Polyhedral Newton-min algorithms for complementarity problems [28]

Jean Charles Gilbert (Inria-Paris \& Université de Sherbrooke)
Joint work with
Jean-Pierre Dussault (Université de Sherbrooke)
Mathieu Frappier (Université de Sherbrooke)

June 7, 2023

Outline

(1) Preliminaries
(2) Complementarity problem
(3) A few linearization algorithms

4 Polyhedral Newton-min algorithms
(5) Numerical results on LCP
(6) Conclusion

Outline

(1) Preliminaries
(2) Complementarity problem
(3) A few linearization algorithms

4 Polyhedral Newton-min algorithms
(5) Numerical results on LCP
(6) Conclusion

Preliminaries

Local Newton's method for a smooth function

Local Newton's method for a smooth function

- Let $H: \mathbb{E} \rightarrow \mathbb{F}$ be a smooth function (\mathbb{E} a vector space).
- Find $x_{*} \in \mathbb{E}$ such that $H\left(x_{*}\right)=0$?
- Local Newton's algorithm:

$$
\left\{\begin{array}{l}
H\left(x_{k}\right)+H^{\prime}\left(x_{k}\right) d_{k}=0 \\
x_{k+1}:=x_{k}+d_{k} .
\end{array}\right.
$$

- 3 conditions for quadratic convergence
- x_{0} close to x_{*},
- $H \in \mathcal{C}^{1,1}$,
- $H^{\prime}\left(x_{*}\right)$ nonsingular.

Preliminaries

Globalization of Newton's method for a smooth function: miracle or mirage?

Globalization of Newton's method for a smooth function: miracle or mirage?

- Let $(\mathbb{F},\langle\cdot, \cdot\rangle)$ be a Euclidean space; associated norm $\|\cdot\|=\langle\cdot, \cdot\rangle^{1 / 2}$.
- Consider the least-square merit function: $\theta: \mathbb{E} \rightarrow \mathbb{R}$ defined at $x \in \mathbb{E}$ by

$$
\theta(x):=\frac{1}{2}\|H(x)\|^{2} .
$$

- Miracle: the Newton's direction $d:=-H^{\prime}(x)^{-1} H(x)$ is a descent direction of θ :

$$
\theta^{\prime}(x) d=\left\langle H(x), H^{\prime}(x) d\right\rangle=-\|H(x)\|^{2}=-2 \theta(x)<0 \quad \text { [if } d \text { exists and } H(x) \neq 0 \text {] }
$$

- Globalization by linesearch: $x_{k+1}:=x_{k}+\alpha_{k} d_{k}$ with $\alpha_{k}>0$ not too small such that

$$
\theta\left(x_{k}+\alpha_{k} d_{k}\right) \leqslant \theta\left(x_{k}\right)+\omega \alpha_{k} \theta^{\prime}\left(x_{k}\right) d_{k} \quad\left[\omega \simeq 10^{-4}\right] .
$$

- Mirage: If \bar{x} is a limit point of $\left\{x_{k}\right\}$, that is regular $\left(F^{\prime}(\bar{x})\right.$ nonsingular), then $F(\bar{x})=0$.

But there may be no such limit point!

Preliminaries

Success of the globalization of Newton's algorithm with LS

Success of the globalization of Newton's algorithm with LS

x_{0} 。

$$
\begin{aligned}
F(x) & =\binom{x_{1}}{-\left(x_{1}-2\right)^{2}+x_{2}+4} \\
F^{\prime}(x) & =\left(\begin{array}{cc}
1 & 0 \\
-2\left(x_{1}-2\right) & 1
\end{array}\right) .
\end{aligned}
$$

Preliminaries

Success of the globalization of Newton's algorithm with LS

Success of the globalization of Newton's algorithm with LS

$$
\begin{aligned}
F(x) & =\binom{x_{1}}{-\left(x_{1}-2\right)^{2}+x_{2}+4} \\
F^{\prime}(x) & =\left(\begin{array}{cc}
1 & 0 \\
-2\left(x_{1}-2\right) & 1
\end{array}\right) .
\end{aligned}
$$

Preliminaries

Failure of the globalization of Newton's algorithm with LS

Failure of the globalization of Newton's algorithm with LS I

$$
\begin{aligned}
F(x) & =\binom{x_{1}}{-\left(x_{1}-2\right)^{2}+\left(x_{2}-1\right)^{2}+3}, \\
F^{\prime}(x) & =\left(\begin{array}{cc}
1 & 0 \\
-2\left(x_{1}-2\right) & 2\left(x_{2}-1\right)
\end{array}\right) .
\end{aligned}
$$

Preliminaries

Failure of the globalization of Newton's algorithm with LS

Failure of the globalization of Newton's algorithm with LS I

$$
\begin{aligned}
F(x) & =\binom{x_{1}}{-\left(x_{1}-2\right)^{2}+\left(x_{2}-1\right)^{2}+3}, \\
F^{\prime}(x) & =\left(\begin{array}{cc}
1 & 0 \\
-2\left(x_{1}-2\right) & 2\left(x_{2}-1\right)
\end{array}\right) .
\end{aligned}
$$

Preliminaries

Failure of the globalization of Newton's algorithm with LS

Failure of the globalization of Newton's algorithm with LS II

$$
\begin{aligned}
F(x) & =\binom{x_{1}}{-\left(x_{1}-2\right)^{2}+e^{x_{2}}+3}, \\
F^{\prime}(x) & =\left(\begin{array}{cc}
1 & 0 \\
-2\left(x_{1}-2\right) & e^{x_{2}}
\end{array}\right) .
\end{aligned}
$$

Preliminaries

Failure of the globalization of Newton's algorithm with LS

Failure of the globalization of Newton's algorithm with LS II

$$
\begin{aligned}
F(x) & =\binom{x_{1}}{-\left(x_{1}-2\right)^{2}+e^{x_{2}}+3}, \\
F^{\prime}(x) & =\left(\begin{array}{cc}
1 & 0 \\
-2\left(x_{1}-2\right) & e^{x_{2}}
\end{array}\right) .
\end{aligned}
$$

Preliminaries

Failure of the globalization of Newton's algorithm with LS

Failure of the globalization of Newton's algorithm with LS III

Conclusion

- A "global" convergence result of the kind "any regular limit point of the generated sequence is a solution" must be taken with caution, since the generated sequence may have no regular limit point.
- Such a "global" convergence result is just a means to improve algorithms.

Preliminaries

Local Newton's method for a nonsmooth function may fail

Local Newton's method for a nonsmooth function may fail

Newton's method may cycle, regardless of the proximity of x_{0} and x_{*}. Example, Kummer's function $[49 ; 1988]$ (differentiable at $\left.0, \partial_{c} H(0)=[1 / 2,2] \nexists 0\right)$

Kummer's function

Cycling of Newton's algorithm

Preliminaries

B-differential and C-differential

B-differential and C-differential

- Let \mathbb{E} and \mathbb{F} be two vector spaces of finite dimensions $n:=\operatorname{dim} \mathbb{E}$ and $m:=\operatorname{dim} \mathbb{F}$.
- Let $H: \mathbb{E} \rightarrow \mathbb{F}$ be a function.
- The B-differential (B for Bouligand) of H at $x \in \mathbb{E}$ is denoted and defined by

$$
\begin{aligned}
\partial_{B} H(x):=\{J \in \mathcal{L}(\mathbb{E}, \mathbb{F}): & H^{\prime}\left(x_{k}\right) \rightarrow J \text { for a sequence } \\
& \left.\left\{x_{k}\right\} \subseteq \mathcal{D}_{H} \text { converging to } x\right\}
\end{aligned}
$$

where $\mathcal{L}(\mathbb{E}, \mathbb{F})$ is the set of linear (continuous) maps from \mathbb{E} to \mathbb{F} and \mathcal{D}_{H} is the set of points at which H is differentiable.

$$
\begin{aligned}
& \partial_{B} H(x)=\{-1, \mathbf{1} / 2\} \\
& \partial_{C} H(x)=[-1,1 / 2]
\end{aligned}
$$

- The C-differential (C for Clarke [19]) of H at $x \in \mathbb{E}$ is denoted and defined by

$$
\partial_{C} H(x):=\operatorname{co} \partial_{B} H(x)
$$

where co S denotes the convex hull of a set S.

- H locally Lipschitz near $x \Longrightarrow \partial_{B} H(x)$ and $\partial_{C} H(x)$ nonempty and bounded.

Preliminaries

Semismoothness definition [61, 60; 1993]

- Let \mathbb{E} and \mathbb{F} be two normed spaces and Ω be an open set of \mathbb{E}.
- Let $H: \Omega \rightarrow \mathbb{F}$ be a function and $x \in \Omega$.
- The function H is said to be semismooth at x if the following three conditions hold:
(SS1) H is Lipschitz near x,
(SS2) H has directional derivatives at x in all directions,
(SS3) when $h \rightarrow 0$ in \mathbb{E}, one has

$$
\begin{equation*}
\sup _{J \in \partial_{C} H(x+h)}\|H(x+h)-H(x)-J h\|=o(\|h\|) \tag{1a}
\end{equation*}
$$

- The function H is said to be strongly semismooth at x if it is semismooth at x with (SS3) strengthened into
(SS3') for h near 0, one has

$$
\begin{equation*}
\sup _{J \in \partial_{C} H(x+h)}\|H(x+h)-H(x)-J h\|=O\left(\|h\|^{2}\right) \tag{1b}
\end{equation*}
$$

- The function $H: \Omega \rightarrow \mathbb{F}$ is said to be semismooth (resp. strongly semismooth) on a part P of Ω if it is semismooth (resp. strongly semismooth) at all points of $P_{\text {金 }}$ hac

Preliminaries

Semismoothness properties

Semismoothness properties

- Semismooth Newton's method [61, 60; 1993]
- Choose some nonsingular $J_{k} \in \partial_{B} H\left(x_{k}\right)$, if any,
- $x_{k+1}:=x_{k}-J_{k}^{-1} H\left(x_{k}\right)$.
- Local quadratic convergence of semismooth Newton's method if
- x_{0} is close to x_{*},
- H is strongly semismooth,
- all $J \in \partial_{B} H\left(x_{*}\right)$ is nonsingular.
- Nice properties
- H continuously differentiable at $x \Rightarrow H$ semismooth at x.
- H_{1} semismooth at x, H_{2} semismooth at $H_{1}(x) \Rightarrow H_{2} \circ H_{1}$ semismooth at x.
$\star H_{1}, H_{2}$ semismooth at $x \Rightarrow H_{1}+H_{2}$ semismooth at x.
$\star H_{1}, H_{2}$ semismooth at $x \Leftrightarrow\left(H_{1}, H_{2}\right)$ semismooth at x.
$\star H_{1}, H_{2}$ semismooth at $x \Rightarrow\left\langle H_{1}, H_{2}\right\rangle$ semismooth at x.
- H_{1}, H_{2} semismooth at $x \Rightarrow \min \left(H_{1}, H_{2}\right)$ semismooth at x.

Preliminaries

Globalization of Newton's method for a nonsmooth function

Globalization of Newton's method for a nonsmooth function

No general technique.

Reason: $d_{k}=-J_{k}^{-1} H\left(x_{k}\right)$ may not be a descent direction of $\theta: x \mapsto \frac{1}{2}\|H(x)\|^{2}$. Often, it depends on the choice of $J_{k} \in \partial_{B} H\left(x_{k}\right)$.

Outline

(1) Preliminaries
(2) Complementarity problem
(3) A few linearization algorithms

4 Polyhedral Newton-min algorithms
(5) Numerical results on LCP
(6) Conclusion

Complementarity problem

Problem definition

Nonlinear complementarity problem
A complementarity problem consists in finding $x \in \Omega$ (open subset of \mathbb{R}^{n}) such that

$$
\begin{equation*}
F(x) \geqslant 0, \quad G(x) \geqslant 0, \quad \text { and } \quad F(x)^{\top} G(x)=0 \tag{2a}
\end{equation*}
$$

where $F: \Omega \rightarrow \mathbb{R}^{n}$ and $G: \Omega \rightarrow \mathbb{R}^{n}$ are smooth. This is written compactly as follows:
(NLCP) $\quad 0 \leqslant F(x) \perp G(x) \geqslant 0$.
Linear complementarity problem
Sometimes, we shall refer to the linear complementarity problem [22]: this is (2) with
$F(x)=M x+q$ and $G(x)=x:$
(LCP) $\quad 0 \leqslant(M x+q) \perp x \geqslant 0$,
where $M \in \mathbb{R}^{n \times n}$ and $q \in \mathbb{R}^{n}$
P-matrix

$\Longleftrightarrow \quad(3)$ has a unique solution for all $q \in \mathbb{R}^{n}$.

Complementarity problem

Problem definition

Nonlinear complementarity problem
A complementarity problem consists in finding $x \in \Omega$ (open subset of \mathbb{R}^{n}) such that

$$
\begin{equation*}
F(x) \geqslant 0, \quad G(x) \geqslant 0, \quad \text { and } \quad F(x)^{\top} G(x)=0, \tag{2a}
\end{equation*}
$$

where $F: \Omega \rightarrow \mathbb{R}^{n}$ and $G: \Omega \rightarrow \mathbb{R}^{n}$ are smooth. This is written compactly as follows:
(NLCP) $\quad 0 \leqslant F(x) \perp G(x) \geqslant 0$.
Linear complementarity problem
Sometimes, we shall refer to the linear complementarity problem [22]: this is (2) with $F(x)=M x+q$ and $G(x)=x:$

$$
\begin{equation*}
(\mathrm{LCP}) \quad 0 \leqslant(M x+q) \perp x \geqslant 0 \tag{3}
\end{equation*}
$$

where $M \in \mathbb{R}^{n \times n}$ and $q \in \mathbb{R}^{n}$.
P-matrix

$$
\begin{aligned}
M \in \mathbf{P} & \Longleftrightarrow \operatorname{det} M_{l, I}>0 \text { for all } I \subseteq[1: n] \\
& \Longleftrightarrow(3) \text { has a unique solution for all } q \in \mathbb{R}^{n} .
\end{aligned}
$$

Complementarity problem

Comments on the problem

Comments on the problem

- It is a set of nonlinear inequalities and one equation, so it may look like an easy problem to solve.
- Mangasarian-Fromovitz does not hold \Longrightarrow instability for small perturbations.
- By the inequalities $F(x) \geqslant 0$ and $G(x) \geqslant 0$, the equation $F(x)^{\top} G(x)=0$ also reads

$$
V_{i} \in[1: n]: \quad F_{i}(x) G_{i}(x)=0
$$

There are 2^{n} ways of realizing these complementarity conditions. Hence a huge combinatorial aspect.

- Even the LCP (3) is NP-hard in general $[18,47]$. Depends on M :
- at most n iterations if M is an M-matrix (Newton-min) [2],
- ??? if M is a P-matrix (Lemke exponential [54], Newton-min cycles [9, 10, 11])
- ??? if M is a nondegenerate matrix,
\Rightarrow NP-hard if M is a P_{0}-matrix [47]
$\Rightarrow O\left((1+\kappa) n^{\alpha} \log \varepsilon^{-1}\right)$ iterations if M is a $P_{*}(\kappa)$-matrix (interior points) [47,59], but κ may be exponential in the length L of the data [24].

Complementarity problem

Comments on the problem

Comments on the problem

- It is a set of nonlinear inequalities and one equation, so it may look like an easy problem to solve.
- Mangasarian-Fromovitz does not hold \Longrightarrow instability for small perturbations.
- By the inequalities $F(x) \geqslant 0$ and $G(x) \geqslant 0$, the equation $F(x)^{\top} G(x)=0$ also reads

$$
\forall i \in[1: n]: \quad F_{i}(x) G_{i}(x)=0
$$

There are 2^{n} ways of realizing these complementarity conditions. Hence a huge combinatorial aspect.

- E

```
- at most n}\mathrm{ iterations if M is an M-matrix (Newton-min) [2]
    > ??? if M is a P-matrix (Lemke exponential [54], Newton-min cycles [9, 10, 11])
    * ??? if M}\mathrm{ is a nondegenerate matrix,
    * NP-hard if M is a Po-matrix [47],
    may be exponential in the length L of the data [24].
```


Complementarity problem

Comments on the problem

Comments on the problem

- It is a set of nonlinear inequalities and one equation, so it may look like an easy problem to solve.
- Mangasarian-Fromovitz does not hold \Longrightarrow instability for small perturbations.
- By the inequalities $F(x) \geqslant 0$ and $G(x) \geqslant 0$, the equation $F(x)^{\top} G(x)=0$ also reads

$$
\forall i \in[1: n]: \quad F_{i}(x) G_{i}(x)=0
$$

There are 2^{n} ways of realizing these complementarity conditions. Hence a huge combinatorial aspect.

Complementarity problem

Comments on the problem

- It is a set of nonlinear inequalities and one equation, so it may look like an easy problem to solve.
- Mangasarian-Fromovitz does not hold \Longrightarrow instability for small perturbations.
- By the inequalities $F(x) \geqslant 0$ and $G(x) \geqslant 0$, the equation $F(x)^{\top} G(x)=0$ also reads

$$
\forall i \in[1: n]: \quad F_{i}(x) G_{i}(x)=0
$$

There are 2^{n} ways of realizing these complementarity conditions. Hence a huge combinatorial aspect.

- Even the LCP (3) is NP-hard in general [18, 47]. Depends on M:
- at most n iterations if M is an M-matrix (Newton-min) [2],
- ??? if M is a P-matrix (Lemke exponential [54], Newton-min cycles [9, 10, 11]),
- ??? if M is a nondegenerate matrix,
- NP-hard if M is a P_{0}-matrix [47],
- $O\left((1+\kappa) n^{\alpha} \log \varepsilon^{-1}\right)$ iterations if M is a $\mathbf{P}_{*}(\kappa)$-matrix (interior points) [47, 59], but κ may be exponential in the length L of the data [24].

Complementarity problem

Link with other problems

Link with other problems

- It is a particular case of functional inclusion problem

$$
F(x)+\left(\mathrm{N}_{\mathbb{R}_{+}^{n}} \circ G\right)(x) \ni 0 .
$$

- First order optimality conditions of the optimization problem " $\min \{f(x): c(x) \leqslant 0\}$ ":

$$
\text { Find }(x, \lambda) \in \mathbb{R}^{n} \times \mathbb{R}^{m} \text { s.t. } \begin{cases}\nabla f(x)+c^{\prime}(x)^{\top} \lambda=0 & \text { (} n \text { equations) } \tag{4}\\ 0 \leqslant \lambda \perp-c(x) \geqslant 0 & \text { (} m \text { "conditions"). } .\end{cases}
$$

- The LCP was introduced and analyzed in the linear case by Cottle in his PhD thesis [20,21; 1964], as an extension of the linear optimization problem.
- The related variational inequality problem

$$
\left\{\begin{array}{l}
x \in C(\text { a convex set }) \\
\langle F(x), y-x\rangle \geqslant 0, \quad \forall y \in C .
\end{array}\right.
$$

was introduced by Hartman and Stampacchia [44; 1966] for an EDP;

Complementarity problem

Examples of use

Examples of use

- General principle. Useful for systems in competition with threshold effects:

$$
\text { If the threshold } F_{i}(x) \text { is inactive }(>0) \quad \Longrightarrow \quad G_{i}(x)=0 \text {. }
$$

- Examples in
- nonsmooth mechanics and dynamics, contact problems [1, 14, 3],

Tire/road contact in (space,time)

$$
\left\{\begin{array}{l}
r(x, t) \geqslant 0 \\
h(x, t) \geqslant 0 \\
r(x, t) h(x, t)=0 .
\end{array}\right.
$$

- phase transition problem in multiphase flows [52, 53, 7, 4, 6, 5, 16, 23],
- precipitation-dissolution problems in chemistry [15, 48],
- portfolio management in finance [41],
- computer graphics [31],
- free boundary problems, meteorology simulation, economic equilibrium, ...
- More examples of applications in [42, 45, 57, 37, 32].

Complementarity problem

Solution methods

- Pivoting (Lemke) for LCP.
- Interior points.
- Nonsmooth equation reformulation and pseudo-linearization.
- Smoothing nonsmooth reformulations.
- Other methods ...

Outline

(1) Preliminaries
(2) Complementarity problem
(3) A few linearization algorithms
(4) Polyhedral Newton-min algorithms
(5) Numerical results on LCP
(6) Conclusion

A few linearization algorithms

Equation reformulation of NLCP (I)
Equation reformulation of NLCP (1)
Solve the following nonsmooth reformulation of (NLCP):

$$
\begin{equation*}
H(x)=0, \tag{5a}
\end{equation*}
$$

where $H: \Omega \rightarrow \mathbb{R}^{n}$ is the function defined at $x \in \Omega$ by

$$
\begin{equation*}
H(x):=\min (F(x), G(x)) . \tag{5b}
\end{equation*}
$$

Compute a direction d by a pseudo-linearization of H (\equiv Newton-min approach).

- H has directional derivatives and is semismooth (if F and G are smooth)
- There are other equation reformulations, like the one using the Fischer function $\varphi_{\mathrm{F}}(a, b)=\sqrt{a^{2}+b^{2}}-(a+b)[38,34,51,25,58]$
- The function "min" reformulation is a choice guided by
- scientific curiosity (there are still possibilities of improvement),
- efficiency of the approach ("min" is more linear, although less differentiable than φ_{F}),
* can give better local convergence result than with φ_{F} [32], Ćríá
- can give finite termination for LCP [39].

A few linearization algorithms

Equation reformulation of NLCP (I)

Equation reformulation of NLCP (I)
Solve the following nonsmooth reformulation of (NLCP):

$$
\begin{equation*}
H(x)=0 \tag{5a}
\end{equation*}
$$

where $H: \Omega \rightarrow \mathbb{R}^{n}$ is the function defined at $x \in \Omega$ by

$$
\begin{equation*}
H(x):=\min (F(x), G(x)) \tag{5b}
\end{equation*}
$$

Compute a direction d by a pseudo-linearization of H (\equiv Newton-min approach).

- (5) is equivalent to (NLCP) since $\min (a, b)=0$ iff $a \geqslant 0, b \geqslant 0$ and $a b=0$.
- H has directional derivatives and is semismooth (if F and G are smooth).
- There are other equation reformulations, like the one using the Fischer function $\varphi_{\mathrm{F}}(a, b)=\sqrt{a^{2}+b^{2}}-(a+b)[38,34,51,25,58]$.
- The function "min" reformulation is a choice guided by
- scientific curiosity (there are still possibilities of improvement),
- efficiency of the approach ("min" is more linear, although less differentiable than φ_{F}),
- can give better local convergence result than with φ_{F} [32],
- can give finite termination for LCP [39].

A few linearization algorithms

Equation reformulation of NLCP (II)

Equation reformulation of NLCP (II): globalization [12, 13]
The quadratic merit function associated with (5) is defined at $x \in \mathbb{R}^{n}$ by

$$
\begin{equation*}
\theta(x):=\frac{1}{2}\|H(x)\|^{2}=\frac{1}{2}\|\min (F(x), G(x))\|^{2} \tag{6}
\end{equation*}
$$

- θ has directional derivatives and is semismooth.
- Algorithmic goal

Algorithm

Compute $d \in \mathbb{R}^{n}$ such that
it is a descent direction of θ, ie., $\theta^{\prime}(x ; d)<0$,
it is efficient locally (quadratic or finite convergence).
Do a standard Armijo line-search on θ : find a not too small $\alpha>0$ such that $(\omega \in(0,1))$

$$
\theta(x+\alpha d) \leqslant \theta(x)+\omega \alpha \theta^{\prime}(x ; d)
$$

Update $x_{+}=x+\alpha d$.

- Certify the algorithm by some kind of global convergence.

A few linearization algorithms

Josephy-Newton method
Josephy-Newton (JN) method

For a function Φ and a multifunction N, the JN algorithm [46] aims at solving

$$
\Phi(x)+N(x) \ni 0
$$

by linearizing Φ, while keeping N unchanged. Hence $x_{+}=x+d$, where d solves

$$
\Phi(x)+\Phi^{\prime}(x) d+N(x+d) \ni 0
$$

Applied to the NLCP " $0 \leqslant F(x) \perp G(x) \geqslant 0 " \Longleftrightarrow " F(x)+\left(N_{\mathbb{R}_{+}^{n}} \circ G\right)(x) \ni 0$ ", it computes $x_{+}=x+d$ where d solves

$$
(\mathrm{JN}) \quad 0 \leqslant\left(F(x)+F^{\prime}(x) d\right) \perp\left(G(x)+G^{\prime}(x) d\right) \geqslant 0 .
$$

Properties (similar to those of the SQP algorithm in constrained optimization):
\oplus fast local convergence (quadratic) with realistic assumptions,
\oplus yields descent directions of the quadratic merit function θ,
\oplus global convergence,
\ominus expensive iteration (on LCP to solve),

A few linearization algorithms

Josephy-Newton method

Josephy-Newton (JN) method
For a function Φ and a multifunction N, the JN algorithm [46] aims at solving

$$
\Phi(x)+N(x) \ni 0
$$

by linearizing Φ, while keeping N unchanged. Hence $x_{+}=x+d$, where d solves

$$
\Phi(x)+\Phi^{\prime}(x) d+N(x+d) \ni 0
$$

Applied to the NLCP " $0 \leqslant F(x) \perp G(x) \geqslant 0 " \Longleftrightarrow " F(x)+\left(N_{\mathbb{R}_{+}^{n}} \circ G\right)(x) \ni 0$ ", it computes $x_{+}=x+d$ where d solves

$$
(\mathrm{JN}) \quad 0 \leqslant\left(F(x)+F^{\prime}(x) d\right) \perp\left(G(x)+G^{\prime}(x) d\right) \geqslant 0 .
$$

Properties (similar to those of the SQP algorithm in constrained optimization):
\oplus fast local convergence (quadratic) with realistic assumptions,
\oplus yields descent directions of the quadratic merit function θ,
\oplus global convergence,
\ominus expensive iteration (one LCP to solve),
\ominus makes no sense for solving the LCP, since $(J N) \equiv(L C P)$.

A few linearization algorithms

B-Newton method

B-Newton method

For a locally Lipschitz function H, the B-Newton algorithm [55] aims at solving $H(x)=0$ by taking $x_{+}=x+d$, where d solves

$$
H(x)+H^{\prime}(x ; d)=0
$$

Applied to the NLCP $[55,56]$ and $H=\min (F, G)$, it computes $x_{+}=x+d$ where d solves

$$
(\mathrm{BN}) \quad\left\{\begin{array}{l}
\left(F(x)+F^{\prime}(x) d\right)_{\mathcal{F}(x)}=0 \\
\left(G(x)+G^{\prime}(x) d\right)_{\mathcal{G}(x)}=0 \\
0 \leqslant\left(F(x)+F^{\prime}(x) d\right)_{\mathcal{E}(x)} \perp\left(G(x)+G^{\prime}(x) d\right)_{\mathcal{E}(x)} \geqslant 0
\end{array}\right.
$$

where

$$
\begin{array}{rll}
\mathcal{E}(x) & :=\left\{i \in[1: n]: F_{i}(x)=G_{i}(x)\right\}, & i \in \mathcal{F}(x) \rightarrow^{G_{i}(x)} \mid \sum_{i \in \mathcal{E}(x)} \\
\mathcal{F}(x) & :=\left\{i \in[1: n]: F_{i}(x)<G_{i}(x)\right\}, & \\
\mathcal{G}(x) & :=\left\{i \in[1: n]: F_{i}(x)>G_{i}(x)\right\} . &
\end{array}
$$

Properties:

\oplus yields descent directions of the quadratic merit function θ,
\oplus global convergence,
\square

A few linearization algorithms

B-Newton method

B-Newton method

For a locally Lipschitz function H, the B-Newton algorithm [55] aims at solving $H(x)=0$ by taking $x_{+}=x+d$, where d solves

$$
H(x)+H^{\prime}(x ; d)=0
$$

Applied to the NLCP $[55,56]$ and $H=\min (F, G)$, it computes $x_{+}=x+d$ where d solves

$$
(\mathrm{BN}) \quad\left\{\begin{array}{l}
\left(F(x)+F^{\prime}(x) d\right)_{\mathcal{F}(x)}=0 \\
\left(G(x)+G^{\prime}(x) d\right)_{\mathcal{G}(x)}=0 \\
0 \leqslant\left(F(x)+F^{\prime}(x) d\right)_{\mathcal{E}(x)} \perp\left(G(x)+G^{\prime}(x) d\right)_{\mathcal{E}(x)} \geqslant 0
\end{array}\right.
$$

where

$$
\begin{array}{rll}
\mathcal{E}(x) & :=\left\{i \in[1: n]: F_{i}(x)=G_{i}(x)\right\}, & i \in \mathcal{F}(x) s_{-}^{G_{i}(x)} \mid \sum_{i \in \mathcal{E}(x)} \\
\mathcal{F}(x) & :=\left\{i \in[1: n]: F_{i}(x)<G_{i}(x)\right\}, & \\
\mathcal{G}(x) & :=\left\{i \in[1: n]: F_{i}(x)>G_{i}(x)\right\} . &
\end{array}
$$

Properties:

\oplus yields descent directions of the quadratic merit function θ,
\oplus global convergence,
\ominus a limit point \bar{x} is a solution if it is "regular" and satisfies $F_{i}(\bar{x})=G_{i}(\bar{x})=0$ for $i \in \mathcal{E}(\bar{x})$,
\ominus much less expensive iteration than $\mathrm{JN}(|\mathcal{E}(x)|$ small $)$, but still one LCP to solve,
\ominus makes no sense for solving the LCP, since $(B N) \equiv(J N)$ when $\mathcal{E}(x)=[1: n]$.

A few linearization algorithms

Semismooth Newton method

Semismooth Newton method

- Algorithm for solving $H(x):=\min (F(x), G(x))=0$
- Choose a nonsingular Jacobian

$$
\begin{aligned}
& J \in \partial_{B} H(x) \subseteq \partial_{B} H_{1}(x) \times \cdots \times \partial_{B} H_{n}(x)=: \partial_{B}^{\times} H(x) \quad \text { or } \\
& J \in \partial_{C} H(x) \subseteq \partial_{C} H_{1}(x) \times \cdots \times \partial_{C} H_{n}(x)=: \partial_{C}^{\times} H(x) .
\end{aligned}
$$

- Determine d by $H(x)+J d=0$.
- If d is descent direction of θ, do a LS along d to get $x_{+}:=x+\alpha d$.
- Discussion
- Define the piecewise affine model $\mathcal{L}_{x} H$ of H at $x \in \mathbb{R}^{n}$ by

$$
y \in \mathbb{R}^{n} \mapsto\left(\mathcal{L}_{x} H\right)(y):=\min \left(F(x)+F^{\prime}(x)(y-x), G(x)+G^{\prime}(x)(y-x)\right) .
$$

Then,

$$
\partial_{B}\left(\mathcal{L}_{x} H\right)(x) \subseteq \partial_{B} H(x) \quad \text { and } \quad \partial_{C}\left(\mathcal{L}_{x} H\right)(x) \subseteq \partial_{C} H(x) .
$$

- Computing a single Jacobian J of $\partial_{B}\left(\mathcal{L}_{x} H\right)(x)$, hence of $\partial_{B} H(x)$, is easy (all the Jacobians is difficult) [29]. Same observation for ∂_{C}.
- Having J nonsingular is a matter of assumption (not guaranteed in general).
- But d is not necessarily a descent direction of θ (a counter-example in a while).

A few linearization algorithms

Plain Newton-min method

- Algorithm for solving $H(x):=\min (F(x), G(x))=0$
- Choose a nonsingular Jacobian

$$
\begin{aligned}
& J \in \partial_{B} H_{1}(x) \times \cdots \times \partial_{B} H_{n}(x)=: \partial_{B}^{\times} H(x) \quad \text { or } \\
& J \in \partial_{C} H_{1}(x) \times \cdots \times \partial_{C} H_{n}(x)=: \partial_{C}^{\times} H(x) .
\end{aligned}
$$

- Determine d by $H(x)+J d=0$.
- If d is descent direction of θ, do a LS along d to get $x_{+}:=x+\alpha d$.
- Discussion
- For $i \in[1: n]$, one has

$$
\partial_{B} H_{i}(x)= \begin{cases}\left\{F_{i}^{\prime}(x)\right\} & \text { if } F_{i}(x)<G_{i}(x) \Leftrightarrow i \in \mathcal{F}(x), \\ \left\{F_{i}^{\prime}(x), G_{i}^{\prime}(x)\right\} & \text { if } F_{i}(x)=G_{i}(x) \Leftrightarrow i \in \mathcal{E}(x), \\ \left\{G_{i}^{\prime}(x)\right\} & \text { if } F_{i}(x)>G_{i}(x) \Leftrightarrow i \in \mathcal{G}(x) .\end{cases}
$$

- Hence d with $J \in \partial_{B}^{\times} H(x)$ is defined by

$$
\begin{cases}F_{i}(x)+F_{i}^{\prime}(x) d=0 & \text { if } i \in \tilde{\mathcal{F}}(x) \tag{7}\\ G_{i}(x)+G_{i}^{\prime}(x) d=0 & \text { if } i \in \tilde{\mathcal{G}}(x)\end{cases}
$$

where $(\tilde{\mathcal{F}}(x), \tilde{\mathcal{G}}(x))$ forms a partition of $[1: n]$ with $\tilde{\mathcal{F}}(x) \supseteq \mathcal{F}(x)$ and $\tilde{\mathcal{G}}(x) \supseteq \mathcal{G}(x)$.

A few linearization algorithms

The (semismooth Newton/Newton-min) direction can be an ascent direction for θ

The (semismooth Newton/Newton-min) direction can be an ascent direction for θ
Consider the LCP (3), which is $0 \leqslant x \perp(M x+q) \geqslant 0$, with

$$
M=\left(\begin{array}{ll}
1 & 4 \tag{8}\\
0 & 1
\end{array}\right), \quad q=\binom{-4}{-2}, \quad x=\binom{-2}{1}, \quad \text { so that } \quad M x+q=\binom{-2}{-1} .
$$

One has $\mathcal{E}(x)=\{1\}, \mathcal{F}(x)=\{2\}, \mathcal{G}(x)=\varnothing$.

A few linearization algorithms

The (semismooth Newton/Newton-min) direction can be an ascent direction for θ

The (semismooth Newton/Newton-min) direction can be an ascent direction for θ
Consider the LCP (3), which is $0 \leqslant x \perp(M x+q) \geqslant 0$, with

$$
M=\left(\begin{array}{ll}
1 & 4 \tag{8}\\
0 & 1
\end{array}\right), \quad q=\binom{-4}{-2}, \quad x=\binom{-2}{1}, \quad \text { so that } \quad M x+q=\binom{-2}{-1} .
$$

One has $\mathcal{E}(x)=\{1\}, \mathcal{F}(x)=\{2\}, \mathcal{G}(x)=\varnothing$.
Take $\tilde{\mathcal{F}}(x)=\{1,2\}$ and $\tilde{\mathcal{G}}(x)=\varnothing$ in (7), then d is an ascent direction of θ at x :

A few linearization algorithms

The (semismooth Newton/Newton-min) direction can be an ascent direction for θ

The (semismooth Newton/Newton-min) direction can be an ascent direction for θ
Consider the LCP (3), which is $0 \leqslant x \perp(M x+q) \geqslant 0$, with

$$
M=\left(\begin{array}{ll}
1 & 4 \tag{8}\\
0 & 1
\end{array}\right), \quad q=\binom{-4}{-2}, \quad x=\binom{-2}{1}, \quad \text { so that } \quad M x+q=\binom{-2}{-1} .
$$

One has $\mathcal{E}(x)=\{1\}, \mathcal{F}(x)=\{2\}, \mathcal{G}(x)=\varnothing$.
Take $\tilde{\mathcal{F}}(x)=\{2\}$ and $\tilde{\mathcal{G}}(x)=\{1\}$ in (7), then d is a descent direction of θ at x :

Outline

(1) Preliminaries
(2) Complementarity problem
(3) A few linearization algorithms
(4) Polyhedral Newton-min algorithms
(5) Numerical results on LCP
(6) Conclusion

Polyhedral Newton-min algorithms

Orientation

Orientation

Slightly modify the plain Newton-min direction such that:
$\oplus \ominus$ it computes a point in a convex polyhedron (harder than a LS, easier than an LCP):
\oplus very few inequalities define the convex polyhedron,
\ominus the computation of d is more expensive, but polynomial,
\oplus there is a bypass that accepts the plain NM direction most of the iterations,
\oplus it becomes a descent direction of θ,
\oplus it yields some global convergence.

Polyhedral Newton-min algorithms

Ensuring descent

Ensuring descent

For the quadratic merit function $\theta(x)=\frac{1}{2}\|H(x)\|^{2}=\frac{1}{2}\|\min (F(x), G(x))\|^{2}$, one has

$$
\begin{aligned}
& \theta^{\prime}(x ; d)=H(x)^{\top} H^{\prime}(x ; d) \\
& =F_{\mathcal{F}(x)}(x)^{\top} F_{\mathcal{F}(x)}^{\prime}(x) d+G_{\mathcal{G}(x)}(x)^{\top} G_{\mathcal{G}(x)}^{\prime}(x) d+F_{\mathcal{E}(x)}(x)^{\top} \min \left(F_{\mathcal{E}(x)}^{\prime}(x) d, G_{\mathcal{E}(x)}^{\prime}(x) d\right) . \\
& \text { If }\left(F(x)+F^{\prime}(x) d\right)_{\mathcal{F}(x)}=0 \text { and }\left(G(x)+G^{\prime}(x) d\right)_{\mathcal{G}(x)}=0 \text {, it follows } \\
& \theta^{\prime}(x ; d)=-\left\|F_{\mathcal{F}(x)}(x)\right\|^{2}-\left\|G_{\mathcal{G}(x)}(x)\right\|^{2}-\left\|F_{\mathcal{E}(x)}(x)\right\|^{2} \\
& +F_{\mathcal{E}(x)}(x)^{\top} \min \left(F_{\mathcal{E}(x)}(x)+F_{\mathcal{E}(x)}^{\prime}(x) d, G_{\mathcal{E}(x)}(x)+G_{\mathcal{E}(x)}^{\prime}(x) d\right) \\
& =-2 \theta(x)+F_{\mathcal{E}(x)}(x)^{\top} \min \left(F_{\mathcal{E}(x)}(x)+F_{\mathcal{E}(x)}^{\prime}(x) d, G_{\mathcal{E}(x)}(x)+G_{\mathcal{E}(x)}^{\prime}(x) d\right) \text {. }
\end{aligned}
$$

- If $F_{i}(x)=G_{i}(x) \geqslant 0$, the last term is $\leqslant 0$ when
- If $F_{i}(x)=G_{i}(x)<0$, the last term is $\leqslant 0$ when

Polyhedral Newton-min algorithms

Ensuring descent

Ensuring descent

For the quadratic merit function $\theta(x)=\frac{1}{2}\|H(x)\|^{2}=\frac{1}{2}\|\min (F(x), G(x))\|^{2}$, one has

$$
\begin{aligned}
& \theta^{\prime}(x ; d)=H(x)^{\top} H^{\prime}(x ; d) \\
& =F_{\mathcal{F}(x)}(x)^{\top} F_{\mathcal{F}(x)}^{\prime}(x) d+G_{\mathcal{G}(x)}(x)^{\top} G_{\mathcal{G}(x)}^{\prime}(x) d+F_{\mathcal{E}(x)}(x)^{\top} \min \left(F_{\mathcal{E}(x)}^{\prime}(x) d, G_{\mathcal{E}(x)}^{\prime}(x) d\right) \text {. } \\
& \text { If }\left(F(x)+F^{\prime}(x) d\right)_{\mathcal{F}(x)}=0 \text { and }\left(G(x)+G^{\prime}(x) d\right)_{\mathcal{G}(x)}=0 \text {, it follows } \\
& \theta^{\prime}(x ; d)=-\left\|F_{\mathcal{F}(x)}(x)\right\|^{2}-\left\|G_{\mathcal{G}(x)}(x)\right\|^{2}-\left\|F_{\mathcal{E}(x)}(x)\right\|^{2} \\
& +F_{\mathcal{E}(x)}(x)^{\top} \min \left(F_{\mathcal{E}(x)}(x)+F_{\mathcal{E}(x)}^{\prime}(x) d, G_{\mathcal{E}(x)}(x)+G_{\mathcal{E}(x)}^{\prime}(x) d\right) \\
& =-2 \theta(x)+F_{\mathcal{E}(x)}(x)^{\top} \min \left(F_{\mathcal{E}(x)}(x)+F_{\mathcal{E}(x)}^{\prime}(x) d, G_{\mathcal{E}(x)}(x)+G_{\mathcal{E}(x)}^{\prime}(x) d\right) \text {. }
\end{aligned}
$$

How can we get $\theta^{\prime}(x ; d)<0$ when $\theta(x) \neq 0$?

- If $F_{i}(x)=G_{i}(x) \geqslant 0$, the last term is $\leqslant 0$ when

$$
F_{i}(x)+F_{i}^{\prime}(x) d=0 \quad \text { or } \quad G_{i}(x)+G_{i}^{\prime}(x) d=0
$$

- If $F_{i}(x)=G_{i}(x)<0$, the last term is $\leqslant 0$ when

$$
F_{i}(x)+F_{i}^{\prime}(x) d \geqslant 0 \quad \text { and } \quad G_{i}(x)+G_{i}^{\prime}(x) d \geqslant 0 .
$$

Polyhedral Newton-min algorithms

Ensuring descent

Ensuring descent

For the quadratic merit function $\theta(x)=\frac{1}{2}\|H(x)\|^{2}=\frac{1}{2}\|\min (F(x), G(x))\|^{2}$, one has

$$
\begin{aligned}
& \theta^{\prime}(x ; d)=H(x)^{\top} H^{\prime}(x ; d) \\
& =F_{\mathcal{F}(x)}(x)^{\top} F_{\mathcal{F}(x)}^{\prime}(x) d+G_{\mathcal{G}(x)}(x)^{\top} G_{\mathcal{G}(x)}^{\prime}(x) d+F_{\mathcal{E}(x)}(x)^{\top} \min \left(F_{\mathcal{E}(x)}^{\prime}(x) d, G_{\mathcal{E}(x)}^{\prime}(x) d\right) \text {. } \\
& \text { If }\left(F(x)+F^{\prime}(x) d\right)_{\mathcal{F}(x)}=0 \text { and }\left(G(x)+G^{\prime}(x) d\right)_{\mathcal{G}(x)}=0 \text {, it follows } \\
& \theta^{\prime}(x ; d)=-\left\|F_{\mathcal{F}(x)}(x)\right\|^{2}-\left\|G_{\mathcal{G}(x)}(x)\right\|^{2}-\left\|F_{\mathcal{E}(x)}(x)\right\|^{2} \\
& +F_{\mathcal{E}(x)}(x)^{\top} \min \left(F_{\mathcal{E}(x)}(x)+F_{\mathcal{E}(x)}^{\prime}(x) d, G_{\mathcal{E}(x)}(x)+G_{\mathcal{E}(x)}^{\prime}(x) d\right) \\
& =-2 \theta(x)+F_{\mathcal{E}(x)}(x)^{\top} \min \left(F_{\mathcal{E}(x)}(x)+F_{\mathcal{E}(x)}^{\prime}(x) d, G_{\mathcal{E}(x)}(x)+G_{\mathcal{E}(x)}^{\prime}(x) d\right) \text {. }
\end{aligned}
$$

How can we get $\theta^{\prime}(x ; d)<0$ when $\theta(x) \neq 0$?

- If $F_{i}(x)=G_{i}(x) \geqslant 0$, the last term is $\leqslant 0$ when

$$
F_{i}(x)+F_{i}^{\prime}(x) d=0 \quad \text { or } \quad G_{i}(x)+G_{i}^{\prime}(x) d=0
$$

- If $F_{i}(x)=G_{i}(x)<0$, the last term is $\leqslant 0$ when

$$
F_{i}(x)+F_{i}^{\prime}(x) d \geqslant 0 \quad \text { and } \quad G_{i}(x)+G_{i}^{\prime}(x) d \geqslant 0 .
$$

This leads to the following direction definition.

Polyhedral Newton-min algorithms

Plain polyhedral Newton-min algorithm I

Plain polyhedral Newton-min direction

A plain polyhedral Newton-min (plain PNM) direction is a direction d that satisfies

$$
\begin{cases}F_{i}(x)+F_{i}^{\prime}(x) d=0 & \text { if } i \in \mathcal{F}(x) \cup \mathcal{E}_{\mathcal{F}}^{0+}(x) \\ G_{i}(x)+G_{i}^{\prime}(x) d=0 & \text { if } i \in \mathcal{G}(x) \cup \mathcal{E}_{\mathcal{G}}^{0+}(x) \\ F_{i}(x)+F_{i}^{\prime}(x) d \geqslant 0 & \text { if } i \in \mathcal{E}^{-}(x) \\ G_{i}(x)+G_{i}^{\prime}(x) d \geqslant 0 & \text { if } i \in \mathcal{E}^{-}(x),\end{cases}
$$

where $\left(\mathcal{E}_{\mathcal{F}}^{0+}(x), \mathcal{E}_{\mathcal{G}}^{0+}(x)\right)$ is a partition of

$$
\mathcal{E}^{0+}(x):=\left\{i \in[1: n]: F_{i}(x)=G_{i}(x) \geqslant 0\right\}
$$

and

$$
\mathcal{E}^{-}(x):=\left\{i \in[1: n]: F_{i}(x)=G_{i}(x)<0\right\} .
$$

Features of the algorithm:

$\ominus d$ must be found in a convex polyhedron (instead of the solution to a LS)
\oplus the number of inequalities $2\left|\mathcal{E}^{-}(x)\right|$ should be very small (in exact arithm
\oplus can be computed in polynomial time (by LO or QO),
\oplus there is a bypass to avoid this computation most of the time (see below),

Polyhedral Newton-min algorithms

Plain polyhedral Newton-min algorithm I

Plain polyhedral Newton-min direction

A plain polyhedral Newton-min (plain PNM) direction is a direction d that satisfies

$$
\begin{cases}F_{i}(x)+F_{i}^{\prime}(x) d=0 & \text { if } i \in \mathcal{F}(x) \cup \mathcal{E}_{\mathcal{F}}^{0+}(x) \\ G_{i}(x)+G_{i}^{\prime}(x) d=0 & \text { if } i \in \mathcal{G}(x) \cup \mathcal{E}_{\mathcal{G}}^{0+}(x) \\ F_{i}(x)+F_{i}^{\prime}(x) d \geqslant 0 & \text { if } i \in \mathcal{E}^{-}(x) \\ G_{i}(x)+G_{i}^{\prime}(x) d \geqslant 0 & \text { if } i \in \mathcal{E}^{-}(x),\end{cases}
$$

where $\left(\mathcal{E}_{\mathcal{F}}^{0+}(x), \mathcal{E}_{\mathcal{G}}^{0+}(x)\right)$ is a partition of

$$
\mathcal{E}^{0+}(x):=\left\{i \in[1: n]: F_{i}(x)=G_{i}(x) \geqslant 0\right\}
$$

and

$$
\mathcal{E}^{-}(x):=\left\{i \in[1: n]: F_{i}(x)=G_{i}(x)<0\right\} .
$$

Features of the algorithm:

$\ominus d$ must be found in a convex polyhedron (instead of the solution to a LS),
\oplus the number of inequalities $2\left|\mathcal{E}^{-}(x)\right|$ should be very small (in exact arithmetic!),
\oplus can be computed in polynomial time (by LO or QO),
\oplus there is a bypass to avoid this computation most of the time (see below),
$\oplus d$ is a descent direction of θ,
\ominus we were not able to prove global convergence with that d.

Polyhedral Newton-min algorithms

Plain polyhedral Newton-min algorithm II

Behavior on the baby problem (8)
Since $\mathcal{E}(x)=\{1\}, \mathcal{F}(x)=\{2\}, \mathcal{G}(x)=\varnothing$, the algorithm computes the solution to

$$
\left\{\begin{array} { l l }
{ \operatorname { m i n } \frac { 1 } { 2 } \| d \| _ { 2 } ^ { 2 } } \\
{ M _ { 2 } : d + y _ { 2 } = 0 } \\
{ M _ { 1 : } d + y _ { 1 } \geqslant 0 } \\
{ d _ { 1 } + x _ { 1 } \geqslant 0 }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
\min \frac{1}{2}\left(d_{1}^{2}+1\right) \\
d_{1} \geqslant 2,
\end{array}\right.\right.
$$

A little by chance, it is the right direction $d=(2,1)$.

Polyhedral Newton-min algorithms

Plain polyhedral Newton-min algorithm III

Difficulty with global convergence

Let \bar{x} be an accumulation point of the sequence $\left\{x_{k}\right\}_{k \geqslant 1}$ (it may not exist) generated by

$$
x_{k+1}:=x_{k}+\alpha_{k} d_{k}
$$

where $\alpha_{k}>0$ is the largest stepsize of the form 2^{-i} for $i \in \mathbb{N}$ such that

$$
\begin{equation*}
\theta\left(x_{k}+\alpha_{k} d_{k}\right) \leqslant \theta\left(x_{k}\right)+10^{-4} \alpha_{k}(\text { "sth negative" }) \tag{9a}
\end{equation*}
$$

We want to show that \bar{x} is a solution of the NLCP (with a regularity assumption).

- If $\lim \sup _{k} \alpha_{k}>0$, it is easy to show that $\theta\left(x_{k}\right) \downarrow 0$ and that \bar{x} is a solution.
- If $\lim \sup _{k} \alpha_{k}=0$, it is more difficult.

Necessarily (9a) is not satisfied for $\check{\alpha}_{k}=2 \alpha_{k}$:

$$
\begin{equation*}
\theta\left(x_{k}+\check{\alpha}_{k} d_{k}\right)>\theta\left(x_{k}\right)+10^{-4} \check{\alpha}_{k}(\text { "sth negative" }) . \tag{9b}
\end{equation*}
$$

To get convergence, it is necessary to get information from both (9a) and (9b).

Polyhedral Newton-min algorithms

Plain polyhedral Newton-min algorithm IV
Difficulty with global convergence (negative kink)

- Near a negative kink, one can have with $\check{x}_{k+1}:=x_{k}+\check{\alpha}_{k} d_{k}$:

$$
\begin{array}{ll}
F_{i}\left(x_{k+1}\right)<G_{i}\left(x_{k+1}\right)<0, & 0>F_{i}\left(\check{x}_{k+1}\right)>G_{i}\left(\check{x}_{k+1}\right) \\
0<H_{i}\left(x_{k+1}\right)^{2}=F_{i}\left(x_{k+1}\right)^{2}, & 0<H_{i}\left(\check{x}_{k+1}\right)^{2}=G_{i}\left(\check{x}_{k+1}\right)^{2}>F_{i}\left(\check{x}_{k+1}\right)^{2}
\end{array}
$$

- Hence \check{x}_{k+1} is rejected because of $G_{i}\left(\check{x}_{k+1}\right)^{2}$, but one has no information on $G_{i}\left(x_{k}\right)+G_{i}^{\prime}\left(x_{k}\right) d_{k}$.
- Remedy: for x_{k} near a negative kink of H,

$$
F_{i}\left(x_{k}\right)+F_{i}^{\prime}\left(x_{k}\right) d_{k}=0 \quad \curvearrowright \quad\left\{\begin{array}{l}
F_{i}\left(x_{k}\right)+F_{i}^{\prime}\left(x_{k}\right) d_{k} \geqslant 0 \\
G_{i}\left(x_{k}\right)+G_{i}^{\prime}\left(x_{k}\right) d_{k}^{\prime} \geqslant 0 .
\end{array}\right.
$$

Cnua
のac

Polyhedral Newton-min algorithms

Plain polyhedral Newton-min algorithm V

Difficulty with global convergence (positive kink)

- Near a positive kink, one can have with $\check{x}_{k+1}:=x_{k}+\check{\alpha}_{k} d_{k}$:

$$
\begin{array}{ll}
0<F_{i}\left(x_{k+1}\right)<G_{i}\left(x_{k+1}\right), & F_{i}\left(\check{x}_{k+1}\right)>G_{i}\left(\check{x}_{k+1}\right)>0, \\
0<H_{i}\left(x_{k+1}\right)^{2}=F_{i}\left(x_{k+1}\right)^{2}, & 0<H_{i}\left(\check{x}_{k+1}\right)^{2}=G_{i}\left(\check{x}_{k+1}\right)^{2}<F_{i}\left(\check{x}_{k+1}\right)^{2} .
\end{array}
$$

- Hence \check{x}_{k+1} is rejected because of $G_{i}\left(\check{x}_{k+1}\right)^{2}$ and would also be rejected because of $F_{i}\left(\check{x}_{k+1}\right)^{2}$.

Inca

- Since we have information on $F_{i}\left(x_{k}\right)+F_{i}^{\prime}\left(x_{k}\right) d_{k}=0$, there's ho need for a remedy $\begin{aligned} & \text { ac } \\ & \text { ac }\end{aligned}$

Polyhedral Newton-min algorithms

Secure polyhedral Newton-min algorithm I

Secure polyhedral Newton-min algorithm

A secure polyhedral Newton-min (PNM) direction is a direction d satisfying

$$
\begin{cases}F_{i}(x)+F_{i}^{\prime}(x) d=0 & \text { if } i \in E_{F}(x):=\left[\mathcal{F}(x) \backslash \mathcal{E}_{\tau}^{-}(x)\right] \cup \mathcal{E}_{\mathcal{F}}^{0+}(x) \\ G_{i}(x)+G_{i}^{\prime}(x) d=0 & \text { if } i \in E_{G}(x):=\left[\mathcal{G}(x) \backslash \mathcal{E}_{\tau}^{-}(x)\right] \cup \mathcal{E}_{\mathcal{G}}^{0+}(x) \\ F_{i}(x)+F_{i}^{\prime}(x) d \geqslant 0 & \text { if } i \in I(x):=\mathcal{E}_{\tau}^{-}(x) \tag{10}\\ G_{i}(x)+G_{i}^{\prime}(x) d \geqslant 0 & \text { if } i \in I(x):=\mathcal{E}_{\tau}^{-}(x),\end{cases}
$$

where, for some kink tolerance parameter $\tau \in(0, \infty)$,

Polyhedral Newton-min algorithms

Secure polyhedral Newton-min algorithm II

PNM regularity condition

- The usual regularity at a limit point \bar{x} assumes that the system to solve has a solution, whatever the vectors defining it are.
- Here, there must be a d satisfying the system below, whatever $F_{i}(\bar{x}), G_{i}(\bar{x}), F_{i}(\bar{x})$, $G_{i}(\bar{x})$ are:

$$
\begin{cases}F_{i}(\bar{x})+F_{i}^{\prime}(\bar{x}) d=0 & \text { if } i \in E_{F}(\bar{x}) \\ G_{i}(\bar{x})+G_{i}^{\prime}(\bar{x}) d=0 & \text { if } i \in E_{G}(\bar{x}) \\ F_{i}(\bar{x})+F_{i}^{\prime}(\bar{x}) d \geqslant 0 & \text { if } i \in I(\bar{x}) \\ G_{i}(\bar{x})+G_{i}^{\prime}(\bar{x}) d \geqslant 0 & \text { if } i \in I(\bar{x}) .\end{cases}
$$

- This is guaranteed by the Mangasarian-Fromovitz "constraint qualification" (MFCQ):

$$
\begin{aligned}
& \sum_{i \in E_{F}(\bar{x})} \alpha_{i} \nabla F_{i}(\bar{x})+\sum_{i \in E_{G}(\bar{x})} \beta_{i} \nabla G_{i}(\bar{x})+\sum_{i \in I(\bar{x})}\left[\alpha_{i} \nabla F_{i}(\bar{x})+\beta_{i} \nabla G_{i}(\bar{x})\right]=0 \\
& \text { and }\left(\alpha_{I(\bar{x})}, \beta_{I(\bar{x})}\right) \geqslant 0 \text { imply that }(\alpha, \beta)=0 .
\end{aligned}
$$

- Must be reinforced to have a "diffusion property" near \bar{x} (difficulty with the index sets that change with \bar{x}). This yields the PNM regularity. Ensures
- existence of a d satisfying (10) for x near \bar{x},
- boundedness of the d's.

Polyhedral Newton-min algorithms

Secure polyhedral Newton-min algorithm III

Features of the PNM algorithm:

$\ominus d$ must be found in a convex polyhedron (instead of the solution to a LS),
\oplus the number of inequalities $2\left|\mathcal{E}_{\tau}^{-}(x)\right|$ should be very small ($\tau>0$ can be very small),
\oplus can be computed in polynomial time (by LO or QO),
\oplus there is a bypass to avoid this computation most of the time (see below),
$\oplus d$ is a descent direction of θ,
\oplus global convergence.

Theorem (global convergence of the PNM algorithm)

If $\bullet F$ and $G: \Omega \rightarrow \mathbb{R}^{n}$ are differentiable,

- the PNM algorithm generates a sequence $\left\{x_{k}\right\} \subseteq \Omega$,
- $\bar{x} \in \Omega$ is an accumulation point of $\left\{x_{k}\right\}$ that is PNM regular,
- F^{\prime} and G^{\prime} are continuous at \bar{x}, then, $\left\{\theta\left(x_{k}\right)\right\}_{k \geqslant 1} \downarrow 0$ and \bar{x} is a solution to the NLCP (2).
$39 / 49$

Polyhedral Newton-min algorithms

Hybrid polyhedral Newton-min algorithm I
Acceptation criterion (sufficient decrease condition)
One Looks for a criterion for accepting the cheap plain Newton-min direction (7).

- Newton direction for smooth H satisfies $\theta^{\prime}(x ; d)=-2 \theta(x)$, hence requiring for some $\eta \in(0,1)$:

$$
\theta^{\prime}(x ; d) \leqslant-2(1-\eta) \theta(x) \quad \longrightarrow \quad \text { not strong enough to get global convergence. }
$$

- One requires instead, for some $\eta \in(0,1)$, close to 1 :

Polyhedral Newton-min algorithms

Hybrid polyhedral Newton-min algorithm I

Acceptation criterion (sufficient decrease condition)

One Looks for a criterion for accepting the cheap plain Newton-min direction (7).

- Newton direction for smooth H satisfies $\theta^{\prime}(x ; d)=-2 \theta(x)$, hence requiring for some $\eta \in(0,1)$:

$$
\theta^{\prime}(x ; d) \leqslant-2(1-\eta) \theta(x) \quad \longrightarrow \quad \text { not strong enough to get global convergence. }
$$

- One requires instead, for some $\eta \in(0,1)$, close to 1 :

$$
\begin{equation*}
-\sum_{i \in[1: n]}\left(1-\rho_{i}(x, d)\right) H_{i}(x)^{2} \leqslant-2(1-\eta) \theta(x) \tag{11}
\end{equation*}
$$

where

$$
\rho_{i}(x, d):= \begin{cases}\frac{F_{i}(x)+F_{i}^{\prime}(x) d}{F_{i}(x)} & \text { if } i \in E_{F}(x) \text { and } F_{i}(x) \neq 0 \\ 0 & \text { if } i \in E_{F}(x) \text { and } F_{i}(x)=0 \\ \frac{G_{i}(x)+G_{i}^{\prime}(x) d}{G_{i}(x)} & \text { if } i \in E_{G}(x) \text { and } G_{i}(x) \neq 0 \\ 0 & \text { if } i \in E_{G}(x) \text { and } G_{i}(x)=0 \\ \max \left(\frac{F_{i}(x)+F_{i}^{\prime}(x) d}{F_{i}(x)}, \frac{G_{i}(x)+G_{i}^{\prime}(x) d}{G_{i}(x)}\right) & \text { if } i \in I(x),\end{cases}
$$

Polyhedral Newton-min algorithms

Hybrid polyhedral Newton-min algorithm II
Hybrid polyhedral Newton-min algorithm
Hybrid Polyhedral NM algorithm (HPNM)

- If the plain Newton-min direction d in (7) satisfies (11), take it (very cheap),
- Else take the secure polyhedral Newton-min direction d (more expensive).

Features of the HPNM algorithm:

\oplus in most iterations, a plain NM direction (7) is computed (a single LS to solve),
\oplus the number of inequalities $2\left|\mathcal{E}_{\tau}^{-}(x)\right|$ should be very small ($\tau>0$ can be very small),
\oplus can be computed in polynomial time (by LO or QO),
$\oplus d$ is a decrease direction of θ,
\oplus global convergence.

Theorem (global convergence of the HPNM algorithm)

If $\bullet F$ and $G: \Omega \rightarrow \mathbb{R}^{n}$ are differentiable,

- the HPNM algorithm generates a sequence $\left\{x_{k}\right\} \subseteq \Omega$,
- $\bar{x} \in \Omega$ is an accumulation point of $\left\{x_{k}\right\}$ that is NM and PNM regular,
- F^{\prime} and G^{\prime} are continuous at \bar{x}, then, $\left\{\theta\left(x_{k}\right)\right\}_{k \geqslant 1} \downarrow 0$ and \bar{x} is a solution to the NLCP (2).

Outline

(1) Preliminaries
(2) Complementarity problem
(3) A few linearization algorithms

4 Polyhedral Newton-min algorithms
(5) Numerical results on LCP
(6) Conclusion

Numerical results on the LCP $[0 \leqslant x \perp y:=(M x+q) \geqslant 0]$

Comparison of 3 solvers

Comparison of 3 solvers [40]

- PNM (Polyhedral Newton-Min algorithm [26, 17])
- Direction determined by solving the quadratic optimization problem (QP)

$$
\min \frac{1}{2}\|d\|_{2}^{2} \text { s.t. } \begin{cases}F_{i}(x)+F_{i}^{\prime}(x) d=0 & \text { if } i \in E_{F}(x) \tag{12}\\ G_{i}(x)+G_{i}^{\prime}(x) d=0 & \text { if } i \in E_{G}(x) \\ F_{i}(x)+F_{i}^{\prime}(x) d \geqslant 0 & \text { if } i \in I(x) \\ G_{i}(x)+G_{i}^{\prime}(x) d \geqslant 0 & \text { if } i \in I(x) .\end{cases}
$$

- Kink tolerance τ determined to try to have $|\mathrm{qp}| \leqslant 10$.
- HPNM (Hybrid Polyhedral Newton-Min algorithm [26, 17])
- Take the plain Newton-min direction if it satisfies the sufficient decrease criterion (11).
- Otherwise, take the minimum-norm PNM direction (12).
- Kink tolerance τ determined to try to have $|\mathrm{qp}| \leqslant 10$.
- PATH (pathlcp)
- The reference CP solver by Dirkse, Ferris, Li, Munson [27, 35, 36, 50].
- Uses the normal map reformulation [62]: x solves (2) if and only if (x, z) solves

$$
F(x)=z^{+} \quad \text { and } \quad G(x)=z^{-} .
$$

Numerical results on the LCP $[0 \leqslant x \perp y:=(M x+q) \geqslant 0]$

Dense random problems

Dense random problems

Dense random problems of Harker and Pang [43]

- $M=A^{\top} A+\operatorname{Diag}(d)+Z \in \mathbf{P}$, with random $A \in \mathbb{R}^{n \times n}, d \in \mathbb{R}_{++}^{n}$, and $Z \in \mathcal{Z}^{n}$.
- q such that $0=x_{A}<y_{A}, x_{I}>y_{I}=0, x_{E}=y_{E}=0$ where na $:=|A|$, ni $:=|I|$, ne $:=|E|$ are given.

			PNM					HPNM					PATH	
n	na	ni	iter	\#qp	\|qp		α	sec	iter	\#qp	qp\|	α	sec	sec
512	128	256	29	27	7.8	310^{-1}	0.81	6	4	8.5	110^{-0}	0.61	0.21	
1024	256	512	47	45	7.9	210^{-1}	1.46	7	5	9.0	110^{-0}	0.61	1.55	
2048	512	1024	62	60	9.6	110^{-1}	5.17	7	4	10.0	110^{-0}	1.04	7.26	
4096	1024	2048	134	132	8.8	410^{-2}	57.30	8	1	10.0	110^{-0}	3.14	45.10	
8192	2048	4096	223	221	9.4	310^{-2}	700.14	7	0	-	110^{-0}	14.96	233.10	
16384	4096	8192	425	423	9.9	110^{-2}	9516.20	7	0	-	110^{-0}	100.08	stuck!	
$O\left(n^{\rho}\right)$	with p		0.78				2.79	0.04				1.49	2.51	

\#qp $=$ number of QP's, $|\mathrm{qp}|=$ mean size of the QP's, $\alpha=\log _{10}$-mean stepsize, $\mathbf{s e c}=$ tic-toc time

Numerical results on the LCP $[0 \leqslant x \perp y:=(M x+q) \geqslant 0]$

Academic difficult problems I

Academic difficult problems (Murty [54])

Problem yielding exponential complexity of the Lemke algorithms for an LCP with a P-matrix:

$$
M=L_{M}:=\left(\begin{array}{cccc}
1 & 0 & 0 & \cdots \tag{13}\\
2 & 1 & 0 & \ddots \\
2 & 2 & 1 & \ddots \\
\vdots & \ddots & \ddots & \ddots
\end{array}\right) \in \mathbf{P}, \quad q=-e, \quad \text { and } \quad x_{1}=0
$$

Murty problem (S2)

	PNM					HPNM					PATH
$n \quad \mathrm{sec}$	iter	\#qp	qp\|	α	sec	iter	\#qp	qp\|	α	sec	sec
5120.00	396	394	9.8	110^{-2}	2.65	480	49	9.7	110^{-2}	1.66	0.03
10240.02	1094	1092	9.9	310^{-3}	8.07	1061	142	10.0	410^{-3}	5.03	0.13
20480.08	1850	1848	9.9	210^{-3}	27.88	2421	412	10.0	110^{-3}	32.98	0.63
40960.55	3951	3949	10.0	110^{-3}	224.11	5821	1494	10.0	410^{-4}	340.30	2.44
81922.67	7756	7754	10.0	510^{-4}	2864.29	12880	4032	10.0	110^{-4}	5905.34	13.10
$O\left(n^{p}\right), p=$	1.04				2.50	1.19				2.97	2.18

\#qp $=$ number of QP's, $|\mathrm{qp}|=$ mean size of the QP's, $\alpha=\log _{10}$-mean stepsize, sec $=$ tic-toc time

Numerical results on the LCP $[0 \leqslant x \perp y:=(M x+q) \geqslant 0]$

Academic difficult problems II

Academic difficult problems (Fathi [33, 30])
Problem yielding exponential complexity of the Lemke algorithms for an LCP with a PD-matrix:

$$
\begin{equation*}
M=L_{M} L_{M}^{\top} \in \mathrm{PD}, \quad q=-e, \quad \text { and } \quad x_{1}=0 \tag{14}
\end{equation*}
$$

Fathi problem (S2)

	PNM					HPNM					PATH	
$n \quad \mathrm{sec}$	iter	\#qp	\|qp		α	sec	iter	\#qp	qp\|	α	sec	sec
5120.00	255	214	5.9	210^{-2}	2.07	248	18	10.0	210^{-2}	1.57	2.08	
10240.02	468	318	5.9	110^{-2}	4.98	430	12	10.0	210^{-2}	5.08	24.86	
20480.09	1005	686	5.7	410^{-3}	35.67	883	20	10.0	410^{-3}	50.71	370.13	
40960.55	2220	1563	5.5	110^{-3}	525.28	1488	42	10.0	610^{-3}	340.88	2726.22	
$8192 \quad 2.98$	5145	3369	4.4	710^{-4}	4574.70	2844	36	10.0	210^{-3}	4350.27		
$O\left(n^{p}\right), p=$	1.09				2.89	0.88				2.89	3.50	

\#qp $=$ number of QP's, $|\mathrm{qp}|=$ mean size of the QP's, $\alpha=\log _{10}$-mean stepsize, $\mathbf{s e c}=$ tic-toc time

Numerical results on the LCP $[0 \leqslant x \perp y:=(M x+q) \geqslant 0]$

Practical problems

Diphasic flow in a porous media [8]

	PNM						HPNM					PATH
n	iter	\#qp	qp	α	sec	iter	\#qp	qp	α	sec	sec	
201	4	0	-	110^{-0}	0.25	4	0	-	110^{-0}	0.27	0.04	
501	4	0	-	110^{-0}	0.26	4	0	-	110^{-0}	0.26	0.22	

\#qp $=$ number of QP's, $|\mathrm{qp}|=$ mean size of the QP's, $\alpha=\log _{10}$-mean stepsize, $\mathbf{s e c}=$ tic-toc time

Outline

(1) Preliminaries
(2) Complementarity problem
(3) A few linearization algorithms

4 Polyhedral Newton-min algorithms
(5) Numerical results on LCP
(6) Conclusion

Conclusion

Conclusion

- We have proposed a means to globalize the NM/SSN algorithm for complementarity problems.
- Sometimes spectacularly efficient (random, diphasic flow, many practical applications), but not on particular problems (Murty).
- There is still much to understand and to do, but it seems worth the effort.
- Baptiste Plaquevent-Jourdain (PhD) works on the Levenberg-Marquardt globalization (to avoid convergence to meaningless points and weaken the regularity condition).
- A thorough experiment campaign on LCP is programmed (with Mathieu Frappier).
- To do: asymptotic analysis of the algorithm (admissibility of the unit stepsize, quadratic convergence, finite termination on $\operatorname{LCP}(\mathbf{P})$).
- To do: robustness of the algorithm away from a regular solution (i.e., deal with the possible infeasibility of the linearized system (10)).
- To do: application of the same solution principle to optimization.
- To do: application of the same solution principle to other nonsmooth systems, if any.
V. Acary, B. Brogliato (2008).

Numerical Methods for Nonsmooth Dynamical Systems - Applications in Mechanics and Electronics.
Lecture Notes in Applied and Computational Mechanics 35. Springer.
[doi].
Muhamed Aganagić (1984).
Newton's method for linear complementarity problems.
Mathematical Programming, 28, 349-362.
[doi].
Zakia Bazari (2018).
Modélisation du contact pneumatique/chaussée pour l'évaluation du bruit de roulement.
Thèse de doctorat - spécialité génie civil, Université de Lyon, France.
[hal].
L. Beaude, K. Brenner, S. Lopez, R. Masson, F. Smai (2019).

Non-isothermal compositional liquid gas Darcy flow: formulation, soil-atmosphere boundary condition and application to high-energy geothermal simulations.
Computational Geosciences, 23(3), 443-470.
[doi].
I. Ben Gharbia, J. Dabaghi, V. Martin, M. Vohralík (2020).

A posteriori error estimates for a compositional two-phase flow with nonlinear complementarity constraints.
Computational Geosciences, 24(3), 1031-1055.
[doi].
I. Ben Gharbia, E. Flauraud (2019).

Study of compositional multiphase flow formulation using complementarity conditions.
Oil \& Gas Sciences and Technology, 74, 1-15.
[doi].
I. Ben Gharbia, J. Jaffré (2014).

Gas phase appearance and disappearance as a problem with complementarity constraints.
Mathematics and Computers in Simulation, 99, 28-36.
[doi].
Ibtihel Ben Gharbia (2012).
Résolution de Problèmes de Complémentarité - Application à un Écoulement Diphasiqué Dans un Milieur Poreux

Ibtihel Ben Gharbia, J.Ch. Gilbert (2012).
Nonconvergence of the plain Newton-min algorithm for linear complementarity problems with a P-matrix. Mathematical Programming, 134, 349-364.
[doi].
Ibtihel Ben Gharbia, J.Ch. Gilbert (2013).
An algorithmic characterization of P-matricity.
SIAM Journal on Matrix Analysis and Applications, 34(3), 904-916.
[doi].
Ibtihel Ben Gharbia, J.Ch. Gilbert (2019).
An algorithmic characterization of P-matricity II: adjustments, refinements, and validation.
SIAM Journal on Matrix Analysis and Applications, 40(2), 800-813.
[doi].
J.F. Bonnans, J.Ch. Gilbert, C. Lemaréchal, C. Sagastizábal (1997).

Optimisation Numérique - Aspects théoriques et pratiques.
Mathématiques et Applications 27. Springer Verlag, Berlin.
[editor].
J.F. Bonnans, J.Ch. Gilbert, C. Lemaréchal, C. Sagastizábal (2006).

Numerical Optimization - Theoretical and Practical Aspects (second edition).
Universitext. Springer Verlag, Berlin.
[authors] [editor] [doi].
B. Brogliato (2016).

Nonsmooth Mechanics - Models, Dynamics and Control (third edition).
Springer.
[doi].
H. Buchholzer, Ch. Kanzow, P. Knabner, S. Kräutle (2011).

The semismooth Newton method for the solution of reactive transport problems including mineral precipitation-dissolution reactions.
Computational Optimization and Applications, 50(2), 193-221.
[doi].
Q.M. Bui, H.C. Elman (2020).

Semi-smooth Newton methods for nonlinear complementarity formulation of compositional two-phase flow in porous media.
Journal of Computational Physics, 407, 109163.
[doi].
A. Chiche, J.Ch. Gilbert (2016).

How the augmented Lagrangian algorithm can deal with an infeasible convex quadratic optimization problem.
Journal of Convex Analysis, 23(2), 425-459.
[pdf] [editor].
S.J. Chung (1989).

NP-completeness of the linear complementarity problem.
Journal of Optimization Theory and Applications, 60, 393-399.
[doi].
F.H. Clarke (1983).

Optimization and Nonsmooth Analysis.
John Wiley \& Sons, New York.
Reprinted in 1990 by SIAM, Classics in Applied Mathematics 5 [doi].
R.W. Cottle (1964).

Nonlinear Programs with Positively Bounded Jacobians.
PhD Thesis, University of California, Berkeley, USA.
R.W. Cottle (1966).

Nonlinear programs with positively bounded jacobians.
SIAM Journal on Applied Mathematics, 14, 147-158.
[doi].
R.W. Cottle, J.-S. Pang, R.E. Stone (1992).

The Linear Complementarity Problem.
Academic Press, Boston.
J. Dabaghi, V. Martin, M. Vohralík (2020).

Adaptive inexact semismooth Newton methods for the contact problem between two membranes.
Journal of Scientific Computing, 84(2).
[doi].
E. de Klerk, M. E.-Nagy (2011).

On the complexity of computing the handicap of a sufficient matrix．
Mathematical Programming，129（2），383－402．
［doi］．

T．De Luca，F．Facchinei，C．Kanzow（2000）．
A theoretical and numerical comparison of some semismooth algorithms for complementarity problems．
Computational Optimization and Applications，16，173－205．
［doi］．
F．Delbos，J．Ch．Gilbert（2005）．
Global linear convergence of an augmented Lagrangian algorithm for solving convex quadratic optimization problems． Journal of Convex Analysis，12（1），45－69．
［preprint］［editor］．
S．P．Dirkse，M．C．Ferris（1995）．
The PATH solver：a non－monotone stabilization scheme for mixed complementarity problems．
Optimization Methods and Software，5（2），123－156．
J．－P．Dussault，M．Frappier，J．Ch．Gilbert（2023）．
Polyhedral Newton－min algorithms for complementarity problems．
Mathematical Programming（submitted）．
［hal－02306526］．

J．－P．Dussault，J．Ch．Gilbert，B．Plaquevent－Jourdain（2023）．
On the B－differential of the componentwise minimum of two affine vector functions．
Mathematical Programming Computation（submitted）．
［hal－04048393］．
Jean－Pierre Dussault，M．Frappier，J．Ch．Gilbert（2019）．
A lower bound on the iterative complexity of the Harker and Pang globalization technique of the Newton－min algorithm for solving the linear complementarity problem．
EURO Journal on Computational Optimization，7（4），359－380．
［doi］．
K．Erleben（2013）．
Numerical methods for linear complementarity problems in physics－based animation．
In ACM SIGGRAPH 2013 Courses，SIGGRAPH＇13，pages 8：1－8：42．ACM，New York，NY，USA． ［doi］．
F. Facchinei, J.-S. Pang (2003).

Finite-Dimensional Variational Inequalities and Complementarity Problems (two volumes). Springer Series in Operations Research. Springer.
Y. Fathi (1979).

Computational complexity of LCPs associated with positive definite symmetric matrices.
Mathematical Programming, 17, 335-344.
M.C. Ferris, J.-S. Kanzow, T.S. Munson (1999).

Feasible descent algorithms for mixed complementarity problems.
Mathematical Programming, 86, 475-497.
[doi].
M.C. Ferris, T.S. Munson (1999).

Interfaces to PATH 3.0: design, implementation and usage.
Computational Optimization and Applications, 12, 207-227.
M.C. Ferris, T.S. Munson (2000).

Complementarity problems in GAMS and the PATH solver.
Journal of Economic Dynamics and Control, 24(2), 165-188.
[doi].
M.C. Ferris, J.-S. Pang (1997).

Engineering and economic applications of complementarity problems.
SIAM Review, 39, 669-713.
[doi].
Andreas Fischer (1992).
A special Newton-type optimization method.
Optimization, 24, 269-284.
[doi].
Andreas Fischer, C. Kanzow (1996).
On finite termination of an iterative method for linear complementarity problems.
Mathematical Programming, 74, 279-292.
[doi].
Mathieu Frappier (2019).

Reformulation semi-lisse appliquée au problème de complémentarité.
Master's thesis, Département de Mathématiques, Faculté des Sciences, Université de Sherbrooke, Canada.
[internet].

Y. Gao, H. Song, X. Wang, K. Zhang (2020).

Primal-dual active set method for pricing American better-of option on two assets.
Communications in Nonlinear Science and Numerical Simulation, 80.
[doi].
P.T. Harker, J.-S. Pang (1990).

Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications.
Mathematical Programming, 48, 161-220.
[doi].
P.T. Harker, J.-S. Pang (1990).

A damped-Newton method for the linear complementarity problem.
In E.L. Allgower, K. Georg (editors), Computational Solution of Nonlinear Systems of Equations, Lecture in Applied Mathematics 26. AMS, Providence, RI.
P. Hartman, G. Stampacchia (1966).

On some non-linear elliptic differential-functional equations.
Acta Mathematica, 115, 271-310.
[doi].
G. Isac (1992).

Complementarity Problems.

Lecture Notes in Mathematics 1528. Springer, Berlin.
[doi].
N.H. Josephy (1979).

Newton's method for generalized equations.
Technical Summary Report 1965, Mathematics Research Center, University of Wisconsin, Madison, WI, USA.
M. Kojima, Nimrod Megiddo, T. Noma, A. Yoshise (1991).

A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems.
Lecture Notes in Computer Science 538. Springer, Berlin.
[doi].
S. Kräutle (2011).

The semismooth Newton method for multicomponent reactive transport with minerals.
Advances in Water Resources, 34(1), 137-151.
[doi].
B. Kummer (1988).

Newton's method for nondifferentiable functions.
In J. Guddat, B. Bank, H. Hollatz, P. Kall, D. Klatte, B. Kummer, K. Lommatzsch, L. Tammer, M. Vlach,
K. Zimmerman (editors), Advances in Mathematical Optimization, pages 114-125. Akademie-Verlag, Berlin.
Q. Li, M.C. Ferris, T. Munson (2009).

Linear algebra enhancements to the PATH solver.
Report ANL/MCS-P1565-1208, Mathematics and Computer Science Division, Argonne National Laboratory, 9700 South
Cass Avenue, Argonne, Illinois 60439, USA.
V.L.R. Lopes, J.M. Martínez, R. Pérez (1999).

On the local convergence of quasi-Newton methods for nonlinear complementarity problems.
Applied Numerical Mathematics, 30, 3-22.
[doi].
E. Marchand, T. Müller, P. Knabner (2012).

Fully coupled generalised hybrid-mixed finite element approximation of two-phase two-component flow in porous media.
Part II: numerical scheme and numerical results.
Computational Geosciences, 16(3), 691-708.
[doi].
E. Marchand, T. Müller, P. Knabner (2013).

Fully coupled generalised hybrid-mixed finite element approximation of two-phase two-component flow in porous media.
Part I: formulation and properties of the mathematical model.
Computational Geosciences, 17(2), 431-442.
[doi].
K.G. Murty (1978).

Computational complexity of complementarity pivot methods.
Mathematical Programming Study, 7, 61-73.
J.-S. Pang (1990).

Civá
Newton's method for B-differentiable equations.

```
Mathematics of Operations Research, 15, 311-341.
```

[doi].
J.-S. Pang (1991).

A B-differentiable equation-based, globally and locally quadratically convergent algorithm for nonlinear programs, complementarity and variational inequality problems.
Mathematical Programming, 51(1-3), 101-131.
[doi].
J.-S. Pang (1995).

Complementarity problems.
In R. Horst, P.M. Pardalos (editors), Handbook of Global Optimization, volume 2 of Nonconvex Optimization and Its Applications, pages 271-338. Kluwer, Dordrecht.
[doi].
S. Pieraccini, M.G. Gasparo, A. Pasquali (2003).

Global Newton-type methods and semismooth reformulations for NCP.
Applied Numerical Mathematics, 44, 367-384.
[doi].
F.A. Potra, X. Liu (2005).

Predictor-corrector methods for sufficient linear complementarity problems in a wide neighborhood of the central path.
Optimization Methods and Software, 20(1), 145-168.
[doi].
Liqun Qi (1993).
Convergence analysis of some algorithms for solving nonsmooth equations.
Mathematics of Operations Research, 18, 227-244.
[doi].
Liqun Qi, Jie Sun (1993).
A nonsmooth version of Newton's method.
Mathematical Programming, 58, 353-367.
[doi].
S.M. Robinson (1992).

Normal maps induced by linear transformations.
Mathematics of Operations Research, 17, 691-714.

