
Mokaplan Seminar, Inria-Paris, June 7, 2023

Polyhedral Newton-min algorithms for complementarity
problems [28]

Jean Charles Gilbert (Inria-Paris & Université de Sherbrooke)

Joint work with

Jean-Pierre Dussault (Université de Sherbrooke)
Mathieu Frappier (Université de Sherbrooke)

June 7, 2023



Outline

1 Preliminaries

2 Complementarity problem

3 A few linearization algorithms

4 Polyhedral Newton-min algorithms

5 Numerical results on LCP

6 Conclusion

2 / 49



Outline

1 Preliminaries

2 Complementarity problem

3 A few linearization algorithms

4 Polyhedral Newton-min algorithms

5 Numerical results on LCP

6 Conclusion

3 / 49



Preliminaries
Local Newton’s method for a smooth function

Local Newton’s method for a smooth function

Let H : E → F be a smooth function (E a vector space).

Find x∗ ∈ E such that H(x∗) = 0?

Local Newton’s algorithm:

{
H(xk ) + H ′(xk )dk = 0
xk+1 := xk + dk .

xk

x∗

H

xk+1
dk

3 conditions for quadratic convergence

◮ x0 close to x∗,
◮ H ∈ C1,1,
◮ H′(x∗) nonsingular.
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Preliminaries
Globalization of Newton’s method for a smooth function: miracle or mirage?

Globalization of Newton’s method for a smooth function: miracle or mirage?

Let (F, 〈·, ·〉) be a Euclidean space; associated norm ‖ · ‖ = 〈·, ·〉1/2.

Consider the least-square merit function: θ : E → R defined at x ∈ E by

θ(x) :=
1

2
‖H(x)‖2.

Miracle: the Newton’s direction d := −H ′(x)−1H(x) is a descent direction of θ:

θ′(x)d = 〈H(x),H ′(x)d〉 = −‖H(x)‖2 = −2θ(x) < 0 [if d exists and H(x) 6= 0]

Globalization by linesearch: xk+1 := xk + αkdk with αk > 0 not too small such that

θ(xk + αkdk) 6 θ(xk) + ωαkθ
′(xk )dk [ω ≃ 10−4].

Mirage: If x̄ is a limit point of {xk}, that is regular (F ′(x̄) nonsingular), then
F (x̄) = 0.

But there may be no such limit point!

5 / 49



Preliminaries
Success of the globalization of Newton’s algorithm with LS

Success of the globalization of Newton’s algorithm with LS

F (x) =

(
x1

−(x1−2)2 + x2 + 4

)

F
′(x) =

(
1 0

−2(x1−2) 1

)

.

x∗

x0
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Preliminaries
Failure of the globalization of Newton’s algorithm with LS

Failure of the globalization of Newton’s algorithm with LS I

F (x) =

(
x1

−(x1 − 2)2 + (x2 − 1)2 + 3

)

,

F
′(x) =

(
1 0

−2(x1 − 2) 2(x2 − 1)

)

.

x∗
x0
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Preliminaries
Failure of the globalization of Newton’s algorithm with LS

Failure of the globalization of Newton’s algorithm with LS II

F (x) =

(
x1

−(x1 − 2)2 + ex2 + 3

)

,

F
′(x) =

(
1 0

−2(x1 − 2) ex2

)

.

x
1

x
*
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Preliminaries
Failure of the globalization of Newton’s algorithm with LS

Failure of the globalization of Newton’s algorithm with LS II
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Preliminaries
Failure of the globalization of Newton’s algorithm with LS

Failure of the globalization of Newton’s algorithm with LS III

Conclusion

A “global” convergence result of the kind “any regular limit point of the generated
sequence is a solution” must be taken with caution, since the generated sequence
may have no regular limit point.

Such a “global” convergence result is just a means to improve algorithms.
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Preliminaries
Local Newton’s method for a nonsmooth function may fail

Local Newton’s method for a nonsmooth function may fail

Newton’s method may cycle, regardless of the proximity of x0 and x∗.
Example, Kummer’s function [49; 1988] (differentiable at 0, ∂CH(0) = [1/2, 2] /∋ 0)

Kummer’s function
Cycling of Newton’s algorithm
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Preliminaries
B-differential and C-differential

B-differential and C-differential

Let E and F be two vector spaces of finite dimensions n := dimE and m := dimF.

Let H : E → F be a function.

The B-differential (B for Bouligand) of H at x ∈ E is de-
noted and defined by

∂BH(x) :=
{
J ∈ L(E,F) : H ′(xk) → J for a sequence

{xk} ⊆ DH converging to x
}
,

where L(E,F) is the set of linear (continuous) maps from E

to F and DH is the set of points at which H is differentiable.

H

x

slope 1/2

slope −1

∂BH(x) = {−1, 1/2}

∂CH(x) = [−1, 1/2]

The C-differential (C for Clarke [19]) of H at x ∈ E is denoted and defined by

∂CH(x) := co ∂BH(x),

where coS denotes the convex hull of a set S .

H locally Lipschitz near x =⇒ ∂BH(x) and ∂CH(x) nonempty and bounded.
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Preliminaries
Semismoothness definition

Semismoothness definition [61, 60; 1993]

Let E and F be two normed spaces and Ω be an open set of E.

Let H : Ω → F be a function and x ∈ Ω.

The function H is said to be semismooth at x if the following three conditions hold:

(SS1) H is Lipschitz near x ,
(SS2) H has directional derivatives at x in all directions,
(SS3) when h → 0 in E, one has

sup
J∈∂CH(x+h)

‖H(x + h)− H(x)− Jh‖ = o(‖h‖). (1a)

The function H is said to be strongly semismooth at x if it is semismooth at x with
(SS3) strengthened into

(SS3’) for h near 0, one has

sup
J∈∂CH(x+h)

‖H(x + h)− H(x) − Jh‖ = O(‖h‖2). (1b)

The function H : Ω → F is said to be semismooth (resp. strongly semismooth) on a
part P of Ω if it is semismooth (resp. strongly semismooth) at all points of P.
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Preliminaries
Semismoothness properties

Semismoothness properties

Semismooth Newton’s method [61, 60; 1993]
◮ Choose some nonsingular Jk ∈ ∂BH(xk), if any,
◮ xk+1 := xk − J−1

k
H(xk).

Local quadratic convergence of semismooth Newton’s method if
◮ x0 is close to x∗,
◮ H is strongly semismooth,
◮ all J ∈ ∂BH(x∗) is nonsingular.

Nice properties
◮ H continuously differentiable at x ⇒ H semismooth at x .
◮ H1 semismooth at x , H2 semismooth at H1(x) ⇒ H2 ◦ H1 semismooth at x .

⋆ H1, H2 semismooth at x ⇒ H1 + H2 semismooth at x.
⋆ H1, H2 semismooth at x ⇔ (H1,H2) semismooth at x.
⋆ H1, H2 semismooth at x ⇒ 〈H1,H2〉 semismooth at x.

◮ H1, H2 semismooth at x ⇒ min(H1,H2) semismooth at x .
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Preliminaries
Globalization of Newton’s method for a nonsmooth function

Globalization of Newton’s method for a nonsmooth function

No general technique.

Reason: dk = −J−1
k H(xk) may not be a descent direction of θ : x 7→ 1

2
‖H(x)‖2. Often, it

depends on the choice of Jk ∈ ∂BH(xk).
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Complementarity problem
Problem definition

Nonlinear complementarity problem

A complementarity problem consists in finding x ∈ Ω (open subset of Rn) such that

F (x) > 0, G(x) > 0, and F (x)TG(x) = 0, (2a)

where F : Ω → R
n and G : Ω → R

n are smooth. This is written compactly as follows:

(NLCP) 0 6 F (x) ⊥ G(x) > 0. (2b)

Linear complementarity problem

Sometimes, we shall refer to the linear complementarity problem [22]: this is (2) with
F (x) = Mx + q and G(x) = x :

(LCP) 0 6 (Mx + q) ⊥ x > 0, (3)

where M ∈ R
n×n and q ∈ R

n.

P-matrix

M ∈ P ⇐⇒ detMI ,I > 0 for all I ⊆ [1 : n]

⇐⇒ (3) has a unique solution for all q ∈ R
n.

We are interested in linearization numerical methods to solve these problems.
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Complementarity problem
Comments on the problem

Comments on the problem

It is a set of nonlinear inequalities and one equation, so it may look like an easy
problem to solve.

Mangasarian-Fromovitz does not hold =⇒ instability for small perturbations.

By the inequalities F (x) > 0 and G(x) > 0, the equation F (x)TG(x) = 0 also reads

∀ i ∈ [1 : n] : Fi(x)Gi (x) = 0.

There are 2n ways of realizing these complementarity conditions. Hence a huge
combinatorial aspect.

Even the LCP (3) is NP-hard in general [18, 47]. Depends on M:
◮ at most n iterations if M is an M-matrix (Newton-min) [2],
◮ ??? if M is a P-matrix (Lemke exponential [54], Newton-min cycles [9, 10, 11]),
◮ ??? if M is a nondegenerate matrix,
◮ NP-hard if M is a P0-matrix [47],
◮ O((1+κ)nα log ε−1) iterations if M is a P∗(κ)-matrix (interior points) [47, 59], but κ

may be exponential in the length L of the data [24].
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Complementarity problem
Link with other problems

Link with other problems

It is a particular case of functional inclusion problem

F (x) + (NRn
+
◦G)(x) ∋ 0. 0

NRn
+
(G(x))

−F (x)

G(x)

R
n
+

First order optimality conditions of the optimization problem “min{f (x) : c(x) 6 0}”:

Find (x , λ) ∈ R
n × R

m s.t.

{
∇f (x) + c ′(x)Tλ = 0 (n equations)
0 6 λ ⊥ −c(x) > 0 (m “conditions”).

(4)

The LCP was introduced and analyzed in the linear case by Cottle in his PhD thesis
[20, 21; 1964], as an extension of the linear optimization problem.

The related variational inequality problem

{
x ∈ C (a convex set)
〈F (x), y − x〉 > 0, ∀ y ∈ C .

−F (x)

C

x
NC (x)

was introduced by Hartman and Stampacchia [44; 1966] for an EDP.
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Complementarity problem
Examples of use

Examples of use

General principle. Useful for systems in competition with threshold effects:

If the threshold Fi (x) is inactive (> 0) =⇒ Gi (x) = 0.

Examples in
◮ nonsmooth mechanics and dynamics, contact problems [1, 14, 3],

Tire/road contact
in (space,time)

r(x, t)

h(x, t)







r(x , t) > 0
h(x , t) > 0
r(x , t)h(x , t) = 0.

◮ phase transition problem in multiphase flows [52, 53, 7, 4, 6, 5, 16, 23],
◮ precipitation-dissolution problems in chemistry [15, 48],
◮ portfolio management in finance [41],
◮ computer graphics [31],
◮ free boundary problems, meteorology simulation, economic equilibrium, . . .

More examples of applications in [42, 45, 57, 37, 32].
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Complementarity problem
Solution methods

Pivoting (Lemke) for LCP.

Interior points.

Nonsmooth equation reformulation and pseudo-linearization. ←−

Smoothing nonsmooth reformulations.

Other methods . . .

20 / 49



Outline

1 Preliminaries

2 Complementarity problem

3 A few linearization algorithms

4 Polyhedral Newton-min algorithms

5 Numerical results on LCP

6 Conclusion

21 / 49



A few linearization algorithms
Equation reformulation of NLCP (I)

Equation reformulation of NLCP (I)

Fi (x)

Gi (x)

Solve the following nonsmooth reformulation of (NLCP):

H(x) = 0, (5a)

where H : Ω → R
n is the function defined at x ∈ Ω by

H(x) := min(F (x),G(x)). (5b)

Compute a direction d by a pseudo-linearization of H (≡ Newton-min approach).

(5) is equivalent to (NLCP) since min(a, b) = 0 iff a > 0, b > 0 and ab = 0.

H has directional derivatives and is semismooth (if F and G are smooth).

There are other equation reformulations, like the one using the Fischer function
ϕF(a,b) =

√
a2 + b2 − (a+ b) [38, 34, 51, 25, 58].

The function “min” reformulation is a choice guided by
◮ scientific curiosity (there are still possibilities of improvement),
◮ efficiency of the approach (“min” is more linear, although less differentiable than ϕF),
◮ can give better local convergence result than with ϕF [32],
◮ can give finite termination for LCP [39].
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A few linearization algorithms
Equation reformulation of NLCP (II)

Equation reformulation of NLCP (II): globalization [12, 13]

The quadratic merit function associated with (5) is defined at x ∈ R
n by

θ(x) :=
1

2
‖H(x)‖2 =

1

2
‖min(F (x),G(x))‖2. (6)

θ has directional derivatives and is semismooth.

Algorithmic goal

Algorithm

◮ Compute d ∈ Rn such that

⋆ it is a descent direction of θ, i.e., θ′(x; d) < 0,
⋆ it is efficient locally (quadratic or finite convergence).

◮ Do a standard Armijo line-search on θ: find a not too small α > 0 such that (ω ∈ (0, 1))

θ(x + αd) 6 θ(x) + ωαθ′(x ; d).

◮ Update x+ = x + αd.

Certify the algorithm by some kind of global convergence.
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A few linearization algorithms
Josephy-Newton method

Josephy-Newton (JN) method

For a function Φ and a multifunction N, the JN algorithm [46] aims at solving

Φ(x) + N(x) ∋ 0,

by linearizing Φ, while keeping N unchanged. Hence x+ = x + d , where d solves

Φ(x) + Φ′(x)d + N(x + d) ∋ 0.

Applied to the NLCP “0 6 F (x) ⊥ G(x) > 0” ⇐⇒ “F (x) + (NRn
+
◦G)(x) ∋ 0”, it

computes x+ = x + d where d solves

(JN) 0 6

(

F (x) + F
′(x)d

)

⊥
(

G(x) + G
′(x)d

)

> 0.

Properties (similar to those of the SQP algorithm in constrained optimization):

⊕ fast local convergence (quadratic) with realistic assumptions,
⊕ yields descent directions of the quadratic merit function θ,
⊕ global convergence,
⊖ expensive iteration (one LCP to solve),
⊖ makes no sense for solving the LCP, since (JN) ≡ (LCP).
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A few linearization algorithms
B-Newton method

B-Newton method

For a locally Lipschitz function H, the B-Newton algorithm [55] aims at solving H(x) = 0
by taking x+ = x + d , where d solves

H(x) + H
′(x ; d) = 0.

Applied to the NLCP [55, 56] and H = min(F ,G), it computes x+ = x + d where d solves

(BN)







(F (x) + F ′(x)d)F(x) = 0,
(G(x) + G ′(x)d)G(x) = 0,
0 6 (F (x) + F ′(x)d)E(x) ⊥ (G(x) + G ′(x)d)E(x) > 0,

where

E(x) := {i ∈ [1 : n] : Fi (x) = Gi (x)},
F(x) := {i ∈ [1 : n] : Fi (x) < Gi (x)},
G(x) := {i ∈ [1 : n] : Fi (x) > Gi (x)}.

i ∈ E(x)

i ∈ G(x)

i ∈ F(x)
Gi (x)

Fi (x)

Properties:
⊕ yields descent directions of the quadratic merit function θ,
⊕ global convergence,
⊖ a limit point x̄ is a solution if it is “regular” and satisfies Fi (x̄) = Gi (x̄) = 0 for i ∈ E(x̄),
⊖ much less expensive iteration than JN (|E(x)| small), but still one LCP to solve,
⊖ makes no sense for solving the LCP, since (BN) ≡ (JN) when E(x) = [1 : n].
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A few linearization algorithms
Semismooth Newton method

Semismooth Newton method

Algorithm for solving H(x) := min(F (x),G(x)) = 0

◮ Choose a nonsingular Jacobian

J ∈ ∂BH(x) ⊆ ∂BH1(x)× · · · × ∂BHn(x) =: ∂×
B
H(x) or

J ∈ ∂CH(x) ⊆ ∂CH1(x)× · · · × ∂CHn(x) =: ∂×
C
H(x).

◮ Determine d by H(x) + Jd = 0.
◮ If d is descent direction of θ, do a LS along d to get x+ := x + αd .

Discussion

◮ Define the piecewise affine model LxH of H at x ∈ Rn by

y ∈ R
n 7→ (LxH)(y) := min

(

F (x) + F ′(x)(y − x),G(x) + G ′(x)(y − x)
)

.

Then,
∂B(LxH)(x) ⊆ ∂BH(x) and ∂C (LxH)(x) ⊆ ∂CH(x).

◮ Computing a single Jacobian J of ∂B (LxH)(x), hence of ∂BH(x), is easy (all the
Jacobians is difficult) [29]. Same observation for ∂C .

◮ Having J nonsingular is a matter of assumption (not guaranteed in general).
◮ But d is not necessarily a descent direction of θ (a counter-example in a while).
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A few linearization algorithms
Plain Newton-min method

Plain Newton-min method

Algorithm for solving H(x) := min(F (x),G(x)) = 0

◮ Choose a nonsingular Jacobian

J ∈ ∂BH1(x) × · · · × ∂BHn(x) =: ∂×
B
H(x) or

J ∈ ∂CH1(x)× · · · × ∂CHn(x) =: ∂×
C
H(x).

◮ Determine d by H(x) + Jd = 0.
◮ If d is descent direction of θ, do a LS along d to get x+ := x + αd .

Discussion

◮ For i ∈ [1 : n], one has

∂BHi (x) =







{F ′
i
(x)} if Fi (x) < Gi (x) ⇔ i ∈ F(x),

{F ′
i
(x),G ′

i
(x)} if Fi (x) = Gi (x) ⇔ i ∈ E(x),

{G ′
i
(x)} if Fi (x) > Gi (x) ⇔ i ∈ G(x).

◮ Hence d with J ∈ ∂×
B
H(x) is defined by

{

Fi (x) + F ′
i
(x)d = 0 if i ∈ F̃(x)

Gi (x) + G ′
i
(x)d = 0 if i ∈ G̃(x),

(7)

where (F̃(x), G̃(x)) forms a partition of [1 : n] with

F̃(x) ⊇ F(x) and G̃(x) ⊇ G(x).

Gi (x)

i ∈ F(x) i ∈ E(x)

i ∈ G(x)

Fi (x)

27 / 49



A few linearization algorithms
The (semismooth Newton/Newton-min) direction can be an ascent direction for θ

The (semismooth Newton/Newton-min) direction can be an ascent direction for θ

Consider the LCP (3), which is 0 6 x ⊥ (Mx + q) > 0, with

M =

(
1 4
0 1

)

, q =

(
−4
−2

)

, x =

(
−2
1

)

, so that Mx + q =

(
−2
−1

)

. (8)

One has E(x) = {1}, F(x) = {2}, G(x) = ∅.

28 / 49



A few linearization algorithms
The (semismooth Newton/Newton-min) direction can be an ascent direction for θ

The (semismooth Newton/Newton-min) direction can be an ascent direction for θ

Consider the LCP (3), which is 0 6 x ⊥ (Mx + q) > 0, with

M =

(
1 4
0 1

)

, q =

(
−4
−2

)

, x =

(
−2
1

)

, so that Mx + q =

(
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. (8)

One has E(x) = {1}, F(x) = {2}, G(x) = ∅.

Take F̃(x) = {1, 2} and G̃(x) = ∅ in (7), then d is an ascent direction of θ at x :
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(
−2
−1

)
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One has E(x) = {1}, F(x) = {2}, G(x) = ∅.
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Polyhedral Newton-min algorithms
Orientation

Orientation

Slightly modify the plain Newton-min direction such that:

⊕⊖ it computes a point in a convex polyhedron (harder than a LS, easier than an LCP):
⊕ very few inequalities define the convex polyhedron,
⊖ the computation of d is more expensive, but polynomial,
⊕ there is a bypass that accepts the plain NM direction most of the iterations,

⊕ it becomes a descent direction of θ,

⊕ it yields some global convergence.
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Polyhedral Newton-min algorithms
Ensuring descent

Ensuring descent

For the quadratic merit function θ(x) = 1
2
‖H(x)‖2 = 1

2
‖min(F (x),G(x))‖2, one has

θ′(x ; d) = H(x)TH′(x ; d)

= FF(x)(x)
TF ′

F(x)(x)d + GG(x)(x)
TG ′

G(x)(x)d + FE(x)(x)
T min(F ′

E(x)(x)d,G
′
E(x)(x)d).

If (F (x) + F ′(x)d)F(x) = 0 and (G(x) + G ′(x)d)G(x) = 0, it follows

θ′(x ; d) =− ‖FF(x)(x)‖
2 − ‖GG(x)(x)‖

2 − ‖FE(x)(x)‖
2

+ FE(x)(x)
T min(FE(x)(x) + F ′

E(x)(x)d,GE(x)(x) + G ′
E(x)(x)d)

=− 2 θ(x) + FE(x)(x)
T min(FE(x)(x) + F ′

E(x)(x)d,GE(x)(x) + G ′
E(x)(x)d).

How can we get θ′(x ; d) < 0 when θ(x) 6= 0?

If Fi (x) = Gi (x) > 0, the last term is 6 0 when

Fi (x) + F ′
i (x)d = 0 or Gi (x) + G ′

i (x)d = 0.

If Fi (x) = Gi (x) < 0, the last term is 6 0 when

Fi (x) + F ′
i (x)d > 0 and Gi (x) + G ′

i (x)d > 0.

This leads to the following direction definition.
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Polyhedral Newton-min algorithms
Plain polyhedral Newton-min algorithm I

Plain polyhedral Newton-min direction

A plain polyhedral Newton-min (plain PNM) direction is a direction d that satisfies







Fi(x) + F ′
i (x)d = 0 if i ∈ F(x) ∪ E0+

F (x)
Gi(x) + G ′

i (x)d = 0 if i ∈ G(x) ∪ E0+
G (x)

Fi(x) + F ′
i (x)d > 0 if i ∈ E−(x)

Gi(x) + G ′
i (x)d > 0 if i ∈ E−(x), i ∈ E−(x)

Fi (x)

i ∈ G(x)

Gi (x)

i ∈ E0+(x)i ∈ F(x)

where (E0+
F (x), E0+

G (x)) is a partition of

E0+(x) := {i ∈ [1 : n] : Fi(x) = Gi (x) > 0}
and

E−(x) := {i ∈ [1 : n] : Fi (x) = Gi (x) < 0}.
Features of the algorithm:

⊖ d must be found in a convex polyhedron (instead of the solution to a LS),
⊕ the number of inequalities 2|E−(x)| should be very small (in exact arithmetic!),
⊕ can be computed in polynomial time (by LO or QO),
⊕ there is a bypass to avoid this computation most of the time (see below),
⊕ d is a descent direction of θ,
⊖ we were not able to prove global convergence with that d .
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Polyhedral Newton-min algorithms
Plain polyhedral Newton-min algorithm II

Behavior on the baby problem (8)

Since E(x) = {1}, F(x) = {2}, G(x) = ∅, the algorithm computes the solution to







min 1
2
‖d‖2

2

M2 :d + y2 = 0
M1 :d + y1 > 0
d1 + x1 > 0

or

{
min 1

2
(d2

1 + 1)
d1 > 2,

d2 = 1.

A little by chance, it is the right direction d = (2, 1).

x

x+d

x̄ x + polyhedron

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

α

θ(x+αd)
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Polyhedral Newton-min algorithms
Plain polyhedral Newton-min algorithm III

Difficulty with global convergence

Let x̄ be an accumulation point of the sequence {xk}k>1 (it may not exist) generated by

xk+1 := xk + αkdk

where αk > 0 is the largest stepsize of the form 2−i for i ∈ N such that

θ(xk + αkdk) 6 θ(xk ) + 10−4αk(“sth negative”). (9a)

We want to show that x̄ is a solution of the NLCP (with a regularity assumption).

If lim supk αk > 0, it is easy to show that θ(xk ) ↓ 0 and that x̄ is a solution.

If lim supk αk = 0, it is more difficult.

Necessarily (9a) is not satisfied for α̌k = 2αk :

θ(xk + α̌kdk) > θ(xk) + 10−4α̌k(“sth negative”). (9b)

To get convergence, it is necessary to get information from both (9a) and (9b).
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Polyhedral Newton-min algorithms
Plain polyhedral Newton-min algorithm IV

Difficulty with global convergence (negative kink)

Near a negative kink, one can have with x̌k+1 := xk + α̌kdk :

Fi (xk+1) < Gi (xk+1) < 0, 0 > Fi (x̌k+1) > Gi (x̌k+1),

0 < Hi (xk+1)
2 = Fi (xk+1)

2, 0 < Hi (x̌k+1)
2 = Gi(x̌k+1)

2 > Fi (x̌k+1)
2.

x̌k+1 := xk + α̌kdk rejected

Hi (·) < 0

Fi (·) < Gi (·)
Fi (·) = Gi (·)

Fi (·) > Gi (·)

xk

dk
x̄

xk+1 = xk + αkdk accepted

xk xk+1 x̌k+1

Fi (xk )
2

Gi (x̌k+1)
2

Hence x̌k+1 is rejected because of Gi (x̌k+1)
2, but one has no information on

Gi (xk ) + G ′
i (xk)dk .

Remedy: for xk near a negative kink of H,

Fi(xk ) + F
′
i (xk)dk = 0 y

{
Fi (xk) + F ′

i (xk )dk > 0
Gi (xk) + G ′

i (xk)dk > 0.
35 / 49



Polyhedral Newton-min algorithms
Plain polyhedral Newton-min algorithm V

Difficulty with global convergence (positive kink)

Near a positive kink, one can have with x̌k+1 := xk + α̌kdk :

0 < Fi (xk+1) < Gi (xk+1), Fi (x̌k+1) > Gi (x̌k+1) > 0,

0 < Hi (xk+1)
2 = Fi (xk+1)

2, 0 < Hi (x̌k+1)
2 = Gi(x̌k+1)

2 < Fi (x̌k+1)
2.

x̌k+1 := xk + α̌kdk rejected

Fi (·) < Gi (·)
Fi (·) = Gi (·)

Fi (·) > Gi (·)
x̄

xk

dk

xk+1 = xk + αkdk accepted

Hi (·) > 0

xk xk+1 x̌k+1

Fi (xk )
2

Fi (x̌k+1)
2

Gi (x̌k+1)
2

Hence x̌k+1 is rejected because of Gi (x̌k+1)
2 and would also be rejected because of

Fi (x̌k+1)
2.

Since we have information on Fi(xk ) + F ′
i (xk)dk = 0, there’s no need for a remedy.
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Polyhedral Newton-min algorithms
Secure polyhedral Newton-min algorithm I

Secure polyhedral Newton-min algorithm

A secure polyhedral Newton-min (PNM) direction is a direction d satisfying







Fi (x) + F ′
i (x)d = 0 if i ∈ EF (x) :=

[
F(x) \ E−

τ (x)
]
∪ E0+

F (x)
Gi (x) + G ′

i (x)d = 0 if i ∈ EG (x) :=
[
G(x) \ E−

τ (x)
]
∪ E0+

G (x)
Fi (x) + F ′

i (x)d > 0 if i ∈ I (x) := E−
τ (x)

Gi (x) + G ′
i (x)d > 0 if i ∈ I (x) := E−

τ (x),

(10)

where, for some kink tolerance parameter τ ∈ (0,∞),

i ∈ EF (x)

−τ

−τ
Fi (x)

i ∈ EG (x)

i ∈ E−
τ (x) := {i : Fi (x) < 0, Gi (x) < 0, |Fi (x) − Gi (x)| < τ}

Gi (x)

i ∈ E0+(x) = E0+
F

(x) ∪ E0+
G

(x)
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Polyhedral Newton-min algorithms
Secure polyhedral Newton-min algorithm II

PNM regularity condition

The usual regularity at a limit point x̄ assumes that the system to solve has a
solution, whatever the vectors defining it are.

Here, there must be a d satisfying the system below, whatever Fi(x̄), Gi (x̄), Fi (x̄),
Gi (x̄) are:







Fi(x̄) + F ′
i (x̄)d = 0 if i ∈ EF (x̄)

Gi (x̄) + G ′
i (x̄)d = 0 if i ∈ EG (x̄)

Fi(x̄) + F ′
i (x̄)d > 0 if i ∈ I (x̄)

Gi (x̄) + G ′
i (x̄)d > 0 if i ∈ I (x̄).

This is guaranteed by the Mangasarian-Fromovitz “constraint qualification” (MFCQ):

∑

i∈EF (x̄)
αi∇Fi (x̄) +

∑

i∈EG (x̄) βi∇Gi (x̄) +
∑

i∈I(x̄)

[
αi∇Fi(x̄) + βi∇Gi (x̄)

]
= 0

and (αI (x̄), βI (x̄)) > 0 imply that (α, β) = 0.

Must be reinforced to have a “diffusion property” near x̄ (difficulty with the index
sets that change with x̄). This yields the PNM regularity. Ensures

◮ existence of a d satisfying (10) for x near x̄ ,
◮ boundedness of the d’s.
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Polyhedral Newton-min algorithms
Secure polyhedral Newton-min algorithm III

Features of the PNM algorithm:

⊖ d must be found in a convex polyhedron (instead of the solution to a LS),
⊕ the number of inequalities 2|E−

τ (x)| should be very small (τ > 0 can be very small),
⊕ can be computed in polynomial time (by LO or QO),
⊕ there is a bypass to avoid this computation most of the time (see below),
⊕ d is a descent direction of θ,
⊕ global convergence.

Theorem (global convergence of the PNM algorithm)

If F and G : Ω → R
n are differentiable,

the PNM algorithm generates a sequence {xk} ⊆ Ω,

x̄ ∈ Ω is an accumulation point of {xk} that is PNM regular,

F ′ and G ′ are continuous at x̄ ,
then, {θ(xk )}k>1 ↓ 0 and x̄ is a solution to the NLCP (2).
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Polyhedral Newton-min algorithms
Hybrid polyhedral Newton-min algorithm I

Acceptation criterion (sufficient decrease condition)

One Looks for a criterion for accepting the cheap plain Newton-min direction (7).

Newton direction for smooth H satisfies θ′(x ; d) = −2θ(x), hence requiring for some
η ∈ (0, 1):

θ′(x ; d) 6 −2(1−η)θ(x) −→ not strong enough to get global convergence.

One requires instead, for some η ∈ (0, 1), close to 1:

−
∑

i∈[1 : n]

(1 − ρi (x , d))Hi (x)
2

︸ ︷︷ ︸

upper bound on θ′(x ; d)

6 −2(1 − η) θ(x), (11)

where

ρi (x, d) :=











































Fi (x)+F ′i (x)d

Fi (x)
if i ∈ EF (x) and Fi (x) 6= 0

0 if i ∈ EF (x) and Fi (x) = 0
Gi (x)+G′

i
(x)d

Gi (x)
if i ∈ EG (x) and Gi (x) 6= 0

0 if i ∈ EG (x) and Gi (x) = 0

max

(

Fi (x)+F ′
i
(x)d

Fi (x)
,
Gi (x)+G′

i
(x)d

Gi (x)

)

if i ∈ I (x),
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Polyhedral Newton-min algorithms
Hybrid polyhedral Newton-min algorithm II

Hybrid polyhedral Newton-min algorithm

Hybrid Polyhedral NM algorithm (HPNM)

If the plain Newton-min direction d in (7) satisfies (11), take it (very cheap),
Else take the secure polyhedral Newton-min direction d (more expensive).

Features of the HPNM algorithm:

⊕ in most iterations, a plain NM direction (7) is computed (a single LS to solve),
⊕ the number of inequalities 2|E−

τ (x)| should be very small (τ > 0 can be very small),
⊕ can be computed in polynomial time (by LO or QO),
⊕ d is a decrease direction of θ,
⊕ global convergence.

Theorem (global convergence of the HPNM algorithm)

If F and G : Ω → R
n are differentiable,

the HPNM algorithm generates a sequence {xk} ⊆ Ω,

x̄ ∈ Ω is an accumulation point of {xk} that is NM and PNM regular,

F ′ and G ′ are continuous at x̄ ,
then, {θ(xk )}k>1 ↓ 0 and x̄ is a solution to the NLCP (2).
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Numerical results on the LCP [0 6 x ⊥ y := (Mx + q) > 0]
Comparison of 3 solvers

Comparison of 3 solvers [40]

PNM (Polyhedral Newton-Min algorithm [26, 17])
◮ Direction determined by solving the quadratic optimization problem (QP)

min
1

2
‖d‖2

2 s.t.















Fi (x) + F ′
i (x)d = 0 if i ∈ EF (x)

Gi (x) + G ′
i (x)d = 0 if i ∈ EG (x)

Fi (x) + F ′
i (x)d > 0 if i ∈ I (x)

Gi (x) + G ′
i (x)d > 0 if i ∈ I (x).

(12)

◮ Kink tolerance τ determined to try to have |qp| 6 10.

HPNM (Hybrid Polyhedral Newton-Min algorithm [26, 17])
◮ Take the plain Newton-min direction if it satisfies the sufficient decrease criterion (11).
◮ Otherwise, take the minimum-norm PNM direction (12).
◮ Kink tolerance τ determined to try to have |qp| 6 10.

PATH (pathlcp)
◮ The reference CP solver by Dirkse, Ferris, Li, Munson [27, 35, 36, 50].
◮ Uses the normal map reformulation [62]: x solves (2) if and only if (x , z) solves

F (x) = z+ and G(x) = z−.
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Numerical results on the LCP [0 6 x ⊥ y := (Mx + q) > 0]
Dense random problems

Dense random problems

Dense random problems of Harker and Pang [43]

M = ATA+ Diag(d) + Z ∈ P, with random A ∈ R
n×n, d ∈ R

n
++, and Z ∈ Zn.

q such that 0 = xA < yA, xI > yI = 0, xE = yE = 0 where na := |A|, ni := |I |,
ne := |E | are given.

PNM HPNM PATH

n na ni iter #qp |qp| α sec iter #qp |qp| α sec sec

512 128 256 29 27 7.8 3 10−1 0.81 6 4 8.5 1 10−0 0.61 0.21

1024 256 512 47 45 7.9 2 10−1 1.46 7 5 9.0 1 10−0 0.61 1.55

2048 512 1024 62 60 9.6 1 10−1 5.17 7 4 10.0 1 10−0 1.04 7.26
4096 1024 2048 134 132 8.8 4 10−2 57.30 8 1 10.0 1 10−0 3.14 45.10

8192 2048 4096 223 221 9.4 3 10−2 700.14 7 0 – 1 10−0 14.96 233.10

16384 4096 8192 425 423 9.9 1 10−2 9516.20 7 0 – 1 10−0 100.08 stuck!
O(np) with p = 0.78 2.79 0.04 1.49 2.51

#qp = number of QP’s, |qp| = mean size of the QP’s, α = log10-mean stepsize, sec = tic-toc time
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Numerical results on the LCP [0 6 x ⊥ y := (Mx + q) > 0]
Academic difficult problems I

Academic difficult problems (Murty [54])

Problem yielding exponential complexity of the Lemke algorithms for an LCP with a
P-matrix:

M = LM :=



















1 0 0 · · ·

2 1 0
. . .

2 2 1
. . .

.

.

.
. . .

. . .
. . .



















∈ P, q = −e, and x1 = 0. (13)

Murty problem (S2)

PNM HPNM PATH

n sec iter #qp |qp| α sec iter #qp |qp| α sec sec

512 0.00 396 394 9.8 1 10−2 2.65 480 49 9.7 1 10−2 1.66 0.03
1024 0.02 1094 1092 9.9 3 10−3 8.07 1061 142 10.0 4 10−3 5.03 0.13

2048 0.08 1850 1848 9.9 2 10−3 27.88 2421 412 10.0 1 10−3 32.98 0.63

4096 0.55 3951 3949 10.0 1 10−3 224.11 5821 1494 10.0 4 10−4 340.30 2.44
8192 2.67 7756 7754 10.0 5 10−4 2864.29 12880 4032 10.0 1 10−4 5905.34 13.10
O(np), p = 1.04 2.50 1.19 2.97 2.18

#qp = number of QP’s, |qp| = mean size of the QP’s, α = log10-mean stepsize, sec = tic-toc time
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Numerical results on the LCP [0 6 x ⊥ y := (Mx + q) > 0]
Academic difficult problems II

Academic difficult problems (Fathi [33, 30])

Problem yielding exponential complexity of the Lemke algorithms for an LCP with a
PD-matrix:

M = LML
T
M ∈ PD, q = −e, and x1 = 0, (14)

Fathi problem (S2)

PNM HPNM PATH

n sec iter #qp |qp| α sec iter #qp |qp| α sec sec

512 0.00 255 214 5.9 2 10−2 2.07 248 18 10.0 2 10−2 1.57 2.08

1024 0.02 468 318 5.9 1 10−2 4.98 430 12 10.0 2 10−2 5.08 24.86
2048 0.09 1005 686 5.7 4 10−3 35.67 883 20 10.0 4 10−3 50.71 370.13

4096 0.55 2220 1563 5.5 1 10−3 525.28 1488 42 10.0 6 10−3 340.88 2726.22

8192 2.98 5145 3369 4.4 7 10−4 4574.70 2844 36 10.0 2 10−3 4350.27
O(np), p = 1.09 2.89 0.88 2.89 3.50

#qp = number of QP’s, |qp| = mean size of the QP’s, α = log10-mean stepsize, sec = tic-toc time
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Numerical results on the LCP [0 6 x ⊥ y := (Mx + q) > 0]
Practical problems

Diphasic flow in a porous media [8]

PNM HPNM PATH

n iter #qp |qp| α sec iter #qp |qp| α sec sec

201 4 0 – 1 10−0 0.25 4 0 – 1 10−0 0.27 0.04
501 4 0 – 1 10−0 0.26 4 0 – 1 10−0 0.26 0.22

#qp = number of QP’s, |qp| = mean size of the QP’s, α = log10-mean stepsize, sec = tic-toc time
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Conclusion

Conclusion

We have proposed a means to globalize the NM/SSN algorithm for complementarity
problems.

Sometimes spectacularly efficient (random, diphasic flow, many practical
applications), but not on particular problems (Murty).

There is still much to understand and to do, but it seems worth the effort.

◮ Baptiste Plaquevent-Jourdain (PhD) works on the Levenberg-Marquardt globalization
(to avoid convergence to meaningless points and weaken the regularity condition).

◮ A thorough experiment campaign on LCP is programmed (with Mathieu Frappier).

◮ To do: asymptotic analysis of the algorithm (admissibility of the unit stepsize,
quadratic convergence, finite termination on LCP(P)).

◮ To do: robustness of the algorithm away from a regular solution (i.e., deal with the
possible infeasibility of the linearized system (10)).

◮ To do: application of the same solution principle to optimization.

◮ To do: application of the same solution principle to other nonsmooth systems, if any.
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