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A geophysical motivation

• Reconstruction of the geophysical structure of the substratum
(interface positions and velocities).

• From seismic data
(receivers measuring the wave traveltimes).

• Useful for the detection of petroleum reservoirs.





Mathematical formulation

• A least-squares problem:

min
m

1

2
‖T (m)− T

obs‖22,

where

◦ m is the model of the subsurface structure (typically 105 variables),
◦ T (m) is the computed traveltimes,
◦ T obs is the observed traveltimes (typically 106 observations).

• A need of regularization:

min
m

1

2
‖T (m)− T

obs‖22 +
ε

2
m
>
Rm,

where

◦ R < 0 is such that the Gauss-Newton Hessian approximation satisfies

J
>
J + εR � 0.

◦ Here J := T ′(m).



Introduction of constraints

• Only linear constraints: 8<:
minm

1
2 ‖T (m)− T obs‖22

cE(m) = 0

l ≤ cI(m) ≤ u.

• Solution technique→ SQP, which requires the solution to QP’s8<:
infx

1
2x
>Qx + q>x

CEx = b

l ≤ CIx ≤ u,

where
Q := J

>
J + εR � 0.

• For “historical” reasons,
we solve these QP’s using the augmented Lagrangian (AL) algorithm:

It is very efficient !







Solving QP’s with an augmented Lagrangian (AL) approach

• The problem to solve:

(P)


infx
1
2x
>Qx + q>x

l ≤ Cx ≤ u,

where

◦ Q is n× n and positive definite,

◦ q ∈ Rn,

◦ C is m× n,

◦ l ≤ Cx ≤ u means li ≤ (Cx)i ≤ ui for i = 1, . . . , m,

◦ it is assumed that l < u (li and ui can be infinite).

• Comments:

◦ Q � 0 =⇒ (P) has a unique solution, say x̄,

◦ Q � 0 =⇒ RESTRICTIVE, but may be useful
– in its own right,
– for regularized least-squares problems + SQP (then Q = J>J + εR),
– with SQP + pd-quasi-Newton Hessian approximation,

◦ AL approach is useful for LARGE problems, without matrix factorizations.



• Problem reformulation:

(P)


infx
1
2x
>Qx + q>x

l ≤ Cx ≤ u,
−→

8<:
inf(x,y)

1
2x
>Qx + q>x

y = Cx ← dualized constraint
l ≤ y ≤ u,

• Algorithm AL: Hestenes (1969), Powell (1969), Rockafellar (1971-1973), . . .

• given λ0 ∈ Rm

• repeat for k = 0, 1, 2, . . .:

– solve with a certain rk > 0
inf(x,y)

1
2x
>Qx + q>x + λ>k(y − Cx) +

rk
2 ‖y − Cx‖2

l ≤ y ≤ u
(1)

→ unique solution (xk, yk)

– update λk+1 = λk + rk(yk − Cxk)

– stop if yk ' Cxk.

• Remarks:

◦ role of rk

◦ the Lagrange problem (1) is “easy” to solve (analytically in y or numerically in (x, y)).



Outline

Background: proximality and duality

◦ The proximal algorithm
◦ The classical dual function δ0 and the regularized dual function δr

◦ AL method as a proximal algorithm on δ0

Property 1: finite time identification of the active constraints at the solution x̄ (new ?)

◦ Define sign(t) := −1 if t < 0; sign(t) := 0 if t = 0; sign(t) := +1 if t > 0.
◦ If strict complementarity and λk → λ̄ (dual convergence),

then sign(λk) = sign(λ̄), for k large enough.

Property 2: GLOBAL linear convergence of λk → λ̄, a dual solution (new ?)

◦ If r is large enough,
then ∀ β > 0, ∃ ρ ∈ ]0, 1[, such that dist(λ0,SD) ≤ β and k ≥ 0 imply

‖yk+1 − Cxk+1‖ ≤ ρ‖yk − Cxk‖.



Proximality and duality

Proximality

• Let be given δ ∈ Conv(Rm), r > 0 and λ ∈ Rm.

• Then the problem

inf
µ∈Rm

„
δ(µ) +

1

2r
‖µ− λ‖2

«
has a unique solution, λp say, called the proximal point of λ.

• Interpretation: for some gp ∈ ∂δ(λp), there holds λp = λ− rgp.

δ

λ

δ(λ)

λ
p

δ

λ

δ(λ)

λ
p



The proximal algorithm for minimizing δ

• Proximal algorithm: Bellman et al. (1966), Martinet (1970), Rockafellar (1976), . . .

• current iterate λk ∈ Rm

• the next iterate λk+1 is the proximal point (λk)p of λk for a certain rk > 0.

It is known that, if {rk} is bouded away from zero, then λk → λ̄ (some minimizor of δ).

• A famous finite time convergence property:

0 ∈ int ∂δ(λ̄)

(or δ′(λ̄; µ) > 0, ∀µ 6= 0)
=⇒ finite termination

(or λp = λ̄ if λ close to λ̄)

δδ

λ

δ(λ)

λ
p



• A convenient extension of this property:

If · δ ∈ Conv(Rm), fixed r > 0,
· the proximal algorithm generates a sequence
{λk} → λ̄,
· there exists a set A ⊂ Rm such that

Ω :=
[
λ∈A

(λ + r ∂δ(λ))

is a neighborhood of λ̄,
then λk ∈ A for k large.

Proof:

– For k large, λk ∈ Ω.
– When λk ∈ Ω,

then there is a λ ∈ A such that λk = λ + rg or λ = λk − rg with g ∈ ∂δ(λ).
– This implies that λk+1 = λ ∈ A.

Special case: 0 ∈ int ∂δ(λ̄).

– Take A = {λ̄}.
– Since Ω = λ̄ + r ∂δ(λ̄) is a neighborhood of λ̄, one has λk = λ̄ for large k.



Dual functions

• Remind the QP to solve:

(P)

8><>:
inf(x,y)

1
2x>Qx + q>x

y = Cx
l ≤ y ≤ u,

• Classical dual function associated with problem (P):
for H := CQ−1C> and v := −CQ−1q

δ0(λ)

:= − inf
x

y∈[l,u]

„
1

2
x
>

Qx + q
>

x + λ
>
(y − Cx)

«

= max
y=(yi)

m
i=1

yi ∈ {li, ui} if λi 6= 0
yi = 0 if λi = 0

„
1

2
λ
>

Hλ + (v − y)
>

λ +
1

2
q
>

Q
−1

q

«
.

• Regularized dual function associated with problem (P):

δr(λ):=− inf
(x,y)

l≤y≤u

„
1

2
x
>

Qx + q
>

x + λ
>
(y − Cx) +

r

2
‖y − Cx‖22

«
.

This function is C1,1.



AL method as a proximal algorithm on δ0 (Rockafellar , 1973)

• δr is the Moreau-Yosida regularization of δ0:

δr(λ) = inf
µ∈Rm

„
δ0(µ) +

1

2r
‖µ− λ‖2

«
, hence ∇δr(λ) = 1

r(λ− λp).

• On the other hand:

∇δr(λ) = ∇λ`r(xλ,r, yλ,r, λ) = −(yλ,r − Cxλ,r).

• Conclusion:

the proximal point λp = λ + r(yλ,r − Cxλ,r) is the new AL iterate.

r = 0.15

slow because r is small



Property 1: finite time identification of the active constraints

The result

• Definition:

sign(t) :=

8<:
−1 if t < 0

0 if t = 0

+1 if t > 0

Note that for a P-D solution (x̄, λ̄), there holds

λ̄i > 0 =⇒ ȳi = li
λ̄i = 0 ⇐= li < ȳi < ui

λ̄i < 0 =⇒ ȳi = ui

• The result:

If · fixed r > 0,
· the AL algorithm generates a sequence {λk} → λ̄,
· strict complementarity at λ̄,

then sign(λk) = sign(λ̄) for k large.



The “proof”

• Take as a candidate for the finite time attractor:

A := {λ : sign(λ) = sign(λ̄)}

and show that
Ω :=

[
λ∈A

(λ + r ∂δ0(λ)) is a neighborhood of λ̄.

• To conclude observe that

◦ 0 ∈ ri ∂δ0(λ̄) = ri(Cxλ̄ − Yλ̄)

this is due to the strict complementarity since

(Yλ)i =

8>><>>:
[ui, ui] if λi < 0

[li, ui] if λi = 0

[li, li] if λi > 0

◦ λ ∈ A 7→ λ + r ∂δ0(λ) = ϕ(λ) + J ,

where ϕ is an affine mapping (ϕ(λ̄) = λ̄)
and J := r∂δ0(λ̄).

◦ ϕ(λ) = (I +rH)λ+γ has a full rank property.

A



Observations

• Strict complementarity is essential.

• When r is larger, the set Ω “tends” to be larger.

→ identification “tends” to be faster with large r.

• When r is larger, the convergence of λk to λ̄ is faster.

→ identification “tends” to be faster with large r.

• The algorithm used to solve the Lagrange problem

inf
(x,y)

l≤y≤u

„
1

2
x
>
Qx + q

>
x + λ

>
(y − Cx) +

r

2
‖y − Cx‖22

«

should take advantage of this finite time identification property.

→ a possible algorithm is: active set + gradient projection.



Illustrations
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Property 2: GLOBAL linear convergence of λk → λ̄

The result

• The result:

If {rk} is “sufficiently” bounded away from zero (say rk ≥ r̄ > 0, with a large r̄),
then ∀ β > 0, ∃ ρ ∈ ]0, 1[, such that dist(λ0,SD) ≤ β implies that λk → λ̄ with

‖yk+1 − Cxk+1‖ ≤ ρ‖yk − Cxk‖, for all k ≥ 0.

• Local linear convergence is clear:

◦ Identification of the active constraints in a finite number of iterations.
◦ Global linear convergence for equality constrained problems.

• The interest:

In fact ρ decreases when r increases,
so that the result can be usefull to adapt r from iteration to iteration.



Changing the goal

• Substracting any λ̄ ∈ SD from the iteration definition

λk+1 = λk − rkgk+1, where gk+1 := −(yk − Cxk) ∈ ∂δ0(λk+1),

squaring and using the monotonicity of ∂δ0(·), one gets

‖λk+1 − λ̄‖2 + r
2
k‖gk+1‖2 ≤ ‖λk − λ̄‖2. (2)

• Assume that (∂δ0)
−1 is radially Lipschitz at 0 in the sense that:

dist(λ,SD) ≤ L‖g‖, ∀λ ∈ SD + B, ∀ g ∈ ∂δ0(λ). (3)

• Then

‖gk+1‖ ≤ min

„
L

rk

, 1

«
‖gk‖,

which implies the linear convergence of ‖yk − Cxk‖ when rk is sufficiently large.

• Therefore, we have to show (3).



The easy case: equality constrained problems

• Consider the problem 
infx

1
2x
>Qx + q>x

Cx = b

• The dual function is (denote as before H := CQ−1C> and v := −CQ−1q):

δ0(λ) =
1

2
λ
>
Hλ + (v − b)

>
λ +

1

2
q
>
Q
−1

q.

• For g = ∇δ0(λ) and 0 = ∇δ0(λ̄) can be written

g = Hλ + v − b and 0 = Hλ̄ + v − b.

• Substracting and multiplying by λ− λ̄ yield

‖g‖ ‖λ− λ̄‖ ≥ g>(λ− λ̄) = (λ− λ̄)>H(λ− λ̄). (4)

◦ Either C = 0 and b = 0: then δ0 is constant, SD = Rm, and (3) is trivial.

◦ Or C 6= 0: then for λ̄ = PSD(λ), λ− λ̄ ∈ N(H)⊥, so that

(λ− λ̄)
>
H(λ− λ̄) ≥ σ1‖λ− λ̄‖2,

where σ1 is the smallest nonzero eigenvalue of H. Then (3) follows.



The more difficult case: inequality constrained problems

• The key identity (4) becomes (here yλ ∈ Yλ)

‖g‖ ‖λ− λ̄‖ ≥ g>(λ− λ̄) = (λ− λ̄)>H(λ− λ̄)− (yλ − ȳ)>(λ− λ̄)
?

≥ σ‖λ− λ̄‖2.

Both terms in the RHS of the squared equation are ≥ 0. None of them can be neglected.

• A difficult situation: the second term vanishes.

This occurs when λ ∈ O (the optimal orthant).

Use of the following result:

If · affine space A := {x ∈ Rn : Ax = b},
· polyhedron X := A ∩ Rn

+,
then ∃ γ > 0, ∀x ∈ Rn

+:

dist(x,A) ≥ γ dist(x,X )

to conclude that

(λ− λ̄)
>
H(λ− λ̄) ≥ σ‖λ− λ̄‖2. λ

projected λ



• Another difficult situation: the first term vanishes.

This situation occurs, for example, when

C = 01×n, l = −1, u = +1.

Then δ0(λ) = |λ| and ∂δ−1
0 is not globally Lipschitz.

In that case it is possible to show that

g
>
(λ− λ̄) ≥ −(yλ − ȳ)

>
(λ− λ̄)

≥ −(yλ − ȳ)
>
(λ− λO)

≥ γ
′‖λ− λ̄‖

≥
γ′

β
‖λ− λ̄‖2,

since ‖λ− λ̄‖ ≤ β (this is the reason for this assumption).

• Then using Cauchy-Schwarz on the LHS, the expected inequality holds in any cases: for
some constant γ

‖g‖ ≥ γ‖λ− λ̄‖.



An illustration
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Linear rate as a function of r (log-scales)
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Perspectives and references

• Extending the finite time indentification result to non-quadratic functions.

F. Delbos and J.Ch. Gilbert (2003). Two properties of an augmented Lagrangian
algorithm for solving a strictly convex quadratic program.

→ a comparison with

R. Mifflin and C. Sagastizábal (2002). Proximal points are on the fast track. Journal of
Convex Analysis 9, 563-579.

W. Hare and A. Lewis (2003). Identifying active constraints via partial smoothness and
prox-regularity.

• Extending the finite time indentification result to the case of inexact minimization of the AL.

→ see the contribution of

Z. Dostál, A. Friedlander, and S.A. Santos (2003). Augmented Lagrangian with
adaptative precision control for quadratic programming with simple bounds and equality
constraints. SIAM Journal on Optimization 13, 1120-1140.

• Using the global linear convergence property to design an update rule for rk.

→ PhD thesis of F. Delbos, Institut Français du Pétrole (2004).


