Video copy detection in large databases: A local signatures probabilistic similarity search approach

A. Joly, C. Frélicot and O. Buisson

INRIA Rocquencourt, BP 105 Rocquencourt, 78153 Le Chesnay Cedex France

Abstract

RINRIA

i media

Content-based copy detection (CBCD) is one of the emerging multimedia applications for which there is a need of a concerted effort from the database community and the computer vision community. In this work, we put forward a new approximate search paradigm dedicated to CBCD in large databases and we evaluate it in a complete video CBCD framework based on local signatures. The search of similar signatures in the database is not based on classical range or KNN queries but on probabilistic distortionbased queries.

Video Copy Detection Framework

ina

ROCHEL

Copies and distorted signatures

A copy is not only a similar document but also a transformed document:

Local signatures = differential invariants extracted around Harris interest points in key images ($\approx 1 \, billion \, signatures$ for 10,000 hours of video). Geometric consistency is post-computed from all local results by a spatiotemporal registration on the points positions P_i :

$$\left(\widehat{A}(V_h), \widehat{B}(V_h)\right) = \operatorname*{arg\,min}_{A,B} \sum_{i=1}^{n_c} \min_{\substack{k \in K_i \\ V_{ik} = V_h}} \rho\left(\left\| \boldsymbol{P_{ik}} - (\boldsymbol{AP_i} + \boldsymbol{B}) \right\| \right) \quad (2)$$

Experimental results

Fig. 1 Two copies and their original

A signature S(t(M)), extracted in a transformed document t(M), can thus be considered as a distorted version of the original signature S(M), extracted in the original document M. We define the distortion as the following variable:

$$\Delta S = S(M) - S(t(M))$$

Distortion-based Probabilistic Queries

We define a *distortion-based probabilistic query*, associated to a probability equal to α , as the search of all the signatures contained in a region V_{α} of the feature space satisfying:

$$\sum_{V_{\alpha}} p_{\Delta S} \left(\boldsymbol{X} - \boldsymbol{Q} \right) \, \boldsymbol{dX} \ge \alpha \tag{1}$$

where Q is the query (i.e. the candidate signature) and $p_{\Delta S}(.)$ is the probability density function of the distortion. Intuitively, the probabilistic query

selects a region of the feature space such as the probability of finding signatures that could belong to a copy is equal to α .

100000 Sequential scan **Probabilistic search** 10000 8000 0.98 range query chunks probabilistic query 1000 (ms) 6000 0.96 Precision 100 visited 4000 10 95 % of the 0.94 \Rightarrow energy of the Se gaussian function 2000 0.92 0.1 2500 hours 0.9 0.01 80 10000 100000 1e+06 1e+07 1e+08 1e+09 0.2 20 100 0.4 0.8 40 60 0.6 Recal Database size alpha probabilistic query Fig. 3 Influence of the database size on ROC (left) and speed (right) range query

Fig. 2 Comparison of distortion-based probabilistic queries and exact range queries - Search time with respect to recognition recall, at constant precision ($p_r = 90\%$)