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Abstract

Content-based copy detection (CBCD) is one of the emerging multime-

dia applications for which there is a need of a concerted effort from the

database community and the computer vision community. In this work,

we put forward a new approximate search paradigm dedicated to CBCD in

large databases and we evaluate it in a complete video CBCD framework

based on local signatures. The search of similar signatures in the database is

not based on classical range or KNN queries but on probabilistic distortion-

based queries.

Copies and distorted signatures

A copy is not only a similar document but also a transformed document:

⇒

⇒

Fig. 1 Two copies and their original

A signature S (t(M)), extracted in a transformed document t(M), can thus
be considered as a distorted version of the original signature S (M), ex-
tracted in the original document M . We define the distortion as the follow-
ing variable:

∆S = S (M) − S (t(M))

Distortion-based Probabilistic Queries

We define a distortion-based probabilistic query, associated to a probabil-
ity equal to α, as the search of all the signatures contained in a region Vα of
the feature space satisfying:

∫

Vα

p∆S (X − Q) dX ≥ α (1)

where Q is the query (i.e. the candidate signature) and p∆S (.) is the prob-

ability density function of the distortion. Intuitively, the probabilistic query

selects a region of the feature space such as the probability of finding sig-

natures that could belong to a copy is equal to α.

⇒
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Video Copy Detection Framework

Local signatures = differential invariants extracted around Harris interest
points in key images (≈ 1 billion signatures for 10, 000 hours of video).
Geometric consistency is post-computed from all local results by a spatio-
temporal registration on the points positions Pi:

(
Â(Vh), B̂(Vh)

)
= arg min

A,B

nc∑

i=1

min
k∈Ki

Vik=Vh

ρ (‖Pik − (APi + B)‖) (2)

Experimental results
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Fig. 3 Influence of α on the recall after an image resizing (left) and the speed

(right)
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Fig. 2 Comparison of distortion-based probabilistic queries and exact range

queries - Search time with respect to recognition recall, at constant preci-

sion (pr = 90%)
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Fig. 3 Influence of the database size on ROC (left) and speed (right)


