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A tribute to Michael James David POWELL (1936-2015) . . .

Since you ask me to mention a gratifying

paper, let me pick “A method for nonlinear

constraints in minimization problems”,

because it is regarded as one of the sources

of the “augmented Lagrangian method”,

which is now of fundamental importance in

mathematical programming. I have been

very fortunate to have played a part in

discoveries of this kind.

M.J.D. Powell [19; 2003]
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A brief overview of numerical nonlinear optimization
The problem to solve

A standard generic nonlinear optimization problem consists in

(PEI )







infx f (x)
cE (x) = 0
cI (x) 6 0,

where f : Rn → R, cE : Rn → R
mE , and cI : R

n → R
mI are smooth

(possibly non convex) functions.

Sometimes we will consider simplified a version (to avoid being
cumbersome), namely

(PI )

{
infx f (x)
cI (x) 6 0.
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A brief overview of numerical nonlinear optimization
Primal algorithms

A primal algorithm gives priority to the visible or primal variables x .

Main ideas
r penalize the constraints with penalty parameter r → (some limit),
r apply an unconstrained algorithm to solve the penalized problem.
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A brief overview of numerical nonlinear optimization
Primal algorithms

Example 1: exterior penalization (quadratic penalization)

(PI )

{
infx f (x)
cI (x) 6 0

y (PI ,r ) inf
x

(

f (x) +
r

2
‖cI (x)

+‖2
2

)

.

Pros and cons

⊕ Easy to implement.

⊖ Sequence of problems to solve.

⊖ Ill-conditioning.

X
cI (x)
r = 1

r = 1.2

r = 1.5

r = 2

r = 3
r = 5

f (x) = 1 − x − 1
3 x

3

x̄ x̄r
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A brief overview of numerical nonlinear optimization
Primal algorithms

Example 2: interior penalization (interior point methods)

(PI )

{
infx f (x)
cI (x) 6 0

y (PI ,r ) inf
x

(

f (x)− r
∑

i∈I

log |ci (x)|

)

.

Pros and cons

⊕ Easy to implement.

⊖ Sequence of problems to solve.

⊖ Ill-conditioning.

⊕ Each problem (PI ,r ) can be
solved inexactly (a single Newton
step, in linear optimization). cI (x)

r = 5
1

0.2
0.04

f (x) = 1 − x −
1
3 x

3

x̄x̄r
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A brief overview of numerical nonlinear optimization
Dual algorithms

A dual algorithm gives priority to the hidden or dual variables λ.

The hidden variables are revealed by the optimality conditions (= local
description of optimality).

If x∗ is a local solution to (PEI ) (+ smoothness and qualification
assumptions), there exist multipliers or dual variables λ∗ ∈ R

m such
that

(KKT)







∇xℓ(x∗, λ∗) = 0
cE (x∗) = 0
0 6 (λ∗)I ⊥ cI (x∗) 6 0.

where
r KKT = Karush-Kuhn-Tucker,
r Lagrangian function ℓ(x , λ) = f (x) + λTc(x) = f (x) +

∑

i λici(x).
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A brief overview of numerical nonlinear optimization
Dual algorithms

How to generate dual iterates?

For some coupling function ϕ : X × Λ → R, write (PEI ) as an infsup:

(PEI ) inf
x∈X

sup
λ∈Λ

ϕ(x , λ).

The dual problem then reads

(DEI ) sup
λ∈Λ

inf
x∈X

ϕ(x , λ) = − inf
λ∈Λ

(

sup
x∈X

−ϕ(x , λ)

)

︸ ︷︷ ︸

δ(λ)

.

Generate the dual iterates by minimizing on Λ the dual function

λ ∈ Λ 7→ δ(λ) := sup
x∈X

−ϕ(x , λ) ∈ R.
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A brief overview of numerical nonlinear optimization
Dual algorithms

How to chose the coupling function ϕ?

The problem (PEI ) must be identical to

inf
x∈Rn

sup
λ∈Λ

ϕ(x , λ).

In some sense, (DEI ) must be “equivalent” to (PEI ).

Ensured if a PD solution (x∗, λ∗) to (PEI ) is a saddle-point of ϕ:

∀ x ∈ R
n, ∀λ ∈ Λ : ϕ(x∗, λ) 6 ϕ(x∗, λ∗) 6 ϕ(x , λ∗).
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A brief overview of numerical nonlinear optimization
Dual algorithms

Lagrangian relaxation

The problem (PEI ) can be written

inf
x∈Rn

sup
λ∈Λ

f (x) + λT

EcE (x) + λT

I cI (x)
︸ ︷︷ ︸

ℓ(x,λ)

,

where Λ := {λ ∈ R
m : λI > 0}.

Hence the dual problem (DEI ) consists in minimizing the dual function

λ ∈ R
m 7→ δ(λ) :=

(

sup
x∈Rn

−ℓ(x , λ)

)

+ IΛ(λ) ∈ R,

which is nonsmooth, convex, and closed (i.e., l.s.c.).

Saddle-point at a KKT point (x∗, λ∗) if (PEI ) is convex.

Typical (and difficult) algorithm: bundle method [17].
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A brief overview of numerical nonlinear optimization
Dual algorithms

Augmented Lagrangian relaxation (multiplier method)

For any r > 0, problem (PI ) can also be written (cI (x) + y = 0, y > 0)

inf
(x,y)∈Rn×R

m
+

sup
λ∈Rm

f (x) + λT(cI (x) + y) +
r

2
‖cI (x) + y‖2

2

︸ ︷︷ ︸

ℓr (x,y,λ)

,

where ℓr is called the augmented Lagrangien.

Hence the dual problem (DEI ) consists in minimizing the dual function

λ ∈ R
m 7→ δr (λ) := sup

(x,y)∈Rn×R
m
+

−ℓr (x , y , λ), solution (x+, y+)

which is smooth (C 1,1), convex, and closed.

Local saddle-point at a KKT+SOC2 point (x∗, λ∗) if r is large enough.

Easy algorithm: λ+ := λ+ r [cI (x+) + y+] [16, 18, 21, 4, 1, 23, 24].
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A brief overview of numerical nonlinear optimization
Dual algorithms

Outline of the augmented Lagrangian (AL) algorithm

One iteration: from (λk , rk ) ∈ R
m × R++ to (λk+1, rk+1).

Compute (if possible, exit otherwise)

(xk+1, yk+1) ∈ arg min
(x,y)∈Rn×R

m
+

ℓrk (x , y , λk ). (1)

Update the multipliers by λk+1 = λk + rk [cI (xk+1) + yk+1].
Stop if [cI (xk+1) + yk+1] ≃ 0.
Update rk y rk+1 . . .

Pros and cons

⊕ Do not require convexity (but easier if (PEI ) is convex).
⊕ Convergence well understood if (PEI ) is convex.
⊖ A sequence of nonlinear optimization problems to solve in (1).
⊖ (1) sometimes difficult (y > 0, destroy decomposition, ill-conditioning).
⊖ Update of rk is tricky.
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A brief overview of numerical nonlinear optimization
Dual algorithms

Another point of view on the augmented Lagrangian

The original idea [16, 18] was to penalize ℓ(·, λ∗) instead of f because this
yields
r exactness (solving a single penalty problem),
r better conditioning (r large but not infinite).

X
cI (x)
r = 1

r = 1.2

r = 1.5

r = 2

r = 3r = 5

f (x) = 1 − x − 1
3x

3

x̄ x̄r X
cI (x)

ℓ1(x , λ∗)

f (x) = 1 − x − 1
3 x

3

ℓ(x , λ∗) = 1 − 1
3 x

3

x̄

Since λ∗ is not known, an iterative process must generate λk → λ∗ (by
minimizing the dual function).

Chiche, Gilbert, Joannopoulos 17 / 101



A brief overview of numerical nonlinear optimization
Dual algorithms

An important property of the AL algorithm, when (PEI ) is convex

AL algorithm = proximal algorithm on the dual function δ.

The proximal algorithm on the dual function δ computes λk+1 from λk by

λk+1 = arg min
λ∈Rm

(

δ(λ) +
1

2rk
‖λ− λk‖

2

)

.

Optimality: ∃ sk+1 ∈ ∂δ(λk+1) such that 0 = sk+1 +
1

rk
(λk+1 − λk ) or

λk+1 = λk − rksk+1, for some sk+1 ∈ ∂δ(λk+1).

Hence it is an implicit subgradient method (implicit Euler).

One writes
λk+1 = proxδ,rk (λk )
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A brief overview of numerical nonlinear optimization
Dual algorithms

With pictures:

| · |+ 1

2r
| · −λk |

2

Cst − 1

2r
| · −λk |

2

δ = | · |δ = | · |

λk+1λk+1 λkλk

δ(λk)

δ(λk+1)
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A brief overview of numerical nonlinear optimization
Dual algorithms

Proposition (Rockafellar [22; 1973])

If δ ∈ Conv(Rm) and rk > 0, then

− inf
(x,y)∈Rn×R

m
+

ℓrk (x , y , λk ) = inf
λ∈Rm

(

δ(λ) +
1

2rk
‖λ− λk‖

2

)

.

Any solution (xk+1, yk+1) to the problem in the LHS and the unique solution

λk+1 to the problem in the RHS are linked by

{
λk+1 = λk + rk [cI (xk+1) + yk+1]
− [cI (xk+1) + yk+1] ∈ ∂δ(λk+1).

Hence the multiplier computed by the AL algorithm is λk+1 = proxδ,rk (λk ).
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A brief overview of numerical nonlinear optimization
Dual algorithms

Codes implementing the AL for nonlinear optimization

Lancelot
Conn, Gould et Toint [6; 1992]

Algencan
Birgin et Martínez [2; 2014]
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A brief overview of numerical nonlinear optimization
Primal-dual algorithms

A primal-dual algorithm generates a PD sequence {(xk , λk )}

Consider the generic problem

(PEI )







infx f (x)
cE (x) = 0
cI (x) 6 0,

The classical primal-dual algorithm works on the first order optimality
conditions directly

(KKT)







∇xℓ(x∗, λ∗) = 0
cE (x∗) = 0
0 6 (λ∗)I ⊥ cI (x∗) 6 0.

“Linearization” gives the displacement (d , µ) of (x , λ):

(KKT′)







∇xℓ(xk , λk ) +∇2
xxℓ(xk , λk )d + c ′(xk )

Tµ = 0
cE (xk ) + c ′E (xk )d = 0
0 6

(
λk + µ

)

I
⊥
(
cI (xk ) + c ′I (xk)d

)
6 0.
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A brief overview of numerical nonlinear optimization
Primal-dual algorithms

The system (KKT’) is formed of the first order optimality conditions of the
following osculating quadratic problem in d :

(OQP)







infd ∇f (xk )
Td + 1

2
dT∇2

xx ℓ(xk , λk )d
cE (xk ) + c ′E (xk )d = 0
cI (xk ) + c ′I (xk)d 6 0,

whose multipliers are λQP

k := λk + µ.

One iteration of the local SQP/SQO algorithm: from (xk , λk ) to
(xk+1, λk+1)

◦ If possible, solve (OQP), to get dk and λQP

k .
◦ Update xk+1 := xk + dk and λk+1 := λQP

k .
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A brief overview of numerical nonlinear optimization
Primal-dual algorithms

In the sequel:

Analyse/implement an AL algorithm to the solve efficiently the
OQP of the SQP algorithm.
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Convex quadratic optimization
The QP to solve

The problem to solve

(P)

{
infx∈Rn q(x)
l 6 Ax 6 u,

(2)

where q is a convex quadratic function defined at x ∈ R
n by

q(x) = gTx +
1

2
xTHx

and

◦ g ∈ R
n

◦ H < 0 (NP-hard otherwise, (P) encompasses linear optimization),
◦ A is m × n,
◦ l , u ∈ R

m
satisfy l < u.

Also equality constraints in all solvers.
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Convex quadratic optimization
Can one still make progress in convex quadratic optimization?

The problem is polynomial and can be solved by

◦ active-set methods → probably non-polynomial,

◦ interior-point methods → polynomial,

◦ nonsmooth methods → polynomial on subclasses,

◦ other methods (including the augmented Lagrangian method).

Has this discipline been fully explored in the XXth century?
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Convex quadratic optimization
Can one still make progress in convex quadratic optimization?

Observation 1. Odd behavior of Quadprog (Matlab). If the data is

g =





1
1
0



 , H =





1 0 0
0 4 2
0 2 1



 , x >





−1
−1
−1



 ,

Quadprog-active-set answers

Exiting: the solution is unbounded and at infinity;

Function value: 3.20000e+33

Very odd, since the problem has a unique solution, which is

x =





−1
−1
2



 and val(P) = −1.5.

It is a benign flaw, since if H y H + εI , Quadprog finds a near solution.
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http://www.mathworks.fr/fr/help/optim/ug/quadprog.html
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Convex quadratic optimization
Can one still make progress in convex quadratic optimization?

Quadprog-reflective-trust-region (default algorithm) answers

Optimization terminated: relative function value changing by
less than OPTIONS.TolFun.

Function value: -1.5

Correct answer!

Conclusion: the good algorithm may depend on the problem.
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Convex quadratic optimization
Can one still make progress in convex quadratic optimization?

Observation 2. On the solvable convex QPs of the CUTEst collection:
r first group: 138 problems, solvers in Fortran or C++,
r second group: 58 problems (n 6 500), solver in Matlab.

Solvers % failure % too slow % infeasibility % other

Qpa (AS) 30 % 15 % 15 % –
Qpb (IP) 20 % 5 % 2 % 13 %
Ooqp (IP) 54 % 1 % 12 % 41 %

Quadprog (AS) 33 % 12 % 19 % 2 %

r “too slow”: requires more than 600 seconds,
r “infeasibility”: wrong diagnosis of infeasibility,
r “other”: “too small stepsize”, “too small direction”, “ill-conditioning”, and “unknown”.
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Convex quadratic optimization
Can one still make progress in convex quadratic optimization?

The problem does not come from some very difficult QPs.
For example, on the CUTEst problem QSCTAP1 (n = 480, nb = 480 lower
bounds, mI = 180 lower bounds, mE = 120):

r Qpa claims that the problem is unbounded,
r Qpb claims that the problem has a solution,
r Ooqp claims that the problem is infeasible,
r Quadprog stops on a too large number of iterations (> 104).

=⇒ Still progress to do.
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Convex quadratic optimization
Can one still make progress in convex quadratic optimization?

Observation 3 (more important).

Most (all?) solvers do not give appropriate information
when the QP is special, they just return a flag.

Special means val(P) /∈ R below:

◦ val(P) ∈ R ⇐⇒ the problem has a solution (Frank-Wolfe [10; 1956]),

◦ val(P) = −∞ ⇐⇒ the problem is feasible and unbounded,

◦ val(P) = +∞ ⇐⇒ the problem is infeasible.

Appropriate means useful when the QP solver is used in the SQP
algorithm for solving a nonlinear optimization problem.
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The AL algorithm
The AL algorithm for a solvable convex QP

Towards the AL algorithm

The problem is transformed by using an auxiliary variable y :

(P)

{
infx∈Rn q(x)
l 6 Ax 6 u

y (P ′)







inf(x,y)∈Rn×Rm q(x)
Ax = y

l 6 y 6 u.

Equality constraints penalized by the augmented Lagrangian

ℓr (x , y , λ) := q(x) + λT(Ax − y) +
r

2
‖Ax − y‖2.

At each iteration the AL algorithm [16, 18, 21, 4, 1, 23, 24; 1969-74] solves

inf
(x,y)∈Rn×[l,u]

ℓr (x , y , λ). (3)

The AL algorithm makes sense if it is easier to solve (3) than (P).
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The AL algorithm
The AL algorithm for a solvable convex QP

The AL algorithm for a solvable convex QP

One iteration, from (λk , rk) ∈ R
m × R++ to (λk+1, rk+1):

Compute (if possible, exit otherwise)

(xk+1, yk+1) ∈ arg min
(x,y)∈Rn×[l,u]

ℓrk (x , y , λk ).

Update the multipliers

λk+1 = λk − rk sk+1, where sk+1 := yk+1 − Axk+1.

Stop if
sk+1 ≃ 0.

Update rk y rk+1 > 0: ρk := ‖sk+1‖/‖sk‖ and

rk+1 := max

(

1,
ρk
ρdes

)

rk .
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The AL algorithm
The AL algorithm for a solvable convex QP

Interpretation of the AL algorithm

One iteration, from (λk , rk) ∈ R
m × R++ to (λk+1, rk+1):

Compute (if possible, exit otherwise)

(xk+1, yk+1) ∈ arg min
(x,y)∈Rn×[l,u]

ℓrk (x , y , λk ).

Update the multipliers

λk+1 = λk − rk sk+1, where sk+1 := yk+1 − Axk+1.

Stop if
sk+1 ≃ 0.

Update rk y rk+1 > 0: ρk := ‖sk+1‖/‖sk‖ and

rk+1 := max

(

1,
ρk
ρdes

)

rk .
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The AL algorithm
The AL algorithm for a solvable convex QP

The dual function δ : Rm → R, defined at λ ∈ R
m by

δ(λ) := − inf
(x ,y)∈Rn×[l ,u]

(

q(x) + λT(Ax − y)
)

.

◦ δ is convex, closed, and δ > −∞.
◦ dom δ 6= ∅ ⇐⇒ δ 6≡ +∞ ⇐⇒ δ ∈ Conv(Rm).
◦ Piecewise quadratic (quadratic on each orthant).

If (P) ≡ (P ′) has a solution:

0 ∈ ∂δ(λ̄) ⇐⇒ λ̄ is a dual solution to (P ′).

The AL algorithm looks for a

λ̄ ∈ arg min δ.
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The AL algorithm
The AL algorithm for a solvable convex QP

AL iterates minimizing the dual function for a solvable QP

◦ δ is piecewise quadratic

δ(λ) =
1
2
λTSλ+ (v+yλ)

Tλ+ Cst

◦ SD := arg min δ

◦ ∂δ(λk+1) contains

λk − λk+1

rk
= yk+1 − Axk+1

◦ small rk ’s in the figure

SD

λ1

λ2
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The AL algorithm
The AL algorithm for a solvable convex QP

Motivation of the update rule of the penalty parameters

One iteration, from (λk , rk) ∈ R
m × R++ to (λk+1, rk+1):

Compute (if possible, exit otherwise)

(xk+1, yk+1) ∈ arg min
(x,y)∈Rn×[l,u]

ℓrk (x , y , λk ).

Update the multipliers

λk+1 = λk − rk sk+1, where sk+1 := yk+1 − Axk+1.

Stop if
sk+1 ≃ 0.

Update rk y rk+1 > 0: ρk := ‖sk+1‖/‖sk‖ and

rk+1 := max
(

1, ρk

ρdes

)

rk .
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The AL algorithm
The AL algorithm for a solvable convex QP

The update rule of rk is based on the following global linear
convergence result [8; 2005].

◦ If (P) has a solution, then the dual solution set SD 6= ∅ and

∀β > 0, ∃ L > 0, distSD
(λ0) 6 β implies that

∀ k > 1, ‖sk+1‖ 6 min
(

1, L
rk

)

‖sk‖,
(4)

where sk := yk − Axk .

◦ (4) comes from a quasi-global error bound on the dual solution set SD:

for any bounded set B ⊂ R
m, there is an L > 0, such that

∀λ ∈ SD + B : distSD
(λ) 6 L

(

inf
s∈∂δ(λ)

‖s‖

)

.
(5)

◦ The Lipschitz constant L is difficult to deduce from the data . . .
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The AL algorithm
The AL algorithm for a solvable convex QP

The Lipschitz constant L is difficult to deduce from the data . . .

Let m = 1 and l < 0 < u. Consider the problem
{

inf 0
l 6 0x 6 u,

The dual function reads

δ(λ) =

{
lλ if λ 6 0
uλ if λ > 0.

0 λ0λ1λ2

slope l

slope u

Hence SD = {0} and the quasi-global error bound reads

∀B > 0, ∃L > 0, |λ| 6 B =⇒ |λ| 6







−Ll if λ < 0
0 if λ = 0
Lu if λ > 0.

Therefore, for B fixed, L ր ∞ when l ր 0 or u ց 0 (fix λ in the error bound).
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The AL algorithm
The AL algorithm for a solvable convex QP

The rule of the nonlinear solver Algencan [2; 2014]:

r0 = P[10−8,10+8]

(

10
max(1, |q(x0)|)

max(1, ‖Ax0 − y0‖2)

)

.

Motivation: balancing the objective and constraint parts of the ℓ2 penalty
function.

In the previous example, the rule yields (whatever is l and u):

r0 = 10.

It does not catch the following fact:

for some problems, the appropriate r depends on
the distance from the optimal constraint value Ax̄ to [l , u]c .
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The AL algorithm
The AL algorithm for a solvable convex QP

In Oqla/Qpalm, L is guessed and rk is set by the observation of
ρk := ‖sk+1‖/‖sk‖, thanks to the global linear convergence:

∀ β > 0, ∃ L > 0, distSD
(λ0) 6 β implies that

∀ k > 1, ‖sk+1‖ 6
L
rk
‖sk‖.

Lower bound of L:

Linf,k := max
16i6k

ρi ri .

2 3 4 5 6 7 8 9 10 11
10

−1

10
0

10
1

10
2

10
3

L
in

f
,
k

End of iteration k

Setting of rk+1:

rk+1 =
Linf,k

ρdes

.

With ρdes = 1/10, convergence occurs in 10..15 AL iterations.
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The AL algorithm
The AL algorithm for a solvable convex QP

Effect of the update rule of rk for infeasible QPs

If the QP is infeasible:

‖sk‖ ց σ > 0 and

ρk :=
‖sk+1‖

‖sk‖
→ 1,

the rule (increases rk whenever ρk > ρdes [ρdes < 1]) =⇒ rk ր ∞,

the AL subproblems become ill-conditioned,

could stop when rk > r̄ , but

◦ difficult to find a universal threshold r̄ ,
◦ no information on the problem on return.

Can one have a global linear convergence when the QP is infeasible?
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The AL algorithm
Problem structure

The smallest feasible shift

It is always possible to find a shift s ∈ R
m such that

l 6 Ax + s 6 u is feasible for x ∈ R
n.

These feasible shifts are exactly those in S := [l , u] +R(A):

0

R(A)

[l , u]

s̄
S := [l , u] +R(A)

The smallest feasible shift s̄ := arg min{‖s‖ : s ∈ S}.

s̄ = 0 ⇐⇒ (P) is feasible.
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The AL algorithm
Problem structure

The closest feasible problem

The shifted QPs (feasible iff s ∈ S, may be unbounded)

(Ps)

{
infx q(x)
l 6 Ax + s 6 u

and (P ′
s)







infx q(x)
Ax + s = y

l 6 y 6 u.
(6)

The closest feasible problems (feasible, may be unbounded)

(Ps̄)

{
infx q(x)
l 6 Ax + s̄ 6 u.

and (P ′
s̄)







infx q(x)
Ax + s̄ = y

l 6 y 6 u.
(7)

Claims clarified below ([26, 5])

The AL algorithm actually “solves” the closest feasible problem (Ps̄).

The speed of convergence is globally linear.
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The AL algorithm
Detection of unboundedness (val(P) = −∞)

When is the AL algorithm well defined?

Proposition ([5])

For the convex QP (2), the following properties are equivalent:
(i) dom δ 6= ∅ (⇐⇒ δ 6≡ +∞ ⇐⇒ δ ∈ Conv(Rm)),
(ii) for some/any s ∈ S, the shifted QP (6) is solvable,
(iii) for some/any r > 0 and λ ∈ R

m, the AL subproblem (3) is solvable,
(iv) there is no d ∈ R

n such that gTd < 0, Hd = 0, and Ad ∈ [l , u]∞.

C∞ denotes the asymptotic/recession cone of a convex set C .

A direction like d in (iv) is called here an unboundedness direction.

The failure of these conditions can be detected on the first AL
subproblem (3), by finding a direction d such that

gTd < 0, Hd = 0, and Ad ∈ [l , u]∞.

Fundamental assumption: (i)-(iv) holds from now on.
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The AL algorithm
Convergence for an infeasible QP (val(P) = +∞)

Feasibility and dual function

No duality gap:

the QP is feasible ⇐⇒ δ is bounded below.

◦ [⇒] (contrapositive) true for any convex problem by weak duality.
◦ [⇐] (contrapositive) δ 6≡ +∞ and δ → −∞ along s̄ 6= 0 (S is closed).

Consequence for a convex QP:

the QP is infeasible =⇒ δ is unbounded below

=⇒ {λk} blows up

(by the proximal interpretation).

One can say more.
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The AL algorithm
Convergence for an infeasible QP (val(P) = +∞)

Level curves of the dual function δ (infeasible QP, H ≻ 0)

λ1 λ2
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The AL algorithm
Convergence for an infeasible QP (val(P) = +∞)

Level curves of the dual function δ (infeasible QP, H = 0)

λ1

λ2
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The AL algorithm
Convergence for an infeasible QP (val(P) = +∞)

A surprising identity [5; 2015]

When dom δ 6= ∅,

S = R(∂δ).

Surprising since

◮ S only depends on the constraints of the QP,
◮ δ also depends on the objective of the QP.

We already know that S ∩ R(∂δ) 6= ∅:

S = [l , u] +R(A) ∋ sk+1 := yk+1 − Axk+1 ∈ ∂δ(λk+1) ⊂ R(∂δ).
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The AL algorithm
Convergence for an infeasible QP (val(P) = +∞)

When dom δ 6= ∅,

S = R(∂δ).

Proof

The value function v(s) := inf {q(x) : l 6 Ax + s 6 u, x ∈ R
n} verifies

dom v = S and δ = v∗.

No duality gap: val(P ′
s) = val(D ′

s), which can be written

v = δ∗.
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The AL algorithm
Convergence for an infeasible QP (val(P) = +∞)

Proof (continued)

[S ⊂ R(∂δ)] (Frank-Wolfe and constraint qualification)

s ∈ S =⇒ (P ′
s) has a primal-dual solution ((xs , ys), λs)

=⇒ (xs , ys) ∈ arg min{ℓ(x , y , λs) +✟
✟✟sTλs : (x , y) ∈ R

n × [l , u]}

=⇒ (xs , ys) ∈ arg min{ℓ(x , y , λs) : (x , y) ∈ R
n × [l , u]}

=⇒ s = ys − Axs ∈ ∂δ(λs) ⊂ R(∂δ).

[S ⊃ R(∂δ)] (δ 6≡ +∞, no duality gap)

s ∈ R(∂δ) =⇒ s ∈ ∂δ(λ) for some λ

=⇒ λ ∈ ∂δ∗(s) = ∂v(s)

=⇒ s ∈ dom v = S.
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The AL algorithm
Convergence for an infeasible QP (val(P) = +∞)

Is the identity S = R(∂δ) true for an arbitrary convex problem?

For an arbitrary convex function δ ∈ Conv(Rm), there holds

ri(dom δ∗) ⊂ R(∂δ) ⊂ dom δ∗,

Taking the closure yields

cl dom δ∗ = clR(∂δ).

The identity S = R(∂δ) holds for a convex QP (with δ 6≡ +∞) since

δ∗ = v (no duality gap) (not always true) =⇒ cl dom v = clR(∂δ),

dom v = S (always true) =⇒ clS = clR(∂δ),

S is closed (not always true) =⇒ S = clR(∂δ),

R(∂δ) is closed (not always true) =⇒ S = R(∂δ).
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The AL algorithm
Convergence for an infeasible QP (val(P) = +∞)

Convergence sk → s̄ [26; 1987]

Intuitive “proof”

S = [l , u] +R(A) ∋ sk := yk − Axk ∈ ∂δ(λk ) ⊂ R(∂δ).

◮ Trust the proximal algo: yk − Axk → the smallest element in R(∂δ).
◮ Now S = R(∂δ) =⇒ the smallest element in R(∂δ) is s̄.
◮ Hence sk := yk − Axk → s̄.

Sketch of the proof [26] ({rk} is assumed bounded away from zero)
◮ Let S̃D be the dual solution set of (Ps̄).
◮ Show first that −s̄ ∈ S̃∞

D
.

◮ Define {µk} by µ0 ∈ S̃D and µk+1 := µk − rk s̄ ∈ S̃D.
◮ Compare {λk} and {µk}: λk − µk = λk+1 − µk+1 + rk (sk+1 − s̄),

‖λk − µk‖
2
> ‖λk+1 − µk+1‖

2 + r2k ‖sk+1 − s̄‖2.

◮ Hence sk → s̄.
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The AL algorithm
Convergence for an infeasible QP (val(P) = +∞)

Why sk → s̄ implies that the AL algorithm solves the CFQP?

Since

(x , y) ∈ arg min
(x′,y ′)∈Rn×[l,u]

ℓr (x
′, y ′, λ)

and Ax + s̄ = y

imply that (x , y) is a solution to the CFQP.
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The AL algorithm
Convergence for an infeasible QP (val(P) = +∞)

Global linear convergence sk → s̄ [5]

(Ps̄) with solution ⇒ the dual solution set of (Ps̄), namely

S̃D := {λ ∈ R
m : s̄ ∈ ∂δ(λ)}

is nonempty and

∀ β > 0, ∃ L > 0, dist
S̃D

(λ0) 6 β implies that

∀ k > 1, ‖sk+1 − s̄‖ 6
L
rk
‖sk − s̄‖.

(8)

Comments:

Similar to the solvable case, but with sk y sk − s̄,
s̄ is not known ⇒ more difficult to design an update rule for rk :
instead of sk − s̄, observe s ′k := sk − sk−1 → 0 globally linearly.
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The AL algorithm
Convergence for an infeasible QP (val(P) = +∞)

Proof

Let λ̃ ∈ S̃D, λ̃k := λk − rk s̄, and subtract λ̃+ rk s̄ from the iteration
λk+1 = λk − rk sk+1:

λk+1 − λ̃+ rk

[

(sk+1 − s̄)
︸ ︷︷ ︸

∈∂δ̃(λk+1)

− 0
︸︷︷︸

∈∂δ̃(λ̃)

]

= λ̃k − λ̃.

Monotonicity of ∂δ̃(·) = ∂δ(·)− s̄:

∀ λ̃ ∈ S̃D : ‖sk+1 − s̄‖ 6
1
rk
‖λ̃k − λ̃‖.

λ̃ ∈ S̃D is arbitrary and −s̄ ∈ S̃∞
D :

‖sk+1 − s̄‖ 6
1
rk

dist
S̃D

(λ̃k) 6
1
rk

dist
S̃D

(λk). (9)

Quasi-global error bound (5) on S̃D:

dist
S̃D

(λk) 6 L‖sk − s̄‖. (10)

(9) and (10) imply (8).

Chiche, Gilbert, Joannopoulos 63 / 101

The AL algorithm
The revised AL algorithm

Set λ0 ∈ R
m, r0 > 0, ρ′

des
∈ ]0, 1[, and repeat for k = 0, 1, 2, . . .

Compute (if possible, exit with a direction of unboundedness otherwise)

(xk+1, yk+1) ∈ arg min
(x,y)∈Rn×[l,u]

ℓrk (x , y , λk ).

Update the multipliers

λk+1 = λk − rk sk+1, where sk+1 := yk+1 − Axk+1.

Stop if

AT(Axk+1 − yk+1) ≃ 0 and P[l,u](Axk+1) ≃ yk+1.

Update rk y rk+1 > 0: s ′k := sk − sk−1, ρ′k := ‖s ′k+1
‖/‖s ′k‖, and

rk+1 := max

(

1,
ρ′k
ρ′
des

)

rk .
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The AL algorithm
Interactions with the SQP algorithm (in progress)

The SQP algorithm

The (LS-qN) SQP algorithm solves the nonlinear optimization problem
{

infx f (x)
l 6 c(x) 6 u,

(11)

as follows.

It computes at the current iterate x the search direction d by solving the
osculating quadratic problem (OQP)

d ∈ arg min
l′6Ad6u′

(

gTd +
1
2
dTHd

)

, (12)

with g := ∇f (x), H is a positive definite approximation of the Hessian of
the Lagrangian of (11), A := c ′(x), l ′ := l − c(x), and u′ := u − c(x).

Then it computes a stepsize α > 0 along d in order to decrease a merit
function and takes as new iterate

x+ := x + α d .
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The AL algorithm
Interactions with the SQP algorithm (in progress)

A classical merit function is

x ∈ R
n 7→ Θσ(x) = f (x) + σ dist[l,u](c(x))

= f (x) + σ ‖c(x)#‖,

where σ > 0 and

v

P[l,u]v

v#

[l , u]
v# := P[l,u]v − v .
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The AL algorithm
Interactions with the SQP algorithm (in progress)

Using an unboundedness direction

If the closest feasible OQP is infeasible, the AL algorithm can return an
unboundedness direction d , i.e., satisfying

gTd < 0, Hd = 0, and Ad ∈ [l ′, u′]∞.

Proposition

Let d be an unboundedness direction of the closest feasible OQP (14)
at x . Then

(‖c(·)#‖)′(x ; d) 6 0 and Θ′
σ(x ; d) < 0. (13)

Again, a direction of unboundedness d of the closest feasible OQP allows
the SQP algorithm to make a LS along it.
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The AL algorithm
Interactions with the SQP algorithm (in progress)

Using a solution to the closest feasible QP

If the OQP is infeasible, the AL algorithm solves instead the closest feasible OQP

d ∈ arg min
l′6Ad+s̄6u′

(

gTd +
1
2
dTHd

)

. (14)

Proposition (link to make with [3; 1989])

If x is not a stationary point of the feasible problem

{
infy f (y)
l 6 c(y) + c(x)# 6 u,

if σ is large enough, if d solves (14), and if H ≻ 0, then

Θ′
σ(x ; d) 6 −dTHd − σ̄

(
‖c(x)#‖ − ‖s̄(x)‖

)
< 0.

c(Rn)

[l, u]
s̄(x)

c(x)#

[l, u] − c(x)#

c(x)

Hence a solution d to the closest feasible osculating QP allows the SQP algorithm
to make a LS along it.
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Numerical results
The codes Oqla and Qpalm and the selected test-problems

Oqla and Qpalm

Implementation of the revised AL algorithm in two solvers [12], soon freely available at
https://who.rocq.inria.fr/Jean-Charles.Gilbert:

Oqla
◮ in C++,
◮ fast execution, but slow implementation,
◮ OO → easy to take into account new data structures, like Ooqp [11]

(dense, sparse, ℓ-BFGS, . . . ),
◮ AL subproblems solved by an active-set (AS) method,
◮ more than 1 year of work for one engineer!

Qpalm
◮ in Matlab,
◮ AL subproblems solved by an AS method,
◮ fast implementation, easy to try new ideas, but slow execution.

Main objective of these tests: is it worth continuing working on the development of
Oqla/Qpalm?
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Numerical results
The codes Oqla and Qpalm and the selected test-problems

Selected Cutest problems

Comparison made on the Cutest collection of test-problems [15].

138 convex quadratic problems (all solvable, but 4?),
58 problems among them, with n 6 500 (for comparison in Matlab).
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Numerical results
Performance profiles

Reading performance profiles [9]
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red solver
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℘s (1)

℘s (ρ̄)

℘s (1) = fraction
of problems on
which s is the
best solver

℘s (t) = fraction of problems for which
the performance of s is never worse
than t times the performance of the
best solver

℘s (ρ̄) = fraction
of problems
that s can solve

Performance profiles drawn with Libopt [13].
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Numerical results
Performance profiles

Comparison of Oqla and Qpalm on iteration counters
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OQLA
QPALM

Close to each other (see x-axis [100.05 ≃ 1.12] and y-axis [even scores]).
Difference in failures due to the slowness of Qpalm in Matlab (or still not clear).
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Numerical results
Performance profiles

Comparison of Oqla and Qpalm on CPU time
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OQLA
QPALM

Oqla (in C++) is 10..2000 times faster than Qpalm (in Matlab).
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Numerical results
Comparison with active-set methods

Two more codes, which use active-set methods:

Quadprog
◮ the standard QP solver of the Matlab optimization toolbox [25],
◮ Options ’Algorithm’ → ’active-set’ and ’LargeScale’ →

’off’ =⇒ active-set method.

Qpa
◮ free code,
◮ from the Galahad library [14],
◮ in Fortran,
◮ uses preprocessing and preconditioning?
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Numerical results
Comparison with active-set methods

Comparison of Qpalm and Quadprog on CPU time
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QPALM
QUADPROG

Qpalm is often twice faster than Quadprog (but not always faster).
Qpalm is more robust than Quadprog (81% success to 67%).
Progress is still possible with Qpalm.
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Numerical results
Comparison with active-set methods

Comparison of Oqla and Qpa on CPU time
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OQLA
QPA

Qpa is more often faster than Oqla, but not significantly.
Oqla and Qpa have the same robustness (73 % and 71 % success respectively).
Progress is still possible with Oqla.
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Numerical results
Comparison with interior-point methods

Two more codes, which use interior-point methods:

Ooqp
◮ free code,
◮ written by Gertz and Wright in 2003 [11],
◮ to show the interest of an OO implementation.

Qpb
◮ free code,
◮ from the Galahad library [14],
◮ in Fortran,
◮ uses preprocessing and preconditioning?
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Numerical results
Comparison with interior-point methods

Comparison of Oqla, Ooqp, and Qpb on CPU time
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OQLA
OOQP
QPB

IP methods are clearly faster than our AL+AS method (in particular with Ooqp).
Poor robustness of Ooqp =⇒ careful implementation yields much improvement?
Oqla is located between Qpb and Ooqp in terms of robustness.
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Numerical results
Comparison with interior-point methods

Behaviors in an SQP framework

Recall that one iteration of the SQP algorithm computes a PD solution
(dQP, λQP) of the OQP

min
l′6Ad6u′

(

gTd +
1
2
dTHd

)

and then updates (locally) the PD variables (x , λ) by

x+ := x + dQP and λ+ := λQP.

Close to the solution to the nonlinear problem, x+ ≃ x and λ+ ≃ λ,
therefore a good guess of the PD solution to the QP is available:

(0, λ).

Hence, it makes sense to see how the QP solvers behave when the starting
point is close to the solution to the QP.
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Numerical results
Comparison with interior-point methods

Oqla vs. Qpb, starting from a primal-dual solution, on CPU time
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OQLA starting from solution
QPB starting from solution

Motivation: see whether Oqla can take advantage of a good starting point,
64 problems, for which an accurate primal-dual solution has been found,
Qpb has no warm restart.
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Numerical results
Comparison with interior-point methods

Oqla vs. Qpb, starting from a perturbed (10−8) primal-dual solution
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OQLA starting from solution perturbed at 1.e−8
QPB starting from solution perturbed at 1.e−8
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Numerical results
Comparison with interior-point methods

Oqla vs. Qpb, starting from a perturbed (10−7) primal-dual solution
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OQLA starting from solution perturbed at 1.e−7
QPB starting from solution perturbed at 1.e−7
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Numerical results
Comparison with interior-point methods

Oqla vs. Qpb, starting from a perturbed (10−6) primal-dual solution
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OQLA starting from solution perturbed at 1.e−6
QPB starting from solution perturbed at 1.e−6
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Numerical results
Comparison with interior-point methods

Oqla vs. Qpb, starting from a perturbed (10−5) primal-dual solution
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OQLA starting from solution perturbed at 1.e−5
QPB starting from solution perturbed at 1.e−5
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Numerical results
Comparison with interior-point methods

Oqla vs. Qpb, starting from a perturbed (10−4) primal-dual solution
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OQLA starting from solution perturbed at 1.e−4
QPB starting from solution perturbed at 1.e−4
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Numerical results
Comparison with interior-point methods

Oqla vs. Qpb, starting from a perturbed (10−3) primal-dual solution
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Numerical results
Comparison with interior-point methods

Oqla vs. Qpb, starting from a perturbed (10−2) primal-dual solution
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Numerical results
Comparison with interior-point methods

Oqla vs. Qpb, starting from a perturbed (10−1) primal-dual solution
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Numerical results
Comparison with interior-point methods

Oqla vs. Qpb, starting from a perturbed (100) primal-dual solution
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Numerical results
Comparison with interior-point methods

Oqla vs. Qpb, starting from a perturbed (101) primal-dual solution
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Numerical results
Comparison with interior-point methods

Oqla vs. Qpb, starting from a perturbed (102) primal-dual solution
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Conclusion: for perturbations less than 100 %, the AL+AS solver Oqla is “more often
better” than the IP solver Qpb.
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Discussion and future work

Discussion

Oqla/Qpalm give interesting answers on infeasbile or unbounded QPs.

Oqla and Qpalm are not ridiculous, with respect to well established
active-set solvers (Qpa), and sometimes clearly better (Quadprog).

The present version of Oqla/Qpalm is not as efficient as the IP solver Qpb,
but much more robust than Ooqp.

Oqla/Qpalm can take advantage of an estimate of the solution (not the case
of the other tested IP solvers) =⇒ nice for SQP.

Still many possible improvements:

◮ using preprocessing,
◮ inexact minimization of the AL subproblems (3), while keeping the

global linear convergence,
◮ trying other solvers of the AL subproblems (3), like IP or Newton-min,
◮ . . . .
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Discussion and future work

Future work

Can one preserve the global linear convergence of the AL algorithm when the AL
subproblems (3) are solved inexactly?

Try to use one (a few) interior point step(s) to solve the AL subproblems (3), in
order to obtain polynomiality.

Improve nonsmooth methods and use them to solve the AL subproblems (3), in
order to gain in efficiency.

Extend the result of Dean and Glowinski [7] to convex inequality constrained QP:
for stricty convex QP with the single equality constraint Ax = b, the Lagrangian
relaxation

xk = arg minx∈Rn q(x) + λT
k (Ax − b)

λk+1 = λk + αk (Axk − b),

where αk is chosen is a compact of ]0, 2/µ1[, generates iterates that converge
globally linearly to the unique solution to the closest feasible problem

{
infx q(x)

AT(Ax − b) = 0.
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Discussion and future work

Future work (continued)

Show the global linear convergence of an AL algorithm for the more general
problem (+ constraint qualification):







infx∈E 〈g , x〉+ 1
2 〈Hx , x〉

Ax ∈ C

x ∈ X .

Two interesting instances:

◮ E = R
n, C = [l , u], X = ball =⇒ trust region problem,

◮ E = Sn, H = 0, C = {b}, X = Sn
+ =⇒ linear SDP problem.
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Discussion and future work

The end
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