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on a traffic toy model, where the queues have a finite capacity and specific state-
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Un algorithme de propagation de croyances pour un
systéme de prédiction de traffic utilisant des véhicules
traceurs

Résumé : Un algorithme de reconstruction et de prédiction de trafic par des véhi-
cules traceurs est présenté dans ce rapport. Dans notre approche, les informations
concernant 'intensité du trafic en temps réel sont collectées par des vehicules traceurs
qui circulent aléatoirement sur le réseaux. Ces informations permettent d’obtenir des
données moyennes et des corrélations entre liens proches a dates consécutives. Le ré-
seau routier et le trafic sont modélisés par des files d’attente sur un graphe planaire,
couplées par des interactions locales. Grace & des méthodes issues de la physique
statistique, un algorithme de reconstruction et de prédiction est proposé, puis évalué
par des simulations sur un modéle dynamique simplifié de trafic, ou les files ont une
capacité finie et des taux de transition dépendants de I'état sont choisis de facon a
reproduire des situations typiques d’encombrement. L’algorithme de reconstruction,
a partir des données temps réel et des données historiques, consiste en une procédure
de passage de messages entre sites d'un nouveau graphe. Les sites de ce graphe sont
les liens du réseau de base, pris & des instants discrets et connectés entre eux en fonc-
tions des corrélations obtenues aux niveau des carrefours. Ces messages permettent
de propager positivement et négativement dans le temps l'information et ainsi de
reconstruire le trafic passé et de donner des prédictions sur le trafic & venir.

Ce travail est en partie financé par le projet européen REACT. Les algorithmes
sont en cours d’implémentation sur un serveur pour des expérimentations sur une
flotte de véhicules traceurs.

Mots-clés : reconstruction de trafic, prédiction, transport, véhicules traceurs,
modele d'Ising
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Fig. 1.1: REACT system

1 Introduction

1.1 Probe vehicles and traffic reconstruction

The developments detailed in this report are driven by the application for which
they are needed: reconstruct and predict the traffic on roads where information is
in general not available. Indeed, traffic data is currently available only on equipped
motorways, i.e. on a very small proportion of the road network. The cost of the
static traffic sensors (e.g. magnetic loops) and the cost of variable messages panels
make it impossible to be a global solution.

However, accidents (more than 40,000 deaths per year in the European Union)
and congestion (over 1% of GDP) lead the European Commission to a major effort
to reduce these. As a part of this effort, the European project REACT (Realizing
Enhanced Safety and Efficiency in European Road Transport) aims at developing
a system (see Figure 1.1) that will work towards the Community’s objectives of
reducing road transport deaths and increasing road infrastructure capacity by means
of probe vehicles equipped with a traffic sensor (sensing traffic speed, density and
flow).

RR n° 5807



4 Cyril Furtlehner , Arnaud de La Fortelle, Jean-Marc Lasgouttes

In this REACT system, INRIA is in charge of developing a module for reconstruc-
tion and prediction of the traffic in rural roads, more precisely in road not equipped
with static sensors. This report presents the model we use and the algorithms im-
plemented in this module.

1.2 Modeling and results

The main problem of traffic reconstruction on non-equipped roads is not really the
lack of fixed detectors, it is the deep difference in the models that can be used.
Equipped roads are generally motorways and flows (density and velocity) are mea-
sured regularly along the road and on all entrances and exits. Then a traffic flow
model at equilibrium is used and predictions are incrementally calculated (see [8, 6]
and references therein for more models).

This assumption is not valid anymore for most of the non equipped roads, either
rural roads or streets: the topology is much richer and the traffic on a segment
between two intersection is really dynamic, e.g. due to traffic lights or simply because
the segments are very short (with respect to the flow) and the number of vehicles
per segment is low. Stochastic models are natural here, and the most popular ones
consist in queueing networks. Since the technology of probe vehicles (both in-car
and on the central server) is not mature enough to provide modules working in this
context, INRIA proposed a model based on statistical physics to solve the problem
of traffic reconstruction. Note that reconstruction and prediction are two facets of
the same problem. In reconstruction one has measurements on only a subset of
the network and the values on the other roads have to be deduced. In prediction
one has values for the present and the past, and the values for the future are to be
determined.

The REACT project considers an alternative system for non equipped roads. It
adopts the point of view that cars inside the traffic should be able to provide a large
amount of information, sufficient to reconstruct a global view of the traffic state in a
given network. The purpose of the present paper is to propose an algorithm, which
would be able to perform such a traffic reconstruction, using the information collected
by so-called probe vehicles. Section 2 shows how Ising models from statistical physics
can be used as models of traffic state. The algorithm, which is a message-passing
procedure well adapted to inference problems on graphs, will be exposed in Section 3,
where we show also how Ising models appear naturally. Since we need to be able to
benchmark the algorithm, we describe in Section 4 a toy traffic model implemented
using a simulator (Figure 1.2). It is used to perform the numerical experiments that
are the subject of Section 5.

INRIA
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Fig. 1.2: The traffic simulator for performance tests, the road network has 21 nodes
and 60 links, black dots are the probe vehicles, road-links are colored from
green to red to indicate the local intensity of the traffic.
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6 Cyril Furtlehner , Arnaud de La Fortelle, Jean-Marc Lasgouttes

2 Traffic description and statistical physics

Continuous traffic flow models have flaws when it comes to the modeling of cities
or rural roads traffic. Indeed, the velocity flow field is subject to much greater
fluctuations induced by the nature of the network (presence of intersections and short
distance between two intersections) than by the traffic itself. These fluctuations can
be both spatial and temporal (a traffic light at a cross-road, a road-work, etc). There
is no local stationary regime for the velocity and the dynamics is dominated by the
fluctuations. This requires a stochastic modeling. The model we propose has two
components: a queueing network and time discretization.

2.1 Queueing network

The first component is a standard queueing network, where a queue represents a
link between two intersections. Instead of the number of customers in the queue
(i.e. the number of vehicles in the given road-link), which is difficult to measure,
the observable we are interested in is the escape-time, that is the time interval be-
tween the entrance and the escape of the link. This is the information needed for
each link of the network (in practice since it is a fluctuating quantity we consider
probability measure of escape-time) to reconstruct the expected travel-time between
two arbitrary points of the network. This information is easily obtained by probe
vehicles. Combined with the velocity information, it may serve to determine locally
the intensity of the traffic, in particular whether it is saturated or not. However,
this information will always be sparse and we need a way to infer the distribution
of escape-times over the network at any time from the information collected by the
probe vehicles. This is the purpose of the second component of our model.

2.2 Time discretization

In addition to the spatial discretization (set of links) we have a time discretization
(typically a few minutes), which gives us a graph G = N ® Z", where A corresponds
to the network and Z™ to the time discretization. To each point a = (£,t) € G, we
attach an information 7, € {0,1} indicating the state of the traffic (1 if congested,
0 otherwise). Each cell is correlated to its neighbor (in time and space) and the
evaluation of this local correlation determines the model. In other words, we assume
that the joint probability distribution over the set is of the form

prasae ) =1 TI ¢lasv)

acGveV (a)

INRIA
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Fig. 2.1: Ising model above T,

where V() C G is the set of neighbors of o and the local correlation is encoded in the
function ¢. In turn, message-passing algorithms (for example belief-propagation) can
be used from the known information and the knowledge of ¢ to extract information
from the joint probability, to give for example typical samples of 7,. The simplest
model that takes into account this correlation is an Ising model [2] on G. The
partition function would read

Z(pB) = Z exp [—B Z Z JaswSasy + HaSa (2.1)

{sa€{-1,1}} acGveV (a)

where s, € {—1, 1} represents the traffic congestion (s, = 27,—1), H, is a constraint
field associated to historical data, Ju., is the coupling between neighbor sites with
respect to position and time and 7T is temperature which measures the randomnes
of the system. The seemingly strange convention for s, values comes from the fact
that Ising models represent the positive or negative magnetization of particles.

The joint probability distribution then reads

p({sa;0 € G}) = [ =3 ST JawSase+ Hasa (2.2)

aeg veV(a)

The homogeneous Ising Model (coupling constants J,., = J and H, = H) is
a well-studied model of ferro (J > 0) or anti-ferro (J < 0) material subject to a
uniform magnetic-field H in statistical physics. It displays a phase transition when
the space-dimension of the network is bigger than one, with respect to a critical
temperature T.. When T > T, only a disordered state occurs, spins are randomly
distributed around a mean-zero value (Figure 2.1). Instead, when T' < T, in absence
of the external magnetic field, two states are equally probable and correspond to the
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Fig. 2.2: Ising model below T, with a broken symmetry

onset of a macroscopic magnetization either in the up or down direction, which means
that each spin has a larger probability to be oriented in the privileged direction than
in the opposite one (Figure 2.2).

From the point of view of a traffic network, this means that such a model is able to
describe three possible traffic-regimes: fluid (most of the spins up), congested (most
of the spins down) and dense (roughly half of the links are congested). For real situ-
ations, we expect other types of congestion patterns, and we seek to associate them
to the possible states of a random-Ising model (i.e. with general parameters), which
has also been well-studied in statistical physics, in the context of spin-glasses [4].
Indeed in some cases, when the system is frustrated, because some of the couplings
are negative, leading to a certain number of contradictions, a proliferation of meta-
stable states occurs, which eventually scales exponentially with the size of the system
(Figure 2.3).

3 The reconstruction and prediction algorithm

3.1 Historical data

The purpose of collecting historical data is to estimate the parameters J,., and H,,
of the model (2.1)—(2.2). Once these coefficients are known, the information provided
by the probe vehicles will allow to freeze a certain number of the spins, and if this
information is sufficient, this will drive the system to one of his possible states, which
corresponds to a given congestion pattern.

The problem of reconstructing the traffic from a sparse information is an inference
problem which can be simply stated as follows. First although the procedure could
be implemented for real variables, such as traffic density or velocity flow, we aim at
inferring over the network a binary type information, namely whether on a given link
the traffic is congested or not. Let us call 74(¢) € {0,1} this variable for the link ¢

INRIA
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Fig. 2.3: Traffic network (a) and Ising model (b) on a random graph

and at the discrete time-step ¢. This information can be communicated by the probe
vehicle either as

e a firm statement: the traffic is (74(t) = 1) or is not, (74(t) = 0) congested;

e 3 probability: given the current speed-velocity v, there is a certain probability
Pr+(v) that the traffic is congested.

In any case, for each link it is possible to accumulate such data in order to construct
an historical value. Let {7;(¢),i = 1...ng,} a set of traffic informations collected by
the probe vehicles, ny; represents the number of times a probe vehicles was in the
link ¢ at day-time ¢ since the beginning of data collection. Then, the historical value

Nyt

1 .
hey & — 7, (1),
K nuz ¢ (t)

7 og=1

which represents the probability of congestion of link £ at time-step ¢. If the historical
information is given by a velocity set {v}(t),i = 1...ny:}, then instead we define

Nyt

e 1 )
h@,t d:f E sz7t (U%(t)) .

=1
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10 Cyril Furtlehner , Arnaud de La Fortelle, Jean-Marc Lasgouttes

In addition, let us assume that two links ¢ and ¢ are directly connected through
some node. If a probe vehicle goes from ¢ to ¢, it will be able to send an information
concerning 7y7. From this one can compute the correlation between o = (¢,¢) and
B=t+1)
gh et €ap — hahg
W ha(T= ha)hg(1L = hp)

according to the historical averaging procedure

Nag

def 1 i i
Eaf = ——= Y TaTh
af naﬁ ZZ; a'p
where {(72, Té),z' =1...n4,p} is the set of information collected by the probe cars.

3.2 A Bayesian network

Assuming that the traffic flow evolution has a natural causal orientation, we consider
that the state of the traffic in a given link of the network at time ¢ is conditioned by
the state of the network at time ¢t — 1. As a result, the probability that an outgoing
link of a given cross-roads a is saturated at time ¢ is conditioned to the states of
incoming roads to a at time ¢ — 1.

Based on the data which may be realistically extracted from the traffic network
by the probe vehicles, we assume that a one-day sample of traffic is distributed
according to a probability function, which we detail now.

On the top of the traffic network, the correlations we measure lead to define the
graph G from

e the nodes (¢,t) corresponding to a link ¢ of the traffic network with a time-
stamp ¢;

e the correlation links, which simply join the nodes (¢,t) and (¢',t + 1) if the
corresponding links ¢ and ¢’ are connected by a non-vanishing oyy. These are
local correlations, since ¢ and ¢’ have a node in common.

The graph is oriented, and we say that a = (/,t) is a parent node of 5 = (¢, ¢)—and
B is a child of a—if they are linked by a finite correlation ogr # 0 and if ¢/ =¢ — 1
(see Figure 3.2). For a given node o we call a(a) the subset of nodes which are
parents of a and c(«) the subset of nodes which are child of a. To each node «

INRIA
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Fig. 3.1: (a) the road network duplicated for two time-stamps ¢ and ¢ 4+ 1 with the

cross-roads represented by circles; (b) the corresponding correlation graph
where nodes are time-stamped roads represented by black squares.
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Fig. 3.2: A node «, its set of parents a(«) and its set of children c¢(«).
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we attach the traffic variable 7, € {0,1}. The joint probability distribution of the
unknown variables 7, is assumed to be of the form

pe({ra,a € GY) = [] p(ral{7s,6 € ale)})

a€Eg

Let U be the subset of nodes a* for which the probe vehicles have provided an
information, which in general will be the probability p,+ of saturation (7,+ = 1). By
construction, the joint probability measured for this subset has a product form

Q({Ta*7a* € U}) = H (Toz*pa* + 77-04*(1 _pa*))7
a*el

using the boolean notation 7 = 1 — 7. The purpose of the algorithm is to determine
the complete set of marginal functions

p(1a; {78, 8 € G})
p({Tar,a* €U})

Pa(Ta) = q{Tar, € U}).

{78,8#a}

3.3 A pairwise random Markov field

The Bayesian representation of the inference graph, although exact, appears difficult
to handle with the message passing procedure which will be explained later. When
it comes to make explicit the set of conditional probabilities p(7|{73, 5 € a()}), it
is tempting to approximate this as

p(Tal{7s, B € a(a)}) = Zl}(ﬁ{i;(?%pe(T:J;ﬁ);y

with Z, a normalizing constant

Zo({mp. 8 €al)) = Y ] plralms).

7« €{0,1} B€a(a)

ensuring that p(7.|{7g, 8 € a(a)}) is a probability measure for 7,. Because of this
normalization constant, it will be necessary to pass messages among parents, having
a child in common, in addition to the messages between parents and children. Such
a complication is difficult to handle, and we call for an additional approximation by
redefining the joint probability measure in terms of a pairwise random Markov field

pmr({Ta,a € G}) = % H H (7o, T8)-

a€g Beala)

INRIA
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where the pairwise interaction functions are simply given by

T;Z)(Taa Tﬁ) = p(Ta|Tﬁ)'

From the historical data we may have an heuristic estimation of the conditional
probabilities p(«|3) between to nodes o = (¢,¢) and 8 = (¢, ¢+ 1) of the graph such
that ¢ and ¢, the corresponding links, are connected by a correlation link. In the
limit where the historical data is exact, i.e. if the accumulation time is sufficiently
long, the joint probability p(7.,73) tends to

p(Ta, Tg) = €a8TaTg + (hﬁ — Eaﬁ)faTg + (ha - Eaﬁ)Taﬂ; + (1 — hy — hg + Eag)fafg.
The conditional probability therefore reads

p(TCv’ Tﬁ)
p(Ta, Tﬁ) +p(7-a, 7_—6)

p(75l7a) =

_[Eas B —Cap_
_Tﬁ[haTa—{— 11—, Ta
_Thy —¢ 1—hy—hg+eas_
—{—7’5[ aha aﬁTa al—hi aﬁTa]. (3.1)

At this point it is straightforward to make the connection with the random Ising
model formulation of (2.1)—(2.2). Indeed, setting again for o € G

def
Sq = 274 — 1,

and using the properties of binary variables, we have

Y(Sas5p) S exp <10gp(ra]7'g)> = exp (JangSﬁ + HopSa + Hpaspg + Caﬁ>,

with (1 h ; )
1 € — — +¢
. d:ef_log af a <] af 7
7Ty (ha —€ap)(hp — €ap)
e 1 « 1 _ha 2 hcv e
Hagd:f—log 56( )( . 55) ’
4 (1 — hq —hﬁ—{—eag)ha(hg —€a5)
e 1 Ea (hﬁ —Eaﬁ)
Hpo &~ 1 A :
B0 = L8 (L= he — hp + cap) (ha — €ap)
e 1 « hoz_ « h e
Cos = L10g €ag(ha — €ap)( B €ap) N
4 (1 —hq — hg —i—e’;‘ag)ha(l — hq)
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Finally
Ho®= > (Hap+ Hgoa)+ > (Hap+ Hga),
Beala) Bec(a)
completes the connection with the model of Section 2.2.

3.4 A mean-field iteration scheme

In order to reconstruct the traffic we use a message-passing procedure among the
nodes of the graph, such that each node sends to its neighbors its last updated
evaluation of the probability p, to be saturated. In turn the node evaluate the
probability of being saturated from the received messages, accordingly to the mean-
field rules we detail now.

Assume that « is collecting the information from its parents in a(«a), these neigh-
bors are not connected and a loop passing through several other nodes is needed in
general before a connection is established. Accordingly we neglect the correlations
between these nodes and write the joint probability p(7a, {75} gea(a)) a5

p(Taa {Tﬁ}BE(z(a)) = p(TOé) p({Tﬁ}ﬁEa(a) ’TOé)

= (Taha + 7a(1 — H p(78|7a)
pea(a)

with p(73|7.) given by (3.1).

The definition of the scheme follows these expressions: suppose that at step s,
the individual probabilities are given by p?; the update of p, at the next step is then
given by

s+l _ p(Toz = 17{75})
Do

- (7op3 + T5(1 = p3))
{75} HBEa(a) (Tﬁhﬁ + Tﬁ(l - hﬁ)) 561;!:04) o 7

and the fixed point is therefore solution of

P —hs
Do = ha ﬁga[u hhﬁ 1)1_%]. (3.2)

As we see, in absence of new day-time data, which would force some of the pg to
be different from their historical value hg, the scheme naturally converges to the
historical expectation values. This mean-field procedure is rather crude and gives
unsatisfactory results especially when we try to send messages backward in time,
because the approximate independence is lost between neighbors.

INRIA
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Algorithm 1 : Mean Field

Input: A set of space-time nodes {(¢,t),{ =1...N,t =1... M} a set of historical
data {h(4y,l=1...N,t=1...M} and {egp,{ =1...N,¢' =1... N}, and the
corresponding graph G. A set of visited space-time nodes {a*} and the
corresponding weights p,+ send by the probe vehicles.

1: for every node (¢,t) of the graph do
2. if (£,t) is a visited site then

fort =2tot=M do
sweep the set of nodes, and update sequentially the weights on all the nodes
of the graph except the visited ones {«*}, generating the values pj,,
using 3.2 with parent neighbors. 7

10: end for

11: return the set of fixed weight pj,

3: initialize the field py; = pzt
4: else

5: initialize the field py; = he,
6: endif

7: end for

8:

9:

3.5 A belief-propagation algorithm

The simple mean-field scheme presented above has a major drawback: it does not
take full advantage of the information that is provided by the probe cars. Indeed,
information propagates only forward in time, although to reconstruct the traffic at a
given time ¢ in the past, one can use past as well as future information with respect
to time ¢. Using the Markov random field representation of the day-traffic history
we may actually set up a belief-propagation algorithm which will cure this problem.
The beliefs are estimations of the marginal probabilities p, that the algorithm will
provide [5]. They would be exact if the graph had a tree-like structure, but in our
case the graph has cycles which we expect to be sufficiently large to avoid convergence
problems [3]. The complication added to the simple algorithm presented above, is
that the iterations will not consists to update the beliefs directly, but a new kind of
messages which will help to construct the beliefs and which we define now.

The idea of the belief propagation is to factor the marginal probability at a given
site in a product of contributions coming from neighboring sites, which precisely are
the messages. The update-rules are the following. Let a a node with parents a(a)
and children ¢(«) (see Figure 3.2). The message sent by o to v € V() = a(a)Uc(a)

RR n° 5807



16 Cyril Furtlehner , Arnaud de La Fortelle, Jean-Marc Lasgouttes

is
Ma—ry(Ty) = Z H Ms—a(Ta)Pay(TalTy), if v € V(a),
Ta BEV(a), B#Y

Ma—ry(Ty) = Z H M—a(Ta)Pya(Ty|Ta), if v € (o).
Ta ﬁea(a)» ﬁ?ﬁf}’

(3.3)

The beliefs b, are then reconstructed according to

et 1
() =TI mocalra)
@ BeEa(a)Uc(ar)

Zy = Z H MB—a(Ta)-

Ta€{0,1} Bea(a)Uc(a)

with

A specific rule is defined for nodes a* which have been visited by probe cars,

Ma*x—p = Zp(f)/’a*)boc* (Ta*)

T

a*

This procedure allows to go beyond the mean-field approximation and to recover the
so-called Bethe approximation for the free-energy [7].

4 A Markovian traffic toy-model

In order to test our algorithm of traffic reconstruction we need a convenient traffic
network model, on which it is possible to perform measurements and simulate traffic
conditions. The model we use is as follows:

The network is composed of nodes corresponding to crossroads or to virtual cuts
if road segments are too long, and of a set of oriented links connecting these nodes.
Each link ¢ has a given importance gy, which by convention is in scale ranging from
1 for little rural roads, to 5 for highways. The length of the link is noted |¢| and
should not exceed a few hundreds of meters. Its capacity is Cy = NCARMAX |{|gy,
where NCARMAX is the maximum allowable car density in a traffic jam. Typically,
NCARMAX = 200 if |¢| is measured in kilometers.

To each link ¢ we associate a free escape-time Tg, which corresponds to the time
it takes to travel all the way through the link, when the traffic is fluid. To each node
a, we associate the mean time 70 it takes to go through the cross-road, when again

INRIA
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Algorithm 2 : Belief-Propagation

Input: A set of space-time nodes {(¢,t),{ =1...N,t =1... M} a set of historical
data {h(,l=1...N,t=1...M} and {egp,{ =1...N,¢' =1... N}, and the
corresponding graph G. A set of visited space-time node {a*} and the
corresponding weights p.+ send by the probe vehicles. a maximal number of
iterations itmax; a requested precision €

Output: UNCONVERGED if BP has not converged, the set of all messages mq,—.3
if BP has converged

1: At step it = 0:

2: for every edge a — 3 of the graph do

3: if a is a visited site then

4: initialize the messages ma—g = > p(75/7a)P5

5. else

6: randomly initialize the messages mq—g(it = 0) € [0, 1]
7. end if

8: end for

9: for it = 1 to it = itmax dO

—_
e

sweep the set of edges in a random order, and update sequentially the
messages on all the edgess of the graph except the one originating from a
visited node {*}, generating the values m,_ g(it), using update rules 3.3
11 if ma—p(it) — me—g(it — 1)| < € on all the edges then

12: the iteration has converged and generated my,_ 5 = mqa—a(it)
13: goto line 12

14:  end if

15: end for

16: if it = itmax then

17:  return UN-CONVERGED

18: else {it < itmax}

19:  return the set of fixed point m},_ 5 = mq—g(it)
20: end if

RR n° 5807



18 Cyril Furtlehner , Arnaud de La Fortelle, Jean-Marc Lasgouttes

there is no traffic. Typically if there is a traffic light, this scale represents the average
time one waits in front of the light plus the transit time through the cross-road.

The network’s stochastic evolution is Markovian and continuous w.r.t. time. On
each link ¢ a certain number of vehicles ny(t) is circulating at time ¢ and the corre-
sponding load is given by pg(t) = ne(t)/Cy(t). Let V*(a) be the set of links which
destination is a. To measure the congestion at a, we also define the load p,(t) of the
node as

 Dtev+(a) 9ere(t)

ot
palt) Zzev+(a) ge

If a is the destination of link ¢, and ¢’ starts from there, we associate to the transition
Ng — Ny — 1
ng — np + 1.

the transition rate

or 1 — pyr
)‘a / ) Y d:f )
v (pes pers pa) p——
where

1 aer f(pe)

To 0

i def (1 - pa)

Ta iy

and where f is a positive decreasing function, such that f(0) = 1. In order to model
a traffic situation with two different regimes, we choose

J§ dea™(1 — )"
fol dxx™(1 — x)"

flp)E1-n : (4.1)

with n large. With this choice of function, for p < 0.5, the traffic is fluid (f(p) ~ 1),
whereas for p > 0.5, it is congested (f(p) ~ 1 —n).

Some of the nodes are connected to the outside world and vehicles may enter or
leave the system at these nodes. At such a node a, the rate of entrance of vehicles

into a link 7 is
def

)‘%(pé) - Tlevel)\a(1 - P£)7
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Fig. 5.1: Average distribution of load p,; over the network and over day-time (black)
and the assumed velocity-load diagram f(p) (red).

where A\, > 0 is a parameter attached to a and T, is the current global level of

traffic. Similarly, for a link ¢ that ends at a, the exit rate is
ef ,LL
1 (per) < (1- Tlevel)T_Za

with pg > 0.

5 Preliminary Simulation Results

We present here results, limited to the mean-field algorithm with causal updates
of Section 3.4. A more complete numerical investigation and optimizations of our
approach will be the subject of a future paper. This is a preliminary check that
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the inference principle, based on local correlations, is able to propagate a useful
information. The causal updates mean that the mean-field inference rule is applied
only forward in time. For the purpose of simulation, we have designed a small
network shown on Figure 1.2. The traffic level is a periodic function of period
one-day, which has some additional tunable stochastic components in order to have
significant fluctuations in the overall traffic intensity (see green curve of Figure 5.3).
The velocity-load function f of (4.1) is used with parameters n =7 and n = 0.9 (see
red curve of Figure 5.1). The historical data is extracted directly from the simulation,
not from the probe-vehicles, in order to test separately the reconstruction algorithm
from the data collection procedure. In addition, this data corresponds to day-time
averaging, instead of time stamp average data. The criterion for traffic saturation,
is 7o = 1if py > 0.3.

The fraction of the nodes which are saturated can then be deduced from Fig-
ure 5.1. To assess the fidelity of our traffic reconstitution we use two indicators,
which are time dependent,

L) E ) pata+ Tall — pa) (5.1)
acGy

Iy (t) = Z PaTa (52)
acGy

where the p, are the predictions and 7, € {0,1} come directly from the simulation.
G, is the subgraph of G corresponding to nodes which have a day time-stamp smaller
than ¢. An instance of a reconstructed network is given in Figure 5.2. From the
load distributionof Figure 5.1, given the value of the threshold, we see that the great
majority of the links are not saturated. Therefore, the second estimator is much more
relevant than the first one, since it takes only the saturated links in account. In this
respect we see an improvement in Figure 5.3 in predicting the presence of traffic jams
when probe-car are used to infer the traffic network. At the end of each day, the
fraction of detected jams, which from historical data is around 20% in Figure 5.3(a),
rises to above 50% with only one probe vehicle (Figure 5.3(b)) and reaches around
70% with 5 probe cars (Figure 5.3(c)). Instead the first estimator which in our case
is more representative of the population of unsaturated nodes, does not discriminate
between historical data, and probe vehicles inference data.
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convergence after 1 steps

9h 0

Fig. 5.2: Comparison of the real traffic network situation (left) with the inferred one
(right) with five probe-vehicles, using the mean-field algorithm. Red dots
represent the presence of probe vehicles during the time interval (10 min).
Color varies from green (fluid) to red (saturated), proportionally to the load
pe(t) (left) or to p, (right).
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Fig. 5.3: Performance evaluation of the mean-field algorithm over four day-time
cycles, by comparing traffic reconstruction with historical data (a), with 1
probe vehicle traffic reconstruction (b) and 5 probe vehicles (c). Curves
in green are the traffic intensity measured over the network, in black the
estimator 5.1, in red the estimator 5.2.
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