
Inductive types in the

Calculus of Algebraic Constructions

Frédéric Blanqui

Laboratoire d'Informatique de l'École Polytechnique
91128 Palaiseau Cedex, France
blanqui@lix.polytechnique.fr

Abstract. In a previous work, we proved that almost all of the Calculus
of Inductive Constructions (CIC), the basis of the proof assistant Coq,
can be seen as a Calculus of Algebraic Constructions (CAC), an extension
of the Calculus of Constructions with functions and predicates de�ned
by higher-order rewrite rules. In this paper, we prove that CIC as a
whole can be seen as a CAC, and that it can be extended with non-
strictly positive types and inductive-recursive types together with non-
free constructors and pattern-matching on de�ned symbols.

1 Introduction

There has been di�erent proposals for de�ning inductive types and functions in
typed systems. In Girard's polymorphic λ-calculus or in the Calculus of Con-
structions (CC) [9], data types and functions can be formalized by using im-
predicative encodings, di�cult to use in practice, and computations are done
by β-reduction only. In Martin-Löf's type theory or in the Calculus of Inductive
Constructions (CIC) [10], inductive types and their induction principles are �rst-
class objects, functions can be de�ned by induction and computations are done
by ι-reduction. For instance, for the type nat of natural numbers, the recursor
rec : (P : nat ⇒ ?)(u : P0)(v : (n : nat)Pn ⇒ P (sn))(n : nat)Pn is de�ned by
the following ι-rules:

rec P u v 0 →ι u
rec P u v (s n) →ι v n (rec P u v n)

Finally, in the algebraic setting [11], functions are de�ned by using rewrite
rules and computations are done by applying these rules. Since both β-reduction
and ι-reduction are particular cases of higher-order rewriting [16], proposals
soon appeared for integrating all these approaches. Starting with [15,2], this
objective culminated with [4,5,6] in which almost all of CIC can be seen as a
Calculus of Algebraic Constructions (CAC), an extension of CC with functions
and predicates de�ned by higher-order rewrite rules. In this paper, we go one
step further in this direction and capture all previous proposals, and much more.

Let us see the two examples of recursors that are allowed in CIC but not in
CAC [20]. The �rst example is a third-order de�nition of �nite sets of natural
numbers (represented as predicates over nat):

fin : (nat⇒ ?)⇒ ?
femp : fin ∅
fadd : (x : nat)(p : nat⇒ ?)fin p⇒ fin(add x p)
rec : (Q : (nat⇒ ?)⇒ ?)Q∅

⇒ ((x : nat)(p : nat⇒ ?)fin p⇒ Qp⇒ Q(add x p))
⇒ (p : nat⇒ ?)fin p⇒ Qp

where ∅ = [y : nat]⊥ represents the empty set, add x p = [y : nat]y = x ∨ (p y)
represents the set {x} ∪ p, and the weak recursor rec (recursor for de�ning
objects) is de�ned by the rules:

rec Q u v p′ femp → u
rec Q u v p′ (fadd x p h) → v x p h (rec Q u v p h)

The problem comes from the fact that, in fin(add x p), the output type of
fadd , the predicate p is not a parameter of fin.1 This can be generalized to any
big/impredicative dependent type, that is, to any type having a constructor with
a predicate argument which is not a parameter. Formally, if C : (z : V)? is a
type and c : (x : T)Cv is a constructor of C then, for all predicate variable x
occurring in some Tj , there must be some argument vιx = x, a condition called
(I6) in [5].

The second example is John Major's equality which is intended to equal
terms of di�erent types [18]:

JMeq : (A : ?)A⇒ (B : ?)B ⇒ ?
refl : (A : ?)(x : A)(JMeq A x A x)
rec : (A : ?)(x : A)(P : (B : ?)B ⇒ ?)(P A x)

⇒ (B : ?)(y : B)(JMeq A x B y)⇒ (P B y)

where rec is de�ned by the rule:

rec C x P h C x (refl C x) → h

Here, the problem comes from the fact that the argument for B is equal to
the argument for A. This can be generalized to any polymorphic type having a
constructor with two equal type parameters. From a rewriting point of view, this
is like having pattern-matching or non-linearities on predicate arguments, which
is known to create inconsistencies in some cases [14]. Formally, a rule f l → r
with f : (x : T)U is safe if, for all predicate argument xi, li is a variable and, if
xi and xj are two distinct predicate arguments, then li 6= lj . An inductive type
is safe if the corresponding ι-rules are safe.

By using what is called in Matthes' terminology [17] an elimination-based
interpretation instead of the introduction-based interpretation that we used in
[5], we prove that recursors for types like fin or JMeq can be accepted, hence that
CAC essentially subsumes CIC. In addition, we prove that it can be extended
to non-strictly positive types (Section 7) and to inductive-recursive types [12]
(Section 8).

1 This is also the reason why the corresponding strong recursor, that is, the recursor
for de�ning types or predicates, is not allowed in CIC (p could be �bigger� than fin).

2 The Calculus of Algebraic Constructions (CAC)

We assume the reader familiar with typed λ-calculi [3] and rewriting [11]. The
Calculus of Algebraic Constructions (CAC) [5] simply extends CC by considering
a set F of symbols, equipped with a total quasi-ordering ≥ (precedence) whose
strict part is well-founded, and a set R of rewrite rules. The terms of CAC are:

t ::= s | x | f | [x : t]u | tu | (x : t)u

where s ∈ S = {?,2} is a sort, x ∈ X a variable, f ∈ F , [x : t]u an abstraction,
tu an application, and (x : t)u a dependent product, written t⇒ u if x does not
freely occur in u. We denote by FV(t) the set of free variables of t, by Pos(t) the
set of Dewey's positions of t, and by dom(θ) the domain of a substitution θ.

The sort ? denotes the universe of types and propositions, and the sort 2

denotes the universe of predicate types (also called kinds). For instance, the type
nat of natural numbers is of type ?, ? itself is of type 2 and nat⇒ ?, the type
of predicates over nat, is of type 2.

Every symbol f is equipped with a sort sf , an arity αf and a type τf which
may be any closed term of the form (x : T)U with |x| = αf (|x| is the length of
x). We denote by Γf the environment x : T . The terms only built from variables
and applications of the form ft with |t| = αf are called algebraic.

A rule for typing symbols is added to the typing rules of CC:

(symb)
` τf : sf
` f : τf

A rewrite rule is a pair l → r such that (1) l is algebraic, (2) l is not a
variable, and (3) FV(r) ⊆ FV(l). A symbol f with no rule of the form f l→ r is
constant, otherwise it is (partially) de�ned. We also assume that, in every rule
f l→ r, the symbols occurring in r are smaller than or equivalent to f .

Finally, in CAC, βR-equivalent types are identi�ed. More precisely, in the
type conversion rule of CC, ↓β is replaced by ↓βR:

(conv)
Γ ` t : T T ↓βR T ′ Γ ` T ′ : s

Γ ` t : T ′

where u ↓βR v i� there exists a term w such that u→∗βR w and v →∗βR w, →∗βR
being the re�exive and transitive closure of→=→β ∪ →R. This rule means that
any term t of type T in the environment Γ is also of type T ′ if T and T ′ have
a common reduct (and T ′ is of type some sort s). For instance, if t is a proof of
P (2 + 2) then t is also a proof of P (4) if R contains the following rules:

x+ 0 → x
x+ (s y) → s (x+ y)

This allows to decrease the size of proofs by an important factor, and to
increase the automation as well. All over the paper, we assume that → is
con�uent.

A substitution θ preserves typing from Γ to ∆, written θ : Γ ; ∆, if, for all
x ∈ dom(Γ), ∆ ` xθ : xΓθ, where xΓ is the type associated to x in Γ . Type-
preserving substitutions enjoy the following important property: if Γ ` t : T and
θ : Γ ; ∆ then ∆ ` tθ : Tθ.

For ensuring the subject reduction property (preservation of typing under
reduction), every rule f l → r is equipped with an environment Γ and a sub-
stitution ρ such that, if f : (x : T)U and γ = {x 7→ l}, then Γ ` f lρ : Uγρ
and Γ ` r : Uγρ. The substitution ρ allows to eliminate non-linearities due to
typing. For instance, the concatenation on polymorphic lists (type list : ? ⇒ ?
with constructors nil : (A : ?)listA and cons : (A : ?)A ⇒ listA ⇒ listA) of
type (A : ?)listA⇒ listA⇒ listA can be de�ned by:

app A (nil A′) l′ → l′

app A (cons A′ x l) l′ → cons A x (app A x l l′)
app A (app A′ l l′) l′′ → app A l (app A l′ l′′)

with Γ = A : ?, x : A, l : listA, l′ : listA and ρ = {A′ 7→ A}. For instance,
app A (nil A′) is not typable in Γ (since A′ /∈ dom(Γ)) but becomes typable if
we apply ρ. This does not matter since, if an instance app Aσ (nil A′σ) is typable
then Aσ is convertible to A′σ. Eliminating non-linearities makes rewriting more
e�cient and the proof of con�uence easier.

3 Strong normalization

Typed λ-calculi are generally proved strongly normalizing by using Tait and Gi-
rard's technique of reducibility candidates [13]. The idea of Tait, later extended
by Girard to the polymorphic λ-calculus, is to strengthen the induction hypoth-
esis. Instead of proving that every term is strongly normalizable (set SN), one
associates to every type T a set [[T]] ⊆ SN , the interpretation of T , and proves
that every term t of type T is computable, i.e. belongs to [[T]]. Hereafter, we
follow the proof given in [7] which greatly simpli�es the one given in [5].

De�nition 1 (Reducibility candidates) A term t is neutral if it is not an
abstraction, not of the form ct with c : (y : U)Cv and C constant, nor of the
form ft with f de�ned and |t| < αf . We inductively de�ne the complete lattice
Rt of the interpretations for the terms of type t, the ordering ≤t on Rt, and the
greatest element >t ∈ Rt as follows.
� Rt = {∅}, ≤t=⊆ and >t = ∅ if t 6= 2 and Γ 6` t : 2.

� Rs is the set of subsets R ⊆ T such that:

(R1) R ⊆ SN (strong normalization).

(R2) If t ∈ R then →(t) = {t′ | t→ t′} ⊆ R (stability by reduction).

(R3) If t is neutral and →(t) ⊆ R then t ∈ R (neutral terms).

Furthermore, ≤s=⊆ and >s = SN .

� R(x:U)K is the set of functions R from T × RU to RK such that R(u, S) =
R(u′, S) whenever u → u′, R ≤(x:U)K R′ i�, for all (u, S) ∈ T × RU ,
R(u, S) ≤K R′(u, S), and >(x:U)K(u, S) = >K .

Note that Rt = Rt′ whenever t→ t′ and that, for all R ∈ Rs, X ⊆ R.

De�nition 2 (Interpretation schema) A candidate assignment is a function
ξ from X to

⋃
{Rt | t ∈ T }. An assignment ξ validates an environment Γ ,

written ξ |= Γ , if, for all x ∈ dom(Γ), xξ ∈ RxΓ . An interpretation for a symbol
f is an element of Rτf . An interpretation for a set G of symbols is a function
which, to each symbol g ∈ G, associates an interpretation for g.

The interpretation of t w.r.t. a candidate assignment ξ, an interpretation I
for F and a substitution θ, is de�ned by induction on t as follows.

• [[t]]Iξ,θ = >t if t is an object or a sort,

• [[x]]Iξ,θ = xξ,

• [[f]]Iξ,θ = If ,

• [[(x : U)V]]Iξ,θ = {t ∈ T | ∀u ∈ [[U]]Iξ,θ,∀S ∈ RU , tu ∈ [[V]]IξSx ,θux},
• [[[x : U]v]]Iξ,θ(u, S) = [[v]]IξSx ,θux ,

• [[tu]]Iξ,θ = [[t]]Iξ,θ(uθ, [[u]]
I
ξ,θ),

where ξSx = ξ ∪ {x 7→ S} and θux = θ ∪ {x 7→ u}. A substitution θ is adapted to
a Γ -assignment ξ if dom(θ) ⊆ dom(Γ) and, for all x ∈ dom(θ), xθ ∈ [[xΓ]]Iξ,θ. A
pair (ξ, θ) is Γ -valid, written ξ, θ |= Γ , if ξ |= Γ and θ is adapted to ξ.

Note that [[t]]Iξ,θ = [[t]]I
′

ξ′,θ′ whenever ξ and ξ
′ agree on the predicate variables

free in t, θ and θ′ agree on the variables free in t, and I and I ′ agree on the
symbols occurring in t. The di�cult point is then to de�ne an interpretation for
predicate symbols and to prove that every symbol f is computable (i.e. f ∈ [[τf]]).

Following previous works on inductive types [19,23], the interpretation of
a constant predicate symbol C is de�ned as the least �xpoint of a monotone
function I 7→ ϕIC on the complete lattice RτC . Following Matthes [17], there
is essentially two possible de�nitions that we illustrate by the case of nat. The
introduction-based de�nition:

ϕInat = {t ∈ SN | t→∗ su⇒ u ∈ I}

and the elimination-based de�nition:

ϕInat = {t ∈ T | ∀(ξ, θ)Γ -valid, rec Pθ uθ vθ t ∈ [[Pn]]Iξ,θtn}

where Γ = P : nat ⇒ ?, u : P0, v : (n : nat)Pn ⇒ P (sn). In both cases, the
monotonicity of ϕnat is ensured by the fact that nat occurs only positively2 in

2 X occurs positively in Y ⇒ X and negatively in X ⇒ Y . In Section 8, we give an
extended de�nition of positivity for dealing with inductive-recursive types [12].

the types of the arguments of its constructors, a common condition for inductive
types.3.

In [5], we used the introduction-based approach since this allows us to have
non-free constructors and pattern-matching on de�ned symbols, which is forbid-
den in CIC and does not seem possible with the elimination-based approach.
Indeed, in CAC, it is possible to formalize the type int of integers by taking the
symbols 0 : int, s : int⇒ int and p : int⇒ int, together with the rules:

s (p x) → x
p (s x) → x

It is also possible to have the following rule on natural numbers:

x× (y + z) → (x× y) + (x× z)

To this end, we extended the notion of constructor by considering as construc-
tor any symbol c whose output type is a constant predicate symbol C (perhaps
applied to some arguments). Then, the arguments of c that can be used to de�ne
the result of a function are restricted to the arguments, called accessible, in the
type of which C occurs only positively. We denote by Acc(c) the set of accessible
arguments of c. For instance, x is accessible in sx since nat occurs only positively
in the type of x. But, we also have x and y accessible in x+ y since nat occurs
only positively in the types of x and y. So, + can be seen as a constructor too.

With this approach, we can safely take:

ϕInat = {t ∈ SN | ∀f, t→∗ fu⇒ ∀j ∈ Acc(f), uj ∈ [[Uj]]Iξ,θ}

where f : (y : U)Cv and θ = {y 7→ u}, whenever an appropriate assignment
ξ for the predicate variables of Uj can be de�ned, which is possible only if the
condition (I6) is satis�ed (see the type fin in Section 1).

4 Extended recursors

As we introduced an extended notion of constructor for dealing with the intro-
duction-based method, we now introduce an extended notion of recursor for
dealing with the elimination-based method.

De�nition 1 (Extended recursors). A pre-recursor for a constant predicate
symbol C : (z : V)? is any symbol f such that:

• the type of f is of the form4 (z : V)(z : Cz)W ,

3 Mendler proved that recursors for negative types are not normalizing [19]. Take for
instance an inductive type C with a constructor c : (C → nat) → C. Assume now
that we have p : C → (C → nat) de�ned by the rule p(cx) → x (case analysis).
Then, by taking ω = [x : C](px)x, we get ω(cω)→β p(cω)(cω)→ ω(cω)→β . . .

4 Our examples may not always �t in this form but since, in an environment, two
types that do not depend on each other can be permuted, this does not matter.

• every rule de�ning f is of the form fztu→ r with FV(r) ∩ {z} = ∅,
• fvtu is head-reducible only if t is constructor-headed.

A pre-recursor f is a recursor if it satis�es the following positivity conditions:5

• no constant predicate D > C or de�ned predicate F occurs in W ,

• every constant predicate D ' C occurs only positively in W .

A recursor of sort ? (resp. 2) is weak (resp. strong). Finally, we assume that
every type C has a set Rec(C) (possibly empty) of recursors.

For the types C whose set of recursors Rec(C) is not empty, we de�ne the
interpretation of C with the elimination-based method as follows. For the other
types, we keep the introduction-based method.

De�nition 2 (Interpretation of inductive types). If every ti has a normal
form t∗i then ϕIC(t,S) is the set of terms t such that, for all f ∈ Rec(C) of type
(z : V)(z : Cz)(y : U)V , yξ and yθ, if ξS

z , θ
t
z
t
z |= y : U then ft∗tyθ ∈ [[V]]IξS

z ,θ
t
z
t
z
.

Otherwise, ϕIC(t,S) = SN .

The fact that ϕ is monotone, hence has a least �xpoint, follows from the
positivity conditions. One can easily check that ϕIC is stable by reduction: if
t→ t′ then ϕIC(t,S) = ϕIC(t′,S). We now prove that ϕIC(t,S) is a candidate.

Lemma 3. ϕIC(t,S) is a candidate.

Proof. (R1) Let t ∈ R. We must prove that t ∈ SN . Since Rec(C) 6= ∅, there
is at least one recursor f . Take yiθ = yi and yiξ = >Ui . We clearly have
ξS
z , θ

t
z
t
z |= y : U . Therefore, ft∗ty ∈ S = [[V]]IξS

z ,θ
t
z
t
z
. Now, since S satis�es

(R1), ft∗ty ∈ SN and t ∈ SN .

(R2) Let t ∈ R and t′ ∈→(t). We must prove that t′ ∈ R, hence that ft∗t′yθ ∈
S = [[V]]IξS

z ,θ
t
z
t
z
. This follows from the fact that ft∗tyθ ∈ S (since t ∈ R) and

S satis�es (R2).

(R3) Let t be a neutral term such that →(t) ⊆ R. We must prove that t ∈ R,
hence that u = ft∗tyθ ∈ S = [[V]]IξS

z ,θ
t
z
t
z
. Since u is neutral and S satis�es

(R3), it su�ces to prove that→(u) ⊆ S. Since yθ ∈ SN by (R1), we proceed
by induction on yθ with→ as well-founded ordering. The only di�cult case
could be when u is head-reducible, but this is not possible since t is neutral,
hence not constructor-headed. ut

5 Admissible recursors

Since we changed the interpretation of constant predicate symbols, we must
check several things in order to preserve the strong normalization result of [5].

• We must make sure that the interpretation of primitive types is still SN
since this is used for proving the computability of �rst-order symbols and the
interpretation of some de�ned predicate symbols (see Lemma 5).

5 In Section 8, we give weaker conditions for dealing with inductive-recursive types.

• We must also prove that every symbol is computable.

� For extended recursors, this follows from the de�nition of the interpretation
for constant predicate symbols, and thus, does not require safety.

� For �rst-order symbols, nothing is changed.

� For higher-order symbols distinct from recursors, we must make sure that
the accessible arguments of a computable constructor-headed term are com-
putable.

� For constructors, this does not follow from the interpretation for constant
predicate symbols anymore. We therefore have to prove it.

We now de�ne general conditions for these requirements to be satis�ed.

De�nition 4 (Admissible recursors). Assume that every constructor is
equipped with a set Acc(c) ⊆ {1, . . . , αc} of accessible arguments. Let C : (z :
V)? be a constant predicate symbol. Rec(C) is complete w.r.t. accessibility if,
for all c : (x : T)Cv, j ∈ Acc(c), xη and xσ, if η |= Γc, vσ ∈ SN and
cxσ ∈ [[Cv]]η,σ then xjσ ∈ [[Tj]]η,σ.

A recursor f : (z : V)(z : Cz)(y : U)V is head-computable w.r.t a con-
structor c : (x : T)Cv if, for all xη, xσ, yξ, yθ, S = [[v]]η,σ, if η, σ |= Γc
and ξS

z , θ
vσ
z
cxσ
z |= y : U , then every head-reduct of fvσ(cxσ)yθ belongs to

[[V]]ξS
z ,θ

vσ
z
cxσ
z

. A recursor is head-computable if it is head-computable w.r.t. every
constructor. Rec(C) is head-computable if all its recursors are head-computable.
Rec(C) is admissible if it is head-computable and complete w.r.t. accessibility.

We �rst prove that the interpretation of primitive types is SN .

Lemma 5 (Primitive types). Types equivalent to C are primitive if, for all
D ' C, D : ? and, for all d : (x : T)D, Acc(d) = {1, . . . , αd} and every Tj
is a primitive type E ≤ C. Let C : ? be a primitive symbol. If recursors are
head-computable then IC = SN .

Proof. By de�nition, IC ⊆ SN . We prove that, if t ∈ SN then t ∈ IC , by
induction on t with → ∪� as well-founded ordering. Let f : (z : C)(y : U)V be
a recursor, yξ and yθ such that ξ, θtz |= y : U . We must prove that v = ftyθ ∈
S = [[V]]ξ,θtz . Since v is neutral, it su�ces to prove that →(v) ⊆ S. We proceed
by induction on tyθ with → as well-founded ordering (yθ ∈ SN by R1). If the
reduction takes place in tyθ, we can conclude by induction hypothesis. Assume
now that v′ is a head-reduct of v. By assumption on recursors (De�nition 1), t is
of the form cu with c : (x : T)C. Since C is primitive, every uj is accessible and
every Tj is a primitive type D ≤ C. By induction hypothesis, uj ∈ ID. Therefore,
∅, {x 7→ u} |= Γc and, since ξ, θ

t
z |= y : U and recursors are head-computable,

v′ ∈ S. ut

Theorem 6 (Strong normalization). Assume that every constant predicate
symbol C is equipped with an admissible set Rec(C) of extended recursors distinct
from constructors. If → is con�uent and strong recursors and symbols that are
not recursors satisfy the conditions given in [5] then β∪R is strongly normalizing.

Proof. Let `f (resp. `<f) be the typing relation of the CAC whose symbols are
(resp. strictly) smaller than f . By induction on f , we prove that, if Γ `f t : T
and ξ, θ |= Γ then tθ ∈ [[T]]ξ,θ. By (symb), if g ≤ f and `f g : τg then `<f τg : sg.
Therefore, the induction hypothesis can be applied to the subterms of τg.

We �rst prove that recursors are computable. Let f : (z : V)(z : Cz)(y : U)V
be a recursor and assume that ξ, θ |= Γf . We must prove that v = fzθzθyθ ∈
S = [[V]]ξ,θ. Since v is neutral, it su�ces to prove that→(v) ⊆ S. We proceed by
induction on zθzθyθ with → as well-founded ordering (zθzθyθ ∈ SN by R1).
If the reduction takes place in zθzθyθ, we conclude by induction hypothesis.
Assume now that we have a head-reduct v′. By assumption on recursors (Def-
inition 1), zθ is of the form cu with c : (x : T)Cv, and v′ is a head-reduct of
v0 = fzθ∗zθyθ where zθ∗ are the normal forms of zθ. Since ξ, θ |= Γf , we have
zθ = cu ∈ [[Cz]]ξ,θ = IC(zθ,zξ). Therefore, v0 ∈ S and, by (R2), v′ ∈ S.

We now prove that constructors are computable. Let c : (x : T)Cv be a
constructor of C : (z : V)?, xη and xσ such that η, σ |= Γc. We must prove
that cxσ ∈ [[Cv]]η,σ = IC(vσ,S) where S = [[v]]η,σ. By induction hypothesis,
we have vσ ∈ SN . So, let f : (z : V)(z : Cz)(y : U)V be a recursor of C, yξ
and yθ such that ξS

z , θ
vσ
z
cxσ
z |= y : U . We must prove that v = fvσ∗(cxσ)yθ ∈

S = [[V]]ξS
z ,θ

vσ
z
cxσ
z

. Since v is neutral, it su�ces to prove that →(v) ⊆ S. Since
yθ ∈ SN , we can proceed by induction on yθ with → as well-founded ordering.

In the case of a reduction in yθ, we conclude by induction hypothesis. In
the case of a head-reduction, we conclude by head-computability of f . And, in
the case of a reduction in cxσ, we conclude by the computability lemmas for
function symbols in [5]: if the strong normalization conditions are satis�ed and
accessibility is correct w.r.t. computability, then every reduct of cxσ belongs to
[[Cv]]η,σ. The fact that accessibility is correct w.r.t. computability follows from
the completeness of the set of recursors w.r.t. accessibility. ut

6 The Calculus of Inductive Constructions

As an example, we prove the admissibility of a large class of weak recursors for
strictly positive types, from which Coq's recursors [22] can be easily derived.
This can be extended to strong recursors and to some non-strictly positive types
(see Section 7).

De�nition 7. Let C : (z : V)? and c be strictly positive constructors of C, that
is, if ci is of type (x : T)Cv then either no type equivalent to C occurs in Tj
or Tj is of the form (α : W)Cw with no type equivalent to C occurring in W .
The parameters of C is the biggest sequence q such that C : (q : Q)(z : V)? and
each ci is of type (q : Q)(x : T)Cqv with Tj = (α : W)Cqw if C occurs in Tj.

The canonical weak recursor6 of C w.r.t c is rec∗c : (q : Q)(z : V)(z :
Cqz)(P : (z : V)Cqz ⇒ ?)(y : U)Pzz with Ui = (x : T)(x′ : T ′)Pv(ciqx),
T ′j = (α : W)Pw(xjα) if Tj = (α : W)Cqw, and T ′j = Tj otherwise, de�ned

6 Strong recursors cannot be de�ned by taking P : (z : V)Cqz ⇒ 2 instead since
(z : V)Cqz ⇒ 2 is not typable in CC. They must be de�ned for each P .

by the rules rec∗cqz(ciq
′x)Py → yixt

′ where t′j = [α : W](rec∗cqw(xjα)Py) if

Tj = (α : W)Cqw, and t′j = xj otherwise.7

Lemma 8. The set of canonical recursors is complete w.r.t. accessibility.8

Proof. Let c = ci : (q : Q)(x : T)Cqv be a constructor of C : (q : Q)(z :
V)?, qη, xη, qσ and xσ such that qσvσ ∈ SN and cqσxσ ∈ [[Cqv]]η,σ =
IC(qσvσ, qξ[[v]]η,σ). Let a = qx and A = QT . We must prove that, for all
j, ajσ ∈ [[Aj]]η,σ. For the sake of simplicity, we assume that weak and strong
recursors have the same syntax. Since qσvσ have normal forms, it su�ces to �nd
uj such that reccqv(cqx)Pjuj → ujxt

′ →∗β aj . Take uj = [x : T][x′ : T ′]aj . ut

Lemma 9. Canonical recursors are head-computable.

Proof. Let f : (q : Q)(z : V)(z : Cqz)(P : (z : V)Cqz ⇒ ?)(y : U)Pzz be
the canonical weak recursor w.r.t. c, T = (z : V)Cqz ⇒ ?, c = ci : (q : Q)(x :
T)Cqv, qη, qσ, xη, xσ, Pξ, Pθ, yξ, yθ, R = [[v]]η,σ, ξ′ = ξR

z and θ′ = θvσ
z
cxσ
z ,

and assume that η, σ |= Γc and ηξ′, σθ′ |= P : T,y : U . We must prove that
yiθxσt

′σθ ∈ [[Pzz]]ξ′,θ′ .
We have yiθ ∈ [[Ui]]ξ′,θ′ , Ui = (x : T)(x′ : T ′)Pv(cqx) and xjσ ∈ [[Tj]]η,σ =

[[Tj]]ηξ′,σθ′ . We prove that t′jσθ ∈ [[T ′j]]ηξ′,σθ′ . If T
′
j = Tj then t′jσθ = xjσ and

we are done. Otherwise, Tj = (α : W)Cqw, T ′j = (α : W)Pw(xjα) and
t′j = [α : W]fqw(xjα)Py. Let αζ and αγ such that ηξ′ζ, σθ′γ |= α : W . Let
t = xjσαγ. We must prove that v = fqσwσγtPθyθ ∈ S = [[Pw(xjα)]]ηξ′ζ,σθ′γ .
Since v is neutral, it su�ces to prove that →(v) ⊆ S.

We proceed by induction on qσwσγtPθyθ ∈ SN with → as well-founded
ordering (we can assume that wσγ ∈ SN since `<f τf : sf). In the case of a
reduction in qσwσγtPθyθ, we conclude by induction hypothesis. Assume now
that we have a head-reduct v′. By de�nition of recursors, v′ is also a head-reduct
of v0 = fqσ∗wσγ∗tPθyθ where qσ∗wσγ∗ are the normal forms of qσwσγ. If
v0 ∈ S then, by (R2), v′ ∈ S. So, let us prove that v0 ∈ S.

By candidate substitution, S = [[Pzz]]ξS
z ,θ

wσγ
z

t
z
with S = [[w]]ηξ′ζ,σθ′γ =

[[w]]ηξζ,σθγ for FV(w) ⊆ {q, P,x,α}. Since xjσ ∈ [[Tj]]ηξ′,σθ′ and ηξ′ζ, σθ′γ |=
α : W , t ∈ [[Cqw]]ηξ′ζ,σθ′γ = IC(qσwσγ, qξS). Since ηξ′, σθ′ |= P : T,y : U
and FV(TU) ⊆ {q, P}, we have ηξ, σθ |= P : T,y : U and ηξS

z , σθ
wσγ
z

t
z |= P :

T,y : U . Therefore, v0 ∈ S. ut

It follows that CAC essentially subsumes CIC as de�ned in [23]. Theorem
6 cannot be applied to CIC directly since CIC and CAC do not have the same
syntax and the same typing rules. So, in [5], we de�ned a sub-system of CIC,
called CIC−, whose terms can be translated into a CAC. Without requiring
inductive types to be safe and to satisfy (I6), we think that CIC− is essentially
as powerful as CIC.

Theorem 10. The system CIC− de�ned in [5] (Chapter 7) is strongly normal-
izing even though inductive types are unsafe and do not satisfy (I6).

7 We could erase the useless arguments t′j = xj when T ′
j = Tj .

8 In [23] (Lemma 4.35), Werner proves a similar result.

7 Non-strictly positive types

We are going to see that the use of elimination-based interpretations allows us to
have functions de�ned by recursion on non-strictly positive types too, while CIC
has always been restricted to strictly positive types. An interesting example
is given by Abel's formalization of �rst-order terms with continuations as an
inductive type trm : ? with the constructors [1]:

var :nat⇒ trm
fun :nat⇒ (list trm)⇒ trm
mu :¬¬trm⇒ trm

where list : ? ⇒ ? is the type of polymorphic lists, ¬X is an abbreviation for
X ⇒ ⊥ (in the next section, we prove that ¬ can be de�ned as a function), and
⊥ : ? is the empty type. Its recursor rec : (A : ?)(y1 : nat ⇒ A) (y2 : nat ⇒
list trm⇒ listA⇒ A)(y3 : ¬¬trm⇒ ¬¬A⇒ A)(z : trm)A can be de�ned by:

rec A y1 y2 y3 (var n) → y1 n
rec A y1 y2 y3 (fun n l) → y2 n l (map trm A (rec A y1 y2 y3) l)
rec A y1 y2 y3 (mu f) → y3 f [x : ¬A](f [y : trm](x (rec A y1 y2 y3 y)))

where map : (A : ?)(B : ?)(A⇒ B)⇒ list A⇒ list B is de�ned by:

map A B f (nil A′) → (nil B)
map A B f (cons A′ x l) → cons B (f x) (map A B f l)
map A B f (app A′ l l′) → app B (map A B f l) (map A B f l′)

We now check that rec is an admissible recursor. Completeness w.r.t. acces-
sibility is easy. For the head-computability, we only detail the case of mu. Let
fσ, t = mu fσ, Aξ, Aθ and yθ such that ∅, σ |= Γmu and ξ, σθtz |= Γ = A : ?,
y : U where Ui is the type of yi. Let b = recAθyθ, c = [y : trm](x(by)) and
a = [x : ¬Aθ](fσc). We must prove that y3θfσa ∈ [[A]]ξ,σθtz = Aξ.

Since ξ, σθtz |= Γ , y3θ ∈ [[¬¬trm ⇒ ¬¬A ⇒ A]]ξ,θ. Since ∅, σ |= Γmu, fσ ∈
[[¬¬trm]]. Thus, we are left to prove that a ∈ [[¬¬A]]ξ,θ, that is, fσcγ ∈ I⊥ for all
xγ ∈ [[¬A]]ξ,θ. Since fσ ∈ [[¬¬trm]], it su�ces to prove that cγ ∈ [[¬trm]], that
is, xγ(byγ) ∈ I⊥ for all yγ ∈ Itrm. This follows from the facts that xγ ∈ [[¬A]]ξ,θ
and byγ ∈ Aξ since yγ ∈ Itrm.

8 Inductive-recursive types

In this section, we de�ne new positivity conditions for dealing with inductive-
recursive type de�nitions [12]. An inductive-recursive type C has constructors
whose arguments have a type Ft with F de�ned by recursion on t : C, that is,
a predicate F and its domain C are de�ned at the same time.

A simple example is the type dlist : (A : ?)(# : A⇒ A⇒ ?)? of lists made of
distinct elements thanks to the predicate fresh : (A : ?)(# : A ⇒ A ⇒ ?)A ⇒
(dlistA#)⇒ ? parametrized by a function # to test whether two elements are
distinct. The constructors of dlist are:

nil : (A : ?)(#:A⇒A⇒?)(dlistA#)
cons : (A : ?)(#:A⇒A⇒?)(x : A)(l : dlistA#)(fresh A # x l)⇒ (dlistA#)

and the rules de�ning fresh are:

fresh A # x (nil A′) → >
fresh A # x (cons A′ y l h) → x#y ∧ fresh A # x l

where > is the proposition always true and ∧ the connector �and�. Other exam-
ples are given by Martin-Löf's de�nition of the �rst universe à la Tarski [12] or
by Pollack's formalization of record types with manifest �elds [21].

De�nition 11 (Positive/negative positions). Assume that every predicate
symbol f : (x : t)U is equipped with a set Mon+(f) ⊆ {i ≤ αf | xi ∈ X2} of
monotone arguments and a set Mon−(f) ⊆ {i ≤ αf | xi ∈ X2} of anti-monotone
arguments. The sets of positive positions Pos+(t) and negative positions Pos−(t)
in a term t are inductively de�ned as follows:

� Posδ(s) = Posδ(x) = {ε | δ = +},
� Posδ((x : U)V) = 1.Pos−δ(U) ∪ 2.Posδ(V),
� Posδ([x : U]v) = 2.Posδ(v),
� Posδ(tu) = 1.Posδ(t) if t 6= ft,

� Posδ(ft) = {1|t| | δ = +} ∪
⋃
{1|t|−i2.Posεδ(ti) | ε ∈ {−,+}, i ∈ Monε(f)},

where δ ∈ {−,+}, −+ = − and −− = + (usual rule of signs).

Theorem 12 (Strong normalization). De�nition 1 is modi�ed as follows. A
pre-recursor f : (z : V)(z : Cz)W is a recursor if:

• no F > C occurs in W ,

• every F ' C occurs only positively in W ,

• if i ∈ Monδ(C) then Pos(zi,W) ⊆ Posδ(W).

Assume furthermore that, for every rule F l→ r:

• no G > F occurs in r,

• for all i ∈ Monε(F), li ∈ X2 and Pos(li, r) ⊆ Posε(r).

Then, Theorem 6 is still valid.

Proof. For Theorem 6 to be still valid, we must make sure that ϕ (see De�nition
2) is still monotone, hence has a least �xpoint. To this end, we need to prove
that [[t]]Iξ,θ is monotone (resp. anti-monotone) w.r.t. xξ if x occurs only positively

(resp. negatively) in t, and that [[t]]Iξ,θ is monotone (resp. anti-monotone) w.r.t.
IC if C occurs only positively (resp. negatively) in t. These results are easily
extended to the new positivity conditions by reasoning by induction on the well-
founded ordering used for de�ning the de�ned predicate symbols.

Let us see what happens in the case where t = F t with F a de�ned predicate
symbol. Let≤+=≤ and≤−=≥. We want to prove that, if ξ1 ≤x ξ2 (i.e. xξ1 ≤ xξ2
and, for all y 6= x, yξ1 = yξ2) and Pos(x, t) ⊆ Posδ(t), then [[t]]Iξ1,θ ≤

δ [[t]]Iξ2,θ.
By de�nition of IF , if the normal forms of tθ matches the left hand-side of

F l → r, then [[F t]]Iξi,θ = [[r]]Iξ′i,σ where σ is the matching substitution and, for

all y ∈ FV(r), yξ′i = [[tκy]]
I
ξi,θ

where κy is such that lκy = y (see [5] for details).

Now, since Pos(x, F t) ⊆ Posδ(F t), Pos(x, tκy) ⊆ Posεδ(tκy) for some ε. Hence,
by induction hypothesis, ξ′1 ≤εδy ξ′2. Now, since Pos(y, r) ⊆ Posε(r), by induction

hypothesis again, [[r]]ξ′1,σ ≤
ε2δ=≤δ [[r]]ξ′2,σ. ut

For instance, in the positive type trm of Section 7, instead of considering
¬¬A as an abbreviation, one can consider ¬ as a predicate symbol de�ned by
the rule ¬A → A ⇒ ⊥ with Mon−(¬) = {1}. Then, one easily checks that A
occurs negatively in A ⇒ ⊥, and hence that trm occurs positively in ¬¬trm
since Pos+(¬¬trm) = {1} ∪ 2.Pos−(¬trm) = {1} ∪ 2.2.Pos+(trm) = {1, 2.2}.

9 Conclusion

By using an elimination-based interpretation for inductive types, we proved that
the Calculus of Algebraic Constructions completely subsumes the Calculus of In-
ductive Constructions. We de�ne general conditions on extended recursors for
preserving strong normalization and show that these conditions are satis�ed by
a large class of recursors for strictly positive types and by non-strictly posi-
tive types too. Finally, we give general positivity conditions for dealing with
inductive-recursive types.

Acknowledgments. I would like to thank C. Paulin, R. Matthes, J.-P. Jouannaud,
D. Walukiewicz, G. Dowek and the anonymous referees for their useful comments on
previous versions of this paper. Part of this work was performed during my stay at
Cambridge (UK) thanks to a grant from the INRIA.

References

1. A. Abel. Termination checking with types. Technical Report 0201, Ludwig Maxi-
milians Universität, München, Germany, 2002.

2. F. Barbanera, M. Fernández, and H. Geuvers. Modularity of strong normalization
and con�uence in the algebraic-λ-cube. In Proceedings of the 9th IEEE Symposium

on Logic in Computer Science, 1994.
3. H. Barendregt. Lambda calculi with types. In S. Abramski, D. Gabbay, and

T. Maibaum, editors, Handbook of logic in computer science, volume 2. Oxford
University Press, 1992.

4. F. Blanqui. De�nitions by rewriting in the Calculus of Constructions (extended
abstract). In Proceedings of the 16th IEEE Symposium on Logic in Computer

Science, 2001.
5. F. Blanqui. Théorie des Types et Récriture. PhD thesis, Université Paris XI, Orsay,

France, 2001. Available in english as "Type Theory and Rewriting".
6. F. Blanqui. De�nitions by rewriting in the Calculus of Constructions, 2003. Journal

submission, 68 pages.
7. F. Blanqui. A short and �exible strong normalization proof for the Calculus of

Algebraic Constructions with curried rewriting, 2003. Draft.

8. T. Coquand. Pattern matching with dependent types. In Proceedings of the Inter-

national Workshop on Types for Proofs and Programs, 1992. http://www.lfcs.

informatics.ed.ac.uk/research/types-bra/proc/.
9. T. Coquand and G. Huet. The Calculus of Constructions. Information and Com-

putation, 76(2�3):95�120, 1988.
10. T. Coquand and C. Paulin-Mohring. Inductively de�ned types. In Proceedings

of the International Conference on Computer Logic, Lecture Notes in Computer
Science 417, 1988.

11. N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, chapter 6. North-Holland,
1990.

12. P. Dybjer. A general formulation of simultaneous inductive-recursive de�nitions
in type theory. Journal of Symbolic Logic, 65(2):525�549, 2000.

13. J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge University
Press, 1988.

14. R. Harper and J. Mitchell. Parametricity and variants of Girard's J operator.
Information Processing Letters, 70:1�5, 1999.

15. J.-P. Jouannaud and M. Okada. Executable higher-order algebraic speci�cation
languages. In Proceedings of the 6th IEEE Symposium on Logic in Computer

Science, 1991.
16. J. W. Klop, V. van Oostrom, and F. van Raamsdonk. Combinatory reduction

systems: introduction and survey. Theoretical Computer Science, 121:279�308,
1993.

17. R. Matthes. Extensions of System F by Iteration and Primitive Recursion on

Monotone Inductive Types. PhD thesis, Ludwig Maximilians Universität, München,
Germany, 1998.

18. C. McBride. Dependently typed functional programs and their proofs. PhD thesis,
University of Edinburgh, United Kingdom, 1999.

19. N. P. Mendler. Inductive De�nition in Type Theory. PhD thesis, Cornell University,
United States, 1987.

20. C. Paulin-Mohring. Personal communication, 2001.
21. R. Pollack. Dependently typed records in type theory. Formal Aspects of Comput-

ing, 13(3�5):341�363, 2002.
22. Coq Development Team. The Coq Proof Assistant Reference Manual � Version

7.3. INRIA Rocquencourt, France, 2002. http://coq.inria.fr/.
23. B. Werner. Une Théorie des Constructions Inductives. PhD thesis, Université

Paris VII, France, 1994.

http://www.lfcs.informatics.ed.ac.uk/research/types-bra/proc/
http://www.lfcs.informatics.ed.ac.uk/research/types-bra/proc/
http://coq.inria.fr/

	Inductive types in the Calculus of Algebraic Constructions
	Frédéric Blanqui

