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LRI, bât. 490, Université Paris-Sud, 91405 Orsay Cedex, France

tel: +33 (0) 1 69 15 42 35 fax: +33 (0) 1 69 15 65 86

blanqui@lri.fr

Abstract : The main novelty of this paper is to con-
sider an extension of the Calculus of Constructions
where predicates can be defined with a general form of
rewrite rules.

We prove the strong normalization of the reduction
relation generated by the β-rule and the user-defined
rules under some general syntactic conditions includ-
ing confluence.

As examples, we show that two important systems
satisfy these conditions : a sub-system of the Calculus
of Inductive Constructions which is the basis of the
proof assistant Coq, and the Natural Deduction Modulo
a large class of equational theories.

1 Introduction

This work aims at defining an expressive language al-
lowing to specify and prove mathematical properties
in which functions and predicates can be defined by
rewrite rules, hence enabling the automatic proof of
equational problems.

The Calculus of Constructions. The quest for
such a language started with Girard’s system F [19]
on one hand and De Bruijn’s Automath project [18] on
the other hand. Later, Coquand and Huet combined
both calculi into the Calculus of Constructions (CC)
[10]. As in system F, in CC, data structures are defined
by using an impredicative encoding which is difficult
to use in practice. Following Martin-Löf’s theory of
types [24], Coquand and Paulin-Mohring defined an
extension of CC with inductive types and their asso-
ciated induction principles as first-class objects : the
Calculus of Inductive Constructions (CIC) [26] which
is the basis of the proof-assistant Coq [17].

Reasoning Modulo. Defining functions or predi-
cates by recursion is not always convenient. More-
over, with such definitions, equational reasoning is un-
easy and leads to very large proof terms. Yet, for

decidable theories, equational proofs need not to be
kept in proof terms. This idea that proving is not
only reasoning (undecidable) but also computing (de-
cidable) has been recently formalized in a general way
by Dowek, Hardin and Kirchner with the Natural De-
duction Modulo (NDM) for first-order logic [12].

Object-level rewriting. In CC, the first exten-
sion by a general notion of rewriting is the λR-cube
of Barbanera, Fernández and Geuvers [1]. Their
work extends the works of Breazu-Tannen and Gal-
lier [8] and Jouannaud and Okada [21] on the com-
bination of typed λ-calculi with rewriting. The no-
tion of rewriting considered in [21, 1] is not restricted
to first-order rewriting, but also includes higher-order
rewriting following Jouannaud and Okada’s General
Schema [21], a generalization of the primitive recur-
sive definition schema. This schema has been reformu-
lated and enhanced so as to deal with definitions on
strictly-positive inductive types [5] and with higher-
order pattern-matching [3].

Predicate-level rewriting. The notion of rewriting
considered in [1] is restricted to the object-level while,
in CIC or NDM, it is possible to define predicates by
recursion or by rewriting respectively. Recursion at
the predicate-level is called “strong elimination” in [26]
and has been shown consistent by Werner [31].

Our contributions. The main contribution of our
work is a strong normalization result for the Calcu-
lus of Constructions extended with, at the predicate-
level, user-defined rewrite rules satisfying some general
admissibility conditions. As examples, we show that
these conditions are satisfied by a sub-system of CIC
with strong elimination [26] and the Natural Deduc-
tion Modulo [13] a large class of equational theories.

So, our work can be used as a foundation for an ex-
tension of a proof assistant like Coq [17] where users
could define functions and predicates by rewrite rules.
Checking the admissibility conditions or the convert-
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ibility of two expressions may require the use of exter-
nal specialized tools like CiME [16] or ELAN [15].

Outline of the paper. In Section 2, we introduce
the Calculus of Algebraic Constructions and our no-
tations. In Section 3, we present our general syntactic
conditions. In Section 4, we apply our result to CIC
and NDM. In Section 5, we summarize the main con-
tributions of our work and, in Section 6, we give future
directions of work. Detailed proofs can be found in [4].

2 The Calculus of Algebraic
Constructions (CAC)

2.1 Syntax and notations

We assume the reader familiar with the basics of
rewriting [11] and typed λ-calculus [2].

Sorts and symbols. Throughout the paper, we let
S = {?,2} be the set of sorts where ? denotes the
impredicative universe of propositions and 2 a pred-
icative universe containing ?. We also assume given a
family F = (Fsn)s∈Sn≥0 of sets of symbols and a family
X = (X s)s∈S of infinite sets of variables . A symbol
f ∈ Fsn is said to be of arity αf = n and sort s. Fs,
Fn, F and X respectively denote the set of symbols
of sort s, the set of symbols of arity n, the set of all
symbols and the set of all variables.

Terms. The terms of the corresponding CAC are
given by the following syntax :

t ::= s | x | f(~t) | (x : t)t | [x : t]t | tt

where s ∈ S, x ∈ X and f is applied to a vector ~t of n
terms if f ∈ Fn. [x :U ]t is the abstraction and (x :U)V
is the product. A term is algebraic if it is a variable
or of the form f(~t) with each ti algebraic.

Notations. As usual, we consider terms up to α-
conversion. We denote by FV (t) the set of free vari-
ables of t, by FV s(t) the set FV (t)∩X s, by t{x 7→ u}
the term obtained by substituting in t every free oc-
currence of x by u, by dom(θ) the domain of the sub-
stitution θ, by doms(θ) the set dom(θ)∩X s, by Pos(t)
the set of positions in t (words on the alphabet of pos-
itive integers), by t|p the subterm of t at position p,
by t[u]p the term obtained by replacing t|p by u in t,
and by Pos(f, t) and Pos(x, t) the sets of positions in
t where f occurs and x freely occurs respectively. As
usual, we write T → U for a product (x : T )U where
x /∈ FV (U).

Rewriting. We assume given a set R of rewrite rules
defining the symbols in F . The rules we consider are

pairs l → r made of two terms l and r such that l
is an algebraic term of the form f(~l) and FV (r) ⊆
FV (l). They induce a rewrite relation →R on terms
defined by t →R t′ iff there are p ∈ Pos(t), l → r ∈
R and a substitution σ such that t|p = lσ and t′ =
t[rσ]p (matching is first-order). So, R can be seen as
a particular case of Combinatory Reduction System
(CRS) [23] (translate [x : T ]u into Λ(T, [x]u) and (x :
T )U into Π(T, [x]U)) for which higher-order pattern-
matching is not necessary.

Reduction. The reduction relation of the calculus
is →=→R ∪ →β where →β is defined as usual by
[x :T ]u t →β u{x 7→ t}. We denote by →∗ its reflexive
and transitive closure, by ↔∗ its symmetric, reflexive
and transitive closure, and by t ↓∗ u the fact that t
and u have a common reduct.

2.2 Typing

Types of symbols. We assume given a function τ
which, to each symbol f , associates a term τf , called
its type , of the form (~x : ~T )U with |~x| = αf . In
contrast with our own previous work [5] or the work
of Barbanera, Fernández and Geuvers [1], symbols can
have polymorphic as well as dependent types, as it is
the case in CIC.

Typing. An environment Γ is an ordered list of pairs
xi :Ti saying that xi is of type Ti. The typing relation
of the calculus, `, is defined by the rules of Figure 1
(where s, s′ ∈ S).

An environment is valid if there is a term typable in
it. The condition Γ ` v : V in the (symb) rule insures
that Γ is valid in the case where n = 0.

Substitutions. Given two valid environments Γ and
∆, a substitution θ is a well-typed substitution from
Γ to ∆, written θ : Γ → ∆, if, for all x ∈ dom(Γ),
∆ ` xθ : xΓθ, where xΓ denotes the type associated
to x in Γ. With such a substitution, if Γ ` t : T then
∆ ` tθ : Tθ.

Logical consistency. As usual, the logical consis-
tency of such a system is proved in three steps.

First, we must make sure that the reduction relation
is correct w.r.t. the typing relation : if Γ ` t : T and
t → t′ then Γ ` t′ : T . This property, called subject
reduction , is not easy to prove for extensions of CC
[31, 1]. In the following subsection, we give sufficient
conditions for it.

The second step is to prove that the reduction rela-
tion → is weakly or strongly normalizing, hence that
every well-typed term has a normal form. Together
with the confluence, this implies the decidability of the
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Figure 1: Typing rules

(ax)
` ? : 2

(symb)

f ∈ Fsn, τf = (~x : ~T )U, γ = {~x 7→ ~t}
` τf : s Γ ` v : V ∀i, Γ ` ti : Tiγ

Γ ` f(~t) : Uγ

(var)
Γ ` T : s x ∈ X s \ dom(Γ)

Γ, x :T ` x : T

(weak)
Γ ` t : T Γ ` U : s x ∈ X s \ dom(Γ)

Γ, x :U ` t : T

(prod)
Γ ` T : s Γ, x :T ` U : s′

Γ ` (x :T )U : s′

(abs)
Γ, x :T ` u : U Γ ` (x :T )U : s

Γ ` [x :T ]u : (x :T )U

(app)
Γ ` t : (x :U)V Γ ` u : U

Γ ` tu : V {x 7→ u}

(conv)
Γ ` t : T T ↓∗ T ′ Γ ` T ′ : s′

Γ ` t : T ′

typing relation which is essential in proof assistants.
In this paper, we will study the strong normalization
property.

The third step is to make sure that there is no nor-
mal proof of ⊥ = (P : ?)P in the empty environment.
Indeed, if ⊥ is provable then any proposition P is prov-
able. We will not address this problem here.

2.3 Subject reduction

Proving subject reduction for →β requires the follow-
ing property [4] :

(x :U)V ↔∗ (x :U ′)V ′ ⇒ U ↔∗ U ′ ∧ V ↔∗ V ′

It is easy to see that this property is satisfied when
→ is confluent, an assumption which is part of our
admissibility conditions described in the next section.

For →R, the idea present in all previous works is
to require that, for each rule l → r, there is an en-
vironment Γ and a type T such that Γ ` l : T and
Γ ` r : T . However, this approach has an important
drawback : in presence of dependent or polymorphic
types, it leads to non-left-linear rules.

For example, consider the type list : ?→ ? of poly-
morphic lists built from nil : (A :?)list(A) and cons :

(A : ?)A → list(A) → list(A), and the concatenation
function app : (A : ?)list(A) → list(A) → list(A). To
fulfill the previous condition, we must define app as
follows :

app(A,nil(A), `) → `
app(A, cons(A, x, `), `′) → cons(A, x, app(A, `, `′))

This has two important consequences. The first one
is that rewriting is slowed down because of numer-
ous equality tests. The second one is that it may be-
come much more difficult to prove the confluence of
the rewrite relation and of its combination with →β .

We are going to see that we can take the following
left-linear definition without loosing the subject reduc-
tion property :

app(A,nil(A′), `) → `
app(A, cons(A′, x, `), `′) → cons(A, x, app(A, `, `′))

Let l = app(A, cons(A′, x, `), `′), r = cons(A, x,
app(A, `, `′)), Γ be an environment and σ a substitu-
tion such that Γ ` lσ : list(Aσ). We must prove that
Γ ` rσ : list(Aσ). For Γ ` lσ : list(Aσ), we must have
a derivation like :

(symb)
Γ ` A′σ : ? Γ ` xσ : A′σ Γ ` `σ : list(A′σ)

(conv)

Γ ` cons(A′σ, xσ, `σ) : list(A′σ)
list(A′σ) ↓∗ list(Aσ) Γ ` list(Aσ) : ?

(symb)

Γ ` cons(A′σ, xσ, `σ) : list(Aσ)
Γ ` Aσ : ? Γ ` `′σ : list(Aσ)

Γ ` lσ : list(Aσ)

Therefore, A′σ ↓∗ Aσ and we can derive Γ ` xσ :
Aσ, Γ ` `σ : list(Aσ) and :

(symb)
Γ ` Aσ : ? Γ ` `σ : list(Aσ) `′σ : list(Aσ)

(symb)

Γ ` app(Aσ, `σ, `′σ) : list(Aσ)
Γ ` Aσ : ? Γ ` xσ : Aσ

Γ ` rσ : list(Aσ)

The point is that, although l is not typable, from any
typable instance lσ of l, we can deduce that A′σ ↓∗ Aσ.
By this way, we come to the following conditions :

Definition 1 (Type-preserving rewrite rule)
A rewrite rule l → r is type-preserving if there is
an environment Γ and a substitution ρ such that, if
l = f(~l), τf = (~x : ~T )U and γ = {~x 7→ ~l} then :
(S1) dom(ρ) ⊆ FV (l) \ dom(Γ),
(S2) Γ ` lρ : Uγρ,
(S3) Γ ` r : Uγρ,
(S4) for any substitution σ, environment ∆ and type

T , if ∆ ` lσ : T then σ : Γ→ ∆,
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(S5) for any substitution σ, environment ∆ and type
T , if ∆ ` lσ : T then, for all x ∈ dom(ρ), xσ ↓∗
xρσ.

In our example, it suffices to take Γ = A :?, x :A, ` :
list(A), `′ : list(A) and ρ = {A′ 7→ A}.

One may wonder how to check these conditions. In
practice, the symbols are incrementally defined. So,
assume that we have a confluent and strongly normal-
izing CAC built over F andR and that we want to add
a new symbol g. Then, given Γ and ρ, it is decidable
to check (S1) to (S3) in the CAC built over F ∪ {g}
and R since this system is confluent and strongly nor-
malizing. In [4], we give a simple condition ensuring
(S4) (Γ simply needs to be well chosen). The condition
(S5) is the most difficult to check and may require the
confluence of →.

3 Admissibility conditions

3.1 Inductive structure

Until now, we made few assumptions on symbols or
rewrite rules. In particular, we have no notion of in-
ductive type. Yet, the structure of inductive types
plays a key role in strong normalization proofs [25].
On the other hand, we want rewriting to be as general
as possible by allowing matching on defined symbols
and equations among constructors. This is why, in
the following, we introduce an extended notion of con-
structor and a notion of inductive structure which gen-
eralize usual definitions of inductive types [26]. Note
that, in contrast with our previous work [5], we allow
inductive types to be polymorphic and dependent, as
it is the case in CIC.

Definition 2 (Constructors) For G ⊆ F , let RG be
the set of rules defining the symbols in G, that is, the
rules whose left-hand side is headed by a symbol in G.
The set of free symbols is CF = {f ∈ F | R{f} = ∅}.
The set of defined symbols is DF = F \CF . The set of
constructors of a free predicate symbol C is Co(C) =
{f ∈ F? | τf = (~y : ~U)C(~v) and |~y| = αf}.

The constructors of C not only include the construc-
tors in the usual sense but every defined symbol whose
output type is C. For example, the symbols 0 : int,
s : int → int, p : int → int, + : int → int → int and
× : int→ int→ int defined by the rules s(p(x))→ x,
p(s(x)) → x and others for + and × are all construc-
tors of the type int of integers.

Definition 3 (Inductive structure) An inductive
structure is given by :

• a quasi-ordering ≥F on F , called precedence , whose
strict part, >F , is well-founded,
• for each C ∈ CF2 such that τC = (~x : ~T )?, a set

Ind(C) ⊆ {i ∈ {1, .., αC} | xi ∈ X2} of inductive
positions,
• for each constructor c, a set Acc(c) ⊆ {1, .., αc} of

accessible positions.

The accessible positions allow the user to describe
which patterns can be used for defining functions, and
the inductive positions allow to describe the arguments
on which the free predicate symbols should be mono-
tone. This allows us to generalize the notion of posi-
tivity used in CIC.

Definition 4 (Positive and negative positions)
The sets of positive positions Pos+(T ) and negative
positions Pos−(T ) of a term T are mutually defined
by induction on T as follows :
– Pos+(s) = Pos+(F (~t)) = Pos+(X) = {ε},
– Pos−(s) = Pos−(F (~t)) = Pos−(X) = ∅,
– Posδ((x :V )W ) = 1.Pos−δ(V ) ∪ 2.Posδ(W ),
– Posδ([x :V ]W ) = 1.Pos(V ) ∪ 2.Posδ(W ),
– Posδ(V u) = 1.Posδ(V ) ∪ 2.Pos(u),
– Posδ(V U) = 1.Posδ(V ),
– Pos+(C(~t)) = {ε} ∪

⋃
{i.Pos+(ti) | i ∈ Ind(C)},

– Pos−(C(~t)) =
⋃
{i.Pos−(ti) | i ∈ Ind(C)},

where δ ∈ {−,+}, −+ = −, −− = +.

For example, in (x :A)B, B occurs positively while
A occurs negatively. Now, with the type list of
polymorphic lists, A occurs positively in list(A) iff
Ind(list) = {1}.

Definition 5 (Admissible inductive structure)
An inductive structure is admissible if, for all
C ∈ CF2 with τC = (~x : ~T )? :
(I1) ∀i ∈ Ind(C), vi ∈ X2,

and for all c with τc = (~y : ~U)C(~v) and j ∈ Acc(c) :
(I2) ∀i ∈ Ind(C), Pos(vi, Uj) ⊆ Pos+(Uj),
(I3) ∀D∈CF2, D=F C⇒Pos(D,Uj)⊆Pos+(Uj),
(I4) ∀D ∈ CF2, D >F C ⇒ Pos(D,Uj) = ∅,
(I5) ∀F ∈ DF2,Pos(F,Uj) = ∅,
(I6) ∀X ∈ FV 2(Uj),∃ ιX ∈{1, .., αC}, vιX = X.

For example, with the type list of polymorphic lists,
Ind(list) = {1}, Acc(nil) = {1} and Acc(cons) =
{1, 2, 3} is an admissible inductive structure. If we
add the type tree : ? and the constructor node :
list(tree) → tree with Acc(node) = {1}, we still have
an admissible structure.

The condition (I6) means that the predicate-
arguments of a constructor must be parameters of the
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type they define. One can find a similar condition in
the work of Walukiewicz [30] (called “?-dependency”)
and in the work of Stefanova [27] (called “safeness”).

On the other hand, there is no such explicit restric-
tion in CIC. But the elimination scheme is typed in
such a way that no very interesting function can be
defined on a type not satisfying (I6). For example,
consider the type of heterogeneous non-empty lists (we
use the CIC syntax here) listh = Ind(X : ?){C1|C2}
where C1 = (A : ?)(x : A)X and C2 = (A : ?)(x : A)
X → X. The typing rule for the non dependent elim-
ination schema (Nodep?,?) is :

Γ ` ` : listh Γ ` Q : ? ∀i, Γ ` fi : Ci{listh,Q}
Γ ` Elim(`,Q){f1|f2} : Q

where C1{listh,Q} = (A : ?)(x : A)Q and
C2{listh,Q} = (A : ?)(x : A)listh → Q → Q. Since
Q, f1 and f2 must be typable in Γ, the result of f1
and f2 cannot depend on A or on x. This means that
it is possible to compute the length of such a list but
not to use an element of the list.

Definition 6 (Primitive, basic and strictly pos-
itive predicates) A free predicate symbol C is :
• primitive if, for all D =F C, for all constructor d of

type τd = (~y : ~U)D(~w) and for all j ∈ Acc(d), Uj is
either of the form E(~t) with E <F D and E basic,
or of the form E(~t) with E =F D.
• basic if, for all D =F C, for all constructor d of

type τd = (~y : ~U)D(~w) and for all j ∈ Acc(d), if
E =F D occurs in Uj then Uj is of the form E(~t).
• strictly positive if, for all D =F C, for all con-

structor d of type τd = (~y : ~U)D(~w) and for all
j ∈ Acc(d), if E =F D occurs in Uj then Uj is of
the form (~z : ~V )E(~t) and no occurrence of D′ =F D
occurs in ~V .

For example, the type list of polymorphic lists is
basic but not primitive. The type listint of lists of
integers with the constructors nilint : listint and
consint : int→ listint→ listint is primitive. And the
type ord of Brouwer’s ordinals with the constructors
0 : ord, s : ord→ ord and lim : (nat→ ord)→ ord is
strictly positive.

Although we do not explicitly forbid to have non-
strictly positive predicate symbols, the admissibility
conditions we are going to describe in the following
subsections will not enable us to define functions on
such a predicate. The same restriction applies on CIC
while the system of Walukiewicz [30] is restricted to
basic predicates and the λR-cube [1] or NDM [13] are
restricted to primitive and non-dependent predicates.
However, in the following, for lack of space, we will
restrict our attention to basic predicates.

3.2 General Schema

The constructors of primitive predicates (remember
that they include all symbols whose output type is a
primitive predicate), defined by usual first-order rules,
are easily shown to be strongly normalizing since the
combination of first-order rewriting with→β preserves
strong normalization [8].

On the other hand, in the presence of higher-order
rules, few techniques are known :

• Van de Pol [28] extended to the higher-order case
the use of strictly monotone interpretations . This
technique is very powerful but difficult to use in
practice and has not been studied yet in type sys-
tems richer than the simply-typed λ-calculus.
• Jouannaud and Okada [21] defined a syntactic crite-

rion, the General Schema, which extends primitive
recursive definitions. This schema has been refor-
mulated and enhanced to deal with definitions on
strictly-positive types [6], to higher-order pattern-
matching [3] and to richer type systems with object-
level rewriting [1, 5].
• Jouannaud and Rubio [22] extended to the higher-

order case the use of Dershowitz’s recursive path
ordering. The obtained ordering can be seen as a
recursive version of the General Schema and has
been extended by Walukiewicz [30] to the Calculus
of Constructions with object-level rewriting.

Here, we present an extension of the General Schema
defined in [5] to deal with type-level rewriting, the
main novelty of our paper.

The General Schema is based on Tait and Girard’s
computability predicate technique [19] for proving the
strong normalization of the simply-typed λ-calculus
and system F. This technique consists in interpret-
ing each type T by a set [[T ]] of strongly normalizable
terms, called computable , and in proving that t ∈ [[T ]]
whenever Γ ` t : T .

The idea of the General Schema is then to define,
from a left-hand side of rule f(~l), a set of right-hand
sides r that are computable whenever the li’s are com-
putable. This set is built from the variables of the
left-hand side, called accessible , that are computable
whenever the li’s are computable, and is then closed
by computability-preserving operations.

For the sake of simplicity, two sequences of argu-
ments of a symbol f will be compared in a lexico-
graphic manner. But it is possible to do these com-
parisons in a multiset manner or with a simple combi-
nation of lexicographic and multiset comparisons (see
[4] for details).
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Definition 7 (Accessibility) A pair 〈u, U〉 is ac-
cessible in a pair 〈t, T 〉, written 〈t, T 〉 �1 〈u, U〉, if
〈t, T 〉 = 〈c(~u), C(~v)γ〉 and 〈u, U〉 = 〈uj , Ujγ〉 with c

a constructor of type τc = (~y : ~U)C(~v), γ = {~y 7→ ~u}
and j ∈ Acc(c).

For example, in the definition of app previously
given, A′, x and ` are all accessible in t =
cons(A′, x, `) : 〈t, list(A)〉 �1 〈A′, ?〉, 〈t, list(A)〉 �1

〈x,A′〉 and 〈t, list(A)〉�1 〈`, list(A′)〉.

Definition 8 (Derived type) Let t be a term of the
form lσ with l = f(~l) algebraic, τf = (~x : ~T )U and
γ = {~x 7→ ~l}. Let p ∈ Pos(l) with p 6= ε. The subterm
t|p of t has a derived type , τ(t, p), defined as follows :
– if p = i then τ(t, p) = Tiγσ,
– if p = iq and q 6= ε then τ(t, p) = τ(ti, q).

Definition 9 (Well-formed rule) Let R = (l → r,

Γ, ρ) be a rule with l = f(~l), τf = (~x : ~T )U and
γ = {~x 7→ ~l}. The rule R is well-formed if, for all
x ∈ dom(Γ), there is i ≤ αf and px ∈ Pos(x, li) such
that 〈li, Tiγ〉 �∗1 〈x, τ(l, ipx)〉 and τ(l, ipx)ρ = xΓ.

Definition 10 (Computable closure) Let R =
(l → r,Γ0, ρ) be a rule with l = f(~l), τf = (~x : ~T )U
et γ = {~x 7→ ~l}. The order > on the arguments of f
is the lexicographic extension of �+

1 . The computable
closure of R is the relation c̀ defined by the rules of
Figure 2.

Definition 11 (General Schema) A rule (f(~l) →
r,Γ, ρ) with τf = (~x : ~T )U and γ = {~x 7→ ~l} satisfies
the General Schema if it is well-formed and Γ c̀ r :
Uγρ.

It is easy to check that the rules for app are well-
formed and that Γ c̀ cons(A, x, app(A, `, `′)) : list(A).
For example, we show that Γ c̀ app(A, `, `′) : list(A) :

Γ c̀ ? : 2

Γ c̀ A : ?

. . .

Γ c̀ A : ?
Γ c̀ list(A) : ?
Γ c̀ ` : list(A)

. . .

Γ c̀ `′ : list(A)
〈cons(A′, x, `), list(A)〉 > 〈`, list(A)〉

Γ c̀ app(A, `, `′)

3.3 Admissibility conditions

Definition 12 (Rewrite systems) Let G be a set of
symbols. The rewrite system (G,RG) is :
• algebraic if :

Figure 2: Computable closure

(acc)
Γ0 c̀ xΓ0 : s x ∈ doms(Γ0)

Γ0 c̀ x : xΓ0

(ax)
Γ0 c̀ ? : 2

(symb<)

g ∈ Fsn, τg = (~y : ~U)V, γ = {~y 7→ ~u}
g <F f Γ c̀ τg : s ∀i, Γ c̀ ui : Uiγ

Γ c̀ g(~u) : V γ

(symb=)

g ∈ Fsn, τg = (~y : ~U)V, γ = {~y 7→ ~u}
g =F f Γ c̀ τg : s ∀i, Γ c̀ ui : Uiγ

〈~l, ~Tγ0〉 > 〈~u, ~Uγ〉
Γ c̀ g(~u) : V γ

(var)
Γ c̀ T : s x ∈ X s \ FV (l)

Γ, x :T c̀ x : T

(weak)
Γ c̀ t : T Γ c̀ U : s x ∈ X s \ FV (l)

Γ, x :U c̀ t : T

(prod)
Γ c̀ T : s Γ, x :T c̀ U : s′

Γ c̀ (x :T )U : s′

(abs)
Γ, x :T c̀ u : U Γ c̀ (x :T )U : s

Γ c̀ [x :T ]u : (x :T )U

(app)
Γ c̀ t : (x :U)V Γ c̀ u : U

Γ c̀ tu : V {x 7→ u}

(conv)
Γ c̀ t : T T ↓∗ T ′ Γ c̀ T

′ : s′

Γ c̀ t : T ′

– G is made of predicate symbols or of constructors
of primitive predicates,

– all rules of RG have an algebraic right-hand side;
• non-duplicating if, for all l → r ∈ RG , no variable

has more occurrences in r than in l;
• primitive if, for all rule l → r ∈ RG , r is of the

form [~x : ~T ]g(~u)~v with g belonging to G or g being
a primitive predicate symbol;
• simple if, for all g(~l)→ r ∈ RG :

– all the symbols occuring in ~l are free,
– for all sequence of terms ~t, at most one rule can

apply at the top of g(~t),
– for all rule g(~l) → r ∈ RG and all Y ∈ FV 2(r),

there is a unique κY such that lκY
= Y ;

• positive if, for all l → r ∈ RG and all g ∈ G,
Pos(g, r) ⊆ Pos+(r);
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• recursive if all the rules of RG satisfy the General
Schema;
• safe if, for all (g(~l)→r,Γ, ρ) ∈ RG with τg = (~x : ~T )
U and γ = {~x 7→ ~l} :
– for all X ∈ FV 2(~TU), Xγρ ∈ dom2(Γ),
– for all X,X ′∈FV 2(~TU), Xγρ=X ′γρ⇒ X=X ′.

Definition 13 (Admissible CAC) A CAC is ad-
missible if :
(A1) →=→R ∪ →β is confluent;
(A2) its inductive structure is admissible;
(A3) (DF2,RDF2) is either :

– primitive,
– simple and positive,
– simple and recursive;

(A4) there is a partition Fa ] Fna of DF (algebraic
and non-algebraic symbols) such that :
– (Fa,RFa

) is algebraic, non-duplicating and
strongly normalizing,

– no symbol of Fna occurs in the rules of RFa
,

– (Fna,RFna) is safe and recursive.

The simplicity condition in (A3) extends to the case
of rewriting the restriction in CIC of strong elimination
to “small” inductive types, that is, to the types whose
constructors have no predicate-arguments except the
parameters of the type.

The safeness condition in (A4) means that one can-
not do pattern-matching or equality tests on predicate-
arguments that are necessary for typing other argu-
ments. In her extension of HORPO to the Calculus
of Constructions, Walukiewicz requires similar condi-
tions [30].

The non-duplication condition in (A4) ensures the
modularity of the strong normalization. Indeed, in
general, the combination of two strongly normalizing
rewrite systems is not strongly normalizing.

Now, for proving (A1), one can use the following
result of van Oostrom [29] (remember thatR∪β can be
seen as a CRS [23]) : the combination of two confluent
left-linear CRS’s having no critical pairs between each
other is confluent. So, since→β is confluent andR and
β cannot have critical pairs between each other, if R is
left-linear and confluent then →R ∪ →β is confluent.
Therefore, our conditions (S1) to (S5) are very useful
to eliminate the non-linearities due to typing reasons.

We can now state our main result. You can find a
detailed proof in [4].

Theorem 14 (Strong normalization) Any admis-
sible CAC is strongly normalizing.

The proof is based on Coquand and Gallier’s exten-
sion to the Calculus of Constructions [9] of Tait and

Girard’s computability predicate technique [19]. As
explained before, the idea is to define an interpreta-
tion for each type and to prove that each well-typed
term belongs to the interpretation of its type.

The main difficulty is to define an interpretation for
predicate symbols that is invariant by reduction, a con-
dition required by the type conversion rule (conv).

Thanks to the positivity conditions, the interpreta-
tion of a free predicate symbol can be defined as the
least fixpoint of a monotone function over the lattice
of computability predicates.

For the defined predicate symbols, it depends on the
kind of system (DF2,RDF2) is. If it is primitive then
we simply interpret it as the set of strongly normaliz-
able terms. If it is positive then, thanks to the posi-
tivity condition, we can interpret it as a least fixpoint.
Finally, if it is recursive then we can define its inter-
pretation recursively, the General Schema providing a
well-founded definition.

4 Examples

4.1 Calculus of Inductive Construc-
tions

We are going to see that we can apply our strong nor-
malization theorem to a sub-system of CIC [26] by
translating it into an admissible CAC. The first com-
plete proof of strong normalization of CIC (with strong
elimination) is due to Werner [31] who, in addition,
considers η-reductions in the type conversion rule.

In CIC, one has strictly-positive inductive types and
the corresponding induction principles. We recall the
syntax and the typing rules of CIC but, for the sake
of simplicity, we will restrict our attention to basic in-
ductive types and non-dependent elimination schemas.
For a complete presentation, see [4].

• Inductive types are denoted by Ind(X : A){~C}
where the Ci’s are the types of the constructors.
The term A must be of the form (~x : ~A)? and the
Ci’s of the form (~z : ~B)X~m.
• The i-th constructor of an inductive type I is de-

noted by Constr(i, I).
• Recursors are denoted by Elim(I,Q,~a, c) where I

is the inductive type, Q the type of the result, ~a the
arguments of I and c a term of type I~a.

The typing rules for these constructions are given in
Figure 3. The rules for the other constructions are the
same as for the Calculus of Constructions.

If Ci = (~z : ~B)X~m then Ci{I,Q} denotes (~z : ~B)(~z′ :
~B{X 7→ Q})Q~m. The reduction relation associated to
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Figure 3: Typing rules of CIC

(Ind?)
∀i, Γ, X : A ` Ci : ?

Γ ` Ind(X :A){~C} : A

(Constr)
Γ ` I = Ind(X :A){~C} : A

Γ ` Constr(i, I) : Ci{X 7→ I}

(Nodep?,s)

Γ ` c : I~a Γ ` Q : (~x : ~A)s
∀i, Γ ` fi : Ci{I,Q}

Γ ` Elim(I,Q,~a, c){~f} : Q~a

Elim is called ι-reduction and is defined as follows :

Elim(I,Q,~a, Constr(i, I ′)~b){~f} →ι fi~b ~b
′

where, if Ci = (~z : ~B)X~m, then b′j = Elim(I,Q,~a′, bj)
if Bj = X~a′, and b′j = bj otherwise.

Now, we consider the sub-system CIC− obtained by
applying the following restrictions :
• In the typing rules (Ind?) and (Constr), we assume

that Γ is empty since, in CAC, the types of the
symbols must be typable in the empty environment.
• In the rule (Nodep?,?) (the one for weak elimina-

tion), we require Q to be typable in the empty en-
vironment.
• In the rule (Nodep?,2) (the one for strong elimina-

tion), instead of requiring Γ ` Q : (~x : ~A)2 which is
not possible in the Calculus of Constructions since
2 is not typable, we require Q to be a closed term
of the form [~x : ~A]K with K of the form (~y : ~U)?.
• We assume that every inductive type satisfies (I6).

Theorem 15 CIC− can be translated into an admis-
sible CAC, hence is strongly normalizing.

We define the translation 〈 〉 by induction on the
size of terms :
• Let I = Ind(X :A){~C}. We define 〈I〉 = [~x : 〈 ~A〉]
IndI(~x) where IndI is a symbol of type (~x :〈 ~A〉)?.
• By assumption, Ci = (~z : ~B)X~m. We define
〈Constr(i, I)〉 = [~z : ~B]ConstriI(~z) where ConstriI
is a symbol of type (~z : 〈 ~B〉)IndI(〈~m〉).
• Let Ti = Ci{I,Q}. If Q = [~x : ~A]K then we de-

fine 〈Elim(I,Q,~a, c){~f}〉 = SElimQ
I (〈~f〉, 〈~a〉, 〈c〉)

where SElimQ
I is a symbol of type (~f :〈~T 〉) (~x :〈 ~A〉)

〈K〉. Otherwise, we define 〈Elim(I,Q,~a, c){~f}〉 =
WElimI(〈Q〉, 〈~f〉, 〈~a〉, 〈c〉) where WElimI is a sym-
bol of type (Q :〈A〉)(~f :〈~T 〉)(~x :〈 ~A〉) 〈Q〉~x.
• The other terms are defined recursively (〈uv〉 =
〈u〉〈v〉, . . .).

The ι-reduction is translated by the following rules :

SElimQ
I (~f,~a, ConstriI(~b)) → fi~b ~b

′

WElimI(Q, ~f,~a, ConstriI(~b)) → fi~b ~b
′

where, if Ci = (~z : ~B)X~m, then b′j = SElimQ
I (~f,~a′, bj)

(or WElimI(Q, ~f,~a′, bj)) if Bj = X~a′, and b′j = bj
otherwise.

Now, we are left to check the admissibility :
(A1) →βι is orthogonal, hence confluent [29].
(A2) The inductive structure defined by I <F J if I is

a subterm of J , Ind(IndI) = ∅, Acc(ConstriI) =
{1, .., |~z|} if Ci = (~z : ~B)X~m, is admissible.

(A3) The rules defining the strong recursors form a
simple (they are defined by case on each construc-
tor and only for small inductive types) and re-
cursive rewrite system (they satisfy the General
Schema).

(A4) The rules defining the recursors form a safe (ex-
cept for the constructor, all the arguments are
distinct variables) and recursive rewrite system
(they satisfy the General Schema).

4.2 Natural Deduction Modulo

NDM for first-order logic [12] can be presented as an
extension of Natural Deduction with the additional in-
ference rule :

Γ ` P
Γ ` Q

if P ≡ Q

where ≡ is a congruence relation on propositions. This
is a powerful extension of first-order logic since both
higher-order logic and set theory with a comprehension
symbol can be described in this framework (by using
explicit substitutions).

In [13], Dowek and Werner study the termination of
cut-elimination in the case where ≡ is induced by a
confluent and weakly-normalizing rewrite system. In
particular, they prove the termination in two general
cases : when the rewrite system is positive and when
it is quantifier-free. In [14], they provide an example
of confluent and weakly normalizing rewrite system for
which cut-elimination is not terminating. The problem
comes from the fact that the elimination rule for ∀
introduces a substitution :

Γ ` ∀x.P (x)
Γ ` P (t)

Thus, when a predicate symbol is defined by a rule
whose right-hand side contains quantifiers, its combi-
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nation with β may not preserve normalization. There-
fore, a criterion for higher-order rewriting is needed.

Since NDM is a CAC (we can define the logical con-
nectors as inductive types), we can compare in more
details the conditions of [13] with our conditions.
(A1) In [13], only →R is required to be confluent. In

general, this is not sufficient for having the con-
fluence of →R ∪ →β . However, if R is left-linear
then →R ∪ →β is confluent [29].

(A2) NDM types are primitive and form an admissi-
ble inductive structure if we take them equivalent
in the relation ≤F .

(A3) In [13], the termination of cut-elimination is
proved in two general cases : when (DF2,RDF2)
is quantifier-free and when it is positive.
Quantifier-free rewrite systems are primitive. So,
in this case, (A3) is satisfied. In the positive case,
we require that left-hand sides are made of free
symbols and that at most one rule can apply at
the top of a term. On the other hand, we pro-
vide a new case : (DF2,RDF2) can be simple
and recursive.

(A4) Quantifier-free rules are algebraic and rules with
quantifiers are not. In [13], these two kinds of
rules are treated in the same way but the counter-
example given in [14] shows that they should not.
In CAC, we require that the rules with quantifiers
satisfy the General Schema.

Theorem 16 A NDM system satisfying (A1), (A3)
and (A4) is admissible, hence strongly normalizing.

4.3 CIC + Rewriting

As a combination of the two previous applications, our
work shows that the extension of CIC− with user-
defined rewrite rules, even at the predicate-level, is
sound if these rules follow our admissibility conditions.

As an example, we consider simplification rules on
propositions that are not definable in CIC. Assume
that we have the symbols ∨ :?→ ?→ ?, ∧ :?→ ?→ ?,
¬ : ?→ ?, ⊥ : ?, > : ?, and the rules :

> ∨ P → >
P ∨ > → >

⊥ ∧ P → ⊥
P ∧ ⊥ → ⊥

¬> → ⊥
¬⊥ → >

¬(P ∧Q)→ ¬P ∨ ¬Q ¬(P ∨Q)→ ¬P ∧ ¬Q

The predicate constructors ∨, ∧, . . . are all primitive.
The rewrite system is primitive, algebraic, strongly
normalizing and confluent (this can be automatically
proved by CiME [16]). Since it is left-linear, its combi-
nation with→β is confluent [29]. Therefore, it is an ad-
missible CAC. But it lacks many other rules [20] which

requires rewriting modulo associativity and commuta-
tivity, an extension we leave for future work.

5 Conclusion

We have defined an extension of the Calculus of Con-
structions by functions and predicates defined with
rewrite rules. The main contributions of our work are
the following :
• We consider a general notion of rewriting at the

predicate-level which generalizes the “strong elimi-
nation” of the Calculus of Inductive Constructions
[26, 31]. For example, we can define simplification
rules on propositions that are not definable in CIC.
• We consider general syntactic conditions, including

confluence, that ensure the strong normalization of
the calculus. In particular, these conditions are ful-
filled by two important systems : a sub-system of
the Calculus of Inductive Constructions which is the
basis of the proof assistant Coq [17], and the Natu-
ral Deduction Modulo [12, 13] a large class of equa-
tional theories.
• We use a more general notion of constructor which

allows pattern-matching on defined symbols and
equations among constructors.
• We relax the usual conditions on rewrite rules for

ensuring the subject reduction property. By this
way, we can eliminate some non-linearities in left-
hand sides of rules and ease the confluence proof.

6 Directions for future work

• In our conditions, we assume that the predicate
symbols defined by rewrite rules containing quan-
tifiers (“non-primitive” predicate symbols) are de-
fined by pattern-matching on free symbols only
(“simple” systems). It would be nice to be able
to relax this condition.
• Another important assumption is that the reduc-

tion relation →=→R ∪ →β must be confluent. We
will try to find sufficient conditions on R in order
to get the confluence of →R ∪ →β . In the simply-
typed λ-calculus, if R is a first-order rewrite system
then the confluence of R is a sufficient condition [7].
But few results are known in the case of a richer type
system or of higher-order rewriting.
• Finally, we expect to extend this work with rewrit-

ing modulo some useful equational theories like as-
sociativity and commutativity, and also by allowing
η-reductions in the type conversion rule.
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