and the refinement step is processed according to Equ.
4, Nα being the number of features belonging to Bmin

α .

3. DENSITY-BASED SELECTION OF INTER-
EST POINTS

3.1 Local features and content-based image
retrieval

The use of local features for content-based image retrieval
(CBIR) was originally suggested by Schmid and al. [15,
12] and more recently applied to image copy detection by
Berrani and al. [1] and to video copy detection in our previ-
ous work [7]. The extraction of local features consists of two
steps: an interest point detection [11, 12, 6], and a local de-
scriptor computation [13]. CBIR using local features argues
that, instead of using a single feature vector to describe an
entire image, one should identify and independently index a
large number of local features. Instead of submitting a single
query to retrieve similar images, multiple queries should be
submitted and their partial results should be post-processed
before delivering the answer.
Local features are well-suited to CBIR for two main reasons.
First, they are ideal to deal with cropping, shifting and com-
positing because a part of them always remains unchanged,
whereas a single global feature would need complex metrics
to be robust to such transformations. Second, their local
uniqueness and their high information content [16, 18] make
them highly distinctive and robust to typical image trans-
forms.
However, it is important to note that usual local features
are selected only according to the local information content
in the image. Thus, there is no guaranty that they will be
distinctive in a large set of local features. A local feature
corresponding to a high saliency in the image could be highly
redundant in some specific databases.
To overcome this issue, we propose to select relevant local
features directly according to their discrimination power in a
specific set of images. By computing the density of the local
features in a source database (with our proposed method),
it is indeed possible to select quickly the most rare local fea-
tures. Such a rarity criterion was already proposed in the
literature to select salient points [19, 5] but the source fea-
tures to estimate the density were only the local features of
the current image or a small class of similar images [19]. In
our method the rarity of a local feature is related to a large
set of various images and thus more specific to CBIR issues.

3.2 Density-based selection of discriminant Har-
ris interest points

Although the density-based selection of interest points could
be processed on all the pixels of an image, we restricted it
to the post-selection of Harris interest points [6]. The Har-
ris detector works as a first filtering step, and the density
is computed only for the local features extracted around
the detected points. We finally keep only the Kr local fea-
tures with the lowest density. The source database used
to estimate the density is a large set of local features ex-
tracted around all Harris interest points of a representative
collection of object (depending on the application). Fig. 3
illustrates the advantage of our density-based selection cri-
terion compared to a cornerness selection criterion. The
top image represents all the detected Harris points, the sec-
ond image represents the Kh = 20 points with the highest
Harris response (i.e the highest cornerness) and the bot-
tom image represents the Kr = 20 points with the lowest
density in a source database containing the same kind of im-
ages (Japanese TV programs). We see that the points with
the highest cornerness correspond only to textual characters



Figure 3: top: all harris points - center: 20 points
with the highest harris response - bottom: 20 points
with the lowest density

which are very frequent in the database and therefore not
discriminant at all. On the other side, the points with the
lowest density focus more on the main information of the
scene.

4. EXPERIMENTS

4.1 Experimental setup
All the features used in the following experiments are local
descriptors computed around Harris interest points [6, 7] in
video clips. The video materials come from Japanese televi-
sion channels that are saved in MPEG1 format for 5 years.
They include TV shows, news, movies, sports, etc. The
feature extraction method was used in [7] for content-based
video copy detection. It includes a key-image detection (cor-
responding to extrema of the global intensity of motion [2]),
the detection of Harris interest points [6] in these key-images
and the computation of 20-dimensional local features defined
as:

S =

ţ
s1

‖s1‖ ,
s2

‖s2‖ ,
s3

‖s3‖ ,
s4

‖s4‖
ű

where the si are 5-dimensional sub-vectors computed at four
different spatio-temporal positions distributed around the
interest point. Each si is the differential decomposition of
the gray level 2D signal I(x, y) up to the second order:

si =

ţ
∂I

∂x
,

∂I

∂y
,

∂2I

∂x∂y
,

∂2I

∂x2
,

∂2I

∂y2

ű

All measurements and parameters refer to the normalized
feature space [0, 1]20. The average key-image rate is about
0.95 key-image per second of video and the average number
of Harris interest points per key image is about 170.
Experiments were carried out on a Pentium M (CPU 1.86
GHz, cache size 2048Kb, RAM 1.5 Gb) and the response
times were obtained with unix getrusage() command.

4.2 Fast Density Estimation Technique evalu-
ation

We aim at evaluating our density estimation technique in
terms of quality and speed. In this experiment the feature
databases were constructed by indexing the differential de-
scriptors of all the harris interest points detected in the key-
images. The default database DB10, used when the size
of the source dataset is not a studied parameter, contains
5, 814, 585 feature vectors corresponding to 10 hours of ran-
domly selected video materials. Two error metrics are used
to assess the quality of the density estimation:

• the relative error:

η =
bf(X)− bfα(X)

bf(X)

• the relative logarithmic error:

ηlog =
log10( bf(X))− log10( bfα(X))

log10( bf(X))

The second one is more adapted to the dynamic of proba-
bility density functions in high dimensional spaces (see Fig.
4 for example).
The default bandwidth is set to σ = 0.117.
Note that the target features for which we estimate the den-
sity do not belong to the source databases.

4.2.1 Influence of the precision parameterα
The estimated density of 30 local features extracted in a ran-
domly selected key-image is represented in Fig. 4 for several
values of α. The reference value estimated by a sequential
scan of the source database is also plotted on each graphic.
This qualitative analysis show that the quality of the esti-
mation remains almost unchanged for high precision values
(α ≥ 99%) and that it begins to seriously degrade only for
precision values lower than α = 80%.

Fig. 5 shows the average estimation time of one single target
feature faced with the value of α. It shows that the approx-
imate estimation paradigm allows very high speed-up with
only small losses in quality thanks to the strong decrease of
the estimation time when the precision is slowly decreasing
(the estimation time is divided by 21 when α varies from
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Figure 4: Estimated density of 30 local features, for
several values of the precision parameter α

99.99% to 95%).
Speed measurements and quantitative quality measurements
are summarized in Table 1. For most computer vision ap-
plication, using α = 90% should provide a widely accept-
able precision (ηlog < 1%) whereas the estimation is about
100 times faster than using a sequential scan of the source
database.

4.2.2 Influence of the bandwidthσ
Table 2 summarizes speed and quality measurements for sev-
eral values of σ (α = 90%). It shows that the bandwidth
has an important impact on the evaluation time. We can
also remark that the quality degrades for very low values
(σ = 0.05). This is highly related to the floating precision
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Figure 5: Estimation time versus α (log scale)

Table 1: Influence of the precision α
time (ms)

sequential scan 266.27

α (%) time (ms) η (%) ηlog (%)
99.99 93.31 0.0005 0.0001
99.90 27.33 0.0083 0.0007
99.00 11.17 0.5099 0.0331
95.00 4.40 4.1921 0.3541
90.00 2.71 9.8760 0.9458
85.00 1.91 15.0217 1.7295
80.00 1.29 19.7469 2.3080
70.00 0.84 30.8985 4.5035
50.00 0.37 51.5602 11.2620
30.00 0.13 70.9108 23.2837
10.00 0.04 85.1596 39.6444

Table 2: Influence of the bandwidth σ
time (ms)

sequential scan 266.27

σ time (ms) η (%) ηlog (%)
0.05 0.61 34.42 5.76
0.10 2.14 12.31 1.30
0.15 4.07 6.65 0.93
0.20 7.83 5.72 0.91

of the machine that plays a more important role when the
values of the density are very low.

4.2.3 Influence of the source database size
Fig. 6 represents the average estimation time of one sin-
gle target feature for several sizes of the source database.
The main advantage of our technique is that it is sublin-
ear in database size when it remains of the same order of
magnitude as the memory size of the machine. In this exper-
imental context, the size of an indexed database containing
50, 000, 000 features is about 1.5Gb. For such a database,
our technique is about 1000 times faster than a sequential
scan.

4.3 Discriminant interest points selection
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We aim at evaluating the density estimation of local features
as a criterion to select relevant interest points. The principle
of the selection is to extract the local features around each
Harris interest points, to estimate their density in a source
database using our fast density estimation technique and to
keep only those having the lowest density (most rare points).
The source database we use is the default database DB10,
previously described in section 4.2, and containing the lo-
cal features of all the Harris points detected in 10 hours of
randomly selected Japanese television programs. Note that
the video materials in which we perform the interest points
selection do not belong to the 10 hours of video used to
construct DB10 although they are of same type (Japanese
television programs).

4.3.1 Qualitative analysis
Fig. 7 and 8 represent the Kh = 20 Harris interest points
with the highest cornerness (i.e the highest Harris response)
and the Kr = 20 Harris interest points with the lowest
density in several key-images. These examples show that
the density criterion is most relevant than the cornerness
criterion to select discriminant points. The Harris points
with the highest cornerness are often detected in the back-
ground of the video or in inserted patterns (text, logos,
frames,...). Thus, they are not discriminant to distinguish
different scenes of the same video clip or different programs
with the same background or patterns. The rare local fea-
tures are better distributed in the image and capture a more
representative information of the scene.

Fig. 8 shows how the points with the lowest densities are
well suited to capture motion information. The local fea-
tures describing static local regions are indeed very frequent
in the source database (background, static scenes, etc.) and
the most rare local features often correspond to space-time
interest points [10].

4.3.2 Content-based copy detection
To perform a quantitative analysis of the discrimination
power of low density local features, we use them in the
content-based copy detection framework (CBCD) described
in [7]. In this previous work the detection was based on the
local features extracted around the Kh = 20 Harris points

Figure 7: top: 20 points with the highest harris
response - bottom: 20 points with the lowest density

Figure 8: left: 20 points with the highest harris
response - right: 20 points with the lowest density

with the highest cornerness in each key-image. We propose
here to replace these features by the Kr = 20 Harris points
with the lowest density in a source database and to compare
the results. The principle of our experiment is the following:
the local features (either the most rare or with the most cor-
nerness) are first computed from the video clips belonging
to the reference catalog and they are inserted in an indexing
structure (similar to the one we use to perform fast den-



sity estimation). The local features are then computed in
each candidate video clip and the similar local features are
searched in the indexed database. Finally, a post-processing
vote is applied to the partial results to decide which refer-
ence video clips are copies of the candidate video clip.
The reference catalog is composed of about 150 hours of
Japanese TV programs represented by 10, 254, 372 local fea-
tures in the indexed database. The source database used to
determine the density of the local features is the previously
described database DB10 (containing the local features of all
the Harris points in 10 hours of randomly selected Japanese
television programs, see section 4.1 and 4.2). Note that
both candidate and reference video clips do not belong to
the video set used to construct the source database DB10.

1. Speed performances:
Table 3 summarizes the speed measurements for both
methods (HARRISmax refers to the old method that
keeps only the 20 interest points with the highest har-
ris response and HARRISrare to the new method that
keeps only the 20 interest points with the lowest den-
sity). Tindex is the total time to index the 150 hours
of video (including local features extraction and in-
sertion in the indexing structure). Tdetect is the total
average time to process 1 hour of candidate video clips
(including local features extraction time textract, den-
sity estimation time tdensity, search time tsearch and
post-processing time tvote).

Table 3: Speed measurements
Method HARRISmax HARRISrare

Tindex (s) 68, 737 144, 003

Tdetect (s) 658 983
textract (s) 447 449
tdensity (s) 453
tsearch (s) 33 13
tvote (s) 178 68

We see that the total time to extract the 20 most rare
features (textract+tdensity) is only about 2 times slower
than the time to extract the points with the highest
Harris response. Thanks to our fast density density es-
timation technique the density estimation step is about
8 times faster than real time (453s to process 3600s).
The indexing time which mainly depends on the fea-
ture extraction time is also about 2 times slower.
On the other hand, the total search process (tsearch +
tvote) is 2.60 times faster when using the most rare
points. This can be explained by the higher discrimi-
nation of these points that reduces the number of com-
parisons during the search and the number of neigh-
bors in the partial results that need to be post-processed.
For example, the average number of neighbors retrieved
in a range query of radius r = 0.35 is equal to 2.57 for
the most rare points and to 6.05 for the points with
the highest Harris response.

2. Duplicates detection: In this experiment, we sim-
ply searched 12 hours of TV programs belonging to
the reference catalog in order to detect duplicates (for
instance video clips used in different news, replicated

Table 4: Duplicates detection results
Method HARRISmax HARRISrare

number of detections 334 269
number of true detections 255 257
number of false detections 79 12

broadcasts, etc.). The results were manually controlled
for both methods and we count the number of good de-
tections and false alarms. The results are summarized
in table 4 and clearly show the improvement of us-
ing the most rare local features since the number of
good detections is almost the same (and even better
for the new method) whereas the precision increases
from 76.34% to 95.53%.

Figure 9: Examples of false positives rejected by the
new technique

Figure 10: Examples of a true positive detected only
by the new technique

Two false positive matches rejected by the new method
are displayed on Fig. 9 and one good match detected
only by the new method is displayed on Fig. 10.

3. Recall/Precision curves: We built a synthetic ground
truth in order to construct Recall/Precision curves for
both methods. The true probes were obtained by pro-
cessing several video clips randomly selected in the ref-
erence catalog with several transformations or combi-
nations of transformation (including gamma and con-
trast modification, encoding/decoding, small resizing,
shifting, gaussian noise addition and texts insertion).
The false probes were obtained by selecting programs
that are not included in the reference catalog and by
controlling manually that the most confidence matches
were false alarms. Note that the total length of the
false probes is 10 times longer than the length of the



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

re
ca

ll

precision

low density points
high harris response points

Figure 11: ROC curves of the copy detection

true probes in order to be more realistic. The result-
ing curves are displayed on Fig. 11 and show clearly
that the use of the most rare local features improve
significantly the retrieval performances of the system.
At constant precision, for instance, the recall improve-
ment raises from 15% to 50% for high precision values.

5. CONCLUSIONS
In this paper, we propose a fast approximate density estima-
tion technique based on the energy of the gaussian function
in a simple grid index structure. This method enables the
density estimation of more than 200 target features per sec-
ond with a very large source features dataset (until 100 mil-
lions source features). This makes possible the real time den-
sity estimation of local features extracted in a video stream
and we have shown how it can be used to enhance signifi-
cantly the performances of a content-based copy detection
framework by selecting more discriminant interest points.
We think that this kind of selection criterion, computed ac-
cording to the distribution in the database and not only to
the information contained in the image itself is a promising
direction to select features relevant for indexing purposes.
In future work, we will attempt to select directly interest
points by their density without using the previous Harris
detection step. The evolution of the density when varying
the bandwidth of the estimation is also an interesting inves-
tigation track to select relevant features.
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